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IV. SPECIAL CASE: POISSON PROCEDURES 
For certain stochastic processes it is possible to determine the 

fractional area coverage from measurements along a line without any 
apriori knowledge of the process. Here such a possibility is given for 
a Poisson line process like the one used above as a model of leads. 

For a Poisson process the area fraction is related to the intensity’ 
T of the process and the mean “area” of the objects <: 

(6) p’ = Pr[O is covered] = 1 - r-r‘ 

where 0 is an arbitrary origin. The area measure corresponds in units 
to the intensity measure; e.g., for leads the intensity is the number of 
points per unit distance and < is mean lead width. 

The area fraction can be now estimated from lineal measurements 
through the use of the line (lead) thickness (width) distribution. The 
area term in (6) is the overall mean line thickness, T I - .  defined as 

1.I- = n-’ lT t r , (B ) r lH  

where w ( H )  is the mean thickness of lines with orientation H (0 5 H 5 
A )  [4]. This applies to lines oriented isotropically; Le., with a uniform 
distribution such that fe(B) = A - ’  where fo is the probability 
density function for line (lead) orientations. For anisotropic thick 
lines then 

IT- = 1= w(H)dFe(H) 

where d F o ( 8 )  = f e ( H ) d H ,  and FO is the cumulative distribu- 
tion function for orientations. A method for determining the actual 
lead width distribution, and hence from the width distribution 
measured along a transect has been presented in [3].  

As an example of the use of (6), the lead network in Fig. l(b) was 
generated with T = 1/3 (3-km mean spacing) and \I- = 0.2 km. 
This gives a p‘ estimate using (6) of 0.064 compared to the value 
of 0.067 reported in Table 11. The discrepency is a function of the 
image creation and thresholding process, where all leads must fill an 
entire pixel. 

In practice the intensity of the process is not known. For leads 
modeled as a Poisson line process an estimate of r can be obtained 
from the transect data, where the points of intersection of the transect 
with leads constitute a Poisson process of intensity 2 r / n .  The 
accuracy of this estimate depends on the size of the region over which 
the measurements are made. For Fig. l(b) estimates of T range from 
0.19 to upwards of 0.45 which results in an estimate of p’ in the 
range of 0.037 to 0.086. There is, of course, some variability in the 
estimate of \.I‘ as well, which is discussed in [3].  

V. SUMMARY 

A general method has been presented that allows for the assessment 
of potential errors in estimating the fractional coverage of geophysical 
variables from measurements along a line. Potential applications 
include the analysis of field data from aircraft, ships, and submarines 
as well as data collected on along ground transect by field personnel. 
For image processing the primary use of transect measurements is 
in the sampling of very large data sets. By application to fields of 
clouds and sea ice fractures it was shown how the variance of the 
estimate of area fraction depends on the spatial structure and the 

’The intensiry of a stochastic process is commonly called the density of the 
process. The former term is used here in order to avoid confusion with the 
concept of probability density. 

number and length of transects in the sample. With a single, short 
transect the estimated fractional coverage has a large variance. With 
large samples the sampling distribution of sample proportions tends 
towards normal with a mean equal to the population or true mean, so 
that confidence interval estimates and hypothesis tests are possible. 

The shortcoming of the approach is that the autocovariance func- 
tion must be known. If, however, it is assumed that some basic 
autocovariance structure exists for different cloud types, sea ice leads, 
etc., possibly as a function of the time of year and/or geographic 
location, the general lineal method is a useful tool. Even if such 
a priori knowledge of the geophysical field is not available, the 
method allows for the assessment of sampling errors and the design 
of sampling strategies in a general sense. In cases where the spatial 
structure of a geophysical variable can be described by a particular 
stochastic process such as a Poisson process, other methods of 
estimating the area coverage may be available. 
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LA1 Inversion Using a Back-Propagation Neural 
Network Trained with a Multiple Scattering Model 

James A. Smith 

Abstract- Standard regression methods applied to canopies within 
a single homogeneous soil type yield good results for estimating leaf 
area index (MI) hut perform unacceptably when applied across soil 
boundaries. In contrast, the neural network reported here generally 
yielded absolute percentage errors of < 30%. The network was applied, 
without retraining, to a Landsat TM. 

I. ~NTRODUCTION 

Current and projected satellite sensor systems, e.g., the Moderate 
Resolution Imaging Spectrometer (MODIS) [I], are able to obtain 
global and repetitive observations at high temporal sampling rates 
and many studies have demonstrated the utility of vegetation indices 
at continental scales for estimating photosynthetic processes and leaf 
area index (LAI) in plant communities [ 2 ] .  Others, however, have 
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indicated the limitations of vegetation indices for LA1 and absorbed 
photosynthetically active radiation (APAR) assessment [3]. 

Regression relationships have long been used to relate leaf area 
index and other vegetation characteristics to remote sensing ob- 
servables [4]. Unfortunately, these relationships are known to vary 
widely as a function of soil color [5] and atmospheric effects [6]. 
To attempt to circumvent these difficulties several investigators have 
tried direct inversion of canopy reflectance models [7] or indirect 
inversion by employing minimization methods with respect to LA1 
and merit functions constructed from differences between measured 
and predicted reflectances [8], [9].While promising, these methods are 
strongly dependent upon a good initial guess of the desired parameter 
and, for the most part, have not been applied to broad scale satellite 
data analysis. 

Recently, some new approaches to this problem have been de- 
veloped by combining physically based models and measurements 
with either artificial intelligence concepts [lo] or neural computing 
techniques [ l l ] .  Tsang et al. [12] used a neural network trained with 
a multiple scattering model to infer snow parameters from passive 
microwave remote sensing measurements. 

The objective of this study is to investigate the use of a back- 
propagation neural network, trained with a multiple scattering 
model, for improved leaf-area-index estimation, particularly for 
sparse canopies overlying varying soil backgrounds, where standard 
techniques have difficulty. The selection of neural network operating 
parameters is explored using simulation analysis. Genetic algorithm 
inversion analysis of the trained neural network is also performed to 
gain insight into the network operating characteristics. The learned 
network weights are then applied to sample satellite Thematic Mapper 
data for an agriculture/forestry study site. 

11. STUDY AREA 

The Mogi-Guap study area is located between 22' 05'to 22" 20' 
South latitude and 47" 00' to 47" 15' West longitude in the Slo 
Paulo State and is representative of pine and eucalyptus plantations 
common to that region. This site includes the Campininha Pine 
Experimental Station of the Forestry Institute of the state of SPo 
Paulo (IFSP) and the Santa Terezinha Eucalyptus Plantation of the 
Champion Cellulose and Paper Company (CCP). The major Pinus 
species in Campininha are Pinus elliottii and Pinus taeda. Other 
species, such as Pinus caribaea, Pinus bahamensis, Pinus oocarpa, 
and Pinuspalustris, are also planted in small amounts. The prominent 
Eucalyptus species in Santa Terezinha are Eucalyptus alba and 
Eucalyptus sa ligna. 

Field data and forest cover maps were provided by IFSP and CCP 
and may be grouped into four forest classes based on species or 
age. These classes refer to Pinus elliottii, Pinus species other than 
Pinus elliottii, Eucalyptus spp. from eight months to two years, and 
Eucalyptus spp. over two years. The pine plantation is composed of 
tree stands varying from 10 to 30 years and the eucalyptus plantation 
from one to less than seven years. 

111. THEORY 

A. Multiple Scattering Models 

A relatively simple reflectance model was employed since we are 
looking at the application of the technique to large-scale satellite 
data analysis where the availability of scene-dependent parameters 
necessary to drive such models is limited. Specifically, we utilize 
the simple two-stream Kubelka Munk model [13]. This is the model 
also used by Price [14] in his analysis of AVHRR data and requires 
minimal input. 

The two-stream approximation for upwelling flux, I ,  and down- 
welling flux, J ,  is given by 

= ( k  + s ) l +  J and - d J  = -sf + ( k  + s)J. 
d n  dn 

The leaf scattering coefficient, s, and leaf absorption coefficient, 
k, are determined from measured individual leaf reflectance and 
transmittance measurements. The canopy depth dimension is taken as 
the cumulative leaf area index, n, measured downward from the top 
of the canopy. Multiple scattering of radiant flux within the canopy 
is governed by the indicated coupled differential equations subject to 
the boundary conditions 

J(L.41) = pg * I ( L A 1 )  and I (0)  = 1. 

These equations can then be solved for canopy reflectance, pc ,  as 
a function of leaf area index (LAI), background soil reflectance, p g ,  
and leaf optical scattering properties, k and s. All quantities vary with 
wavelength except LA1 (see the equation at the bottom of this page). 

B. Back-Propagation Neural Network Technique 
A multilayer, feedforward artificial neural network (ANN) consists 

of an input layer, one or more hidden layers, and an output layer of 
fully interconnected neurons. Each neuron computation unit produces 
an output based on some function, usually a sigmoid function, of a 
linear combination of outputs from neurons in a previous 1ayer.There 
are two general steps in the training of a back-propagation ANN. 
These consist first of a feedforward iteration to calculate the output 
of the network, as a function of the interconnection weights, based 
on training input values presented to the input layer. This is then 
followed by a back-propagation learning rule, which is an iterative 
gradient descent algorithm designed to minimize the mean squared 
error between network predicted outputs and training set values. For a 
three-layer network, which was employed in this study, the procedure 
is as follows [15]: 

The net input to a hidden neurode, i,, is the weighted sum of the 
outputs from the input layer, 0%) i.e., 

i ,  = W , ~ O ~  

where wj2 is the interconnection weight between input neurode i and 
hidden neurode j. The output from a hidden neurode, j ,  is given by 

where 
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The net input to an output neurode, 1 1  from the hidden layer 
is similarly given as a weighted sum over w/Jo l  and the output 
from an output node, 01 is the sigmoid function of 1 1 .  Training 
by gradient descent leads to the following iterative expressions for 
weight updating: 

11'/1 = w / ,  + f ]h /o ,  + a A u  

and 

where 

h/  = ( t /  - o/ j O / ( l  - o/ j 

and 

6) = o , ( l - O , ) ~ u ~ / , 6 /  

f~ is the desired target result for output neurode, I ,  11, the learning 
rate, and (I a damping or momentum term. 

The basic strategy for the inversion of surface parameters, e.g., 
LAI, from optical remote sensing data using a back-propagation ANN 
is thus to present a set of training data, {oz. t l} ,  to the network where 
o, represents either spectral reflectance channels directly or some 
combination of these channels and tl represents the desired surface 
parameter, here LAI. 

There are, however, a number of practicalities involved in the 
application of an A" to the parameter inversion problem. The 
neural network parameters, e.g., the number of iterations required 
for convergence, the appropriate number of hidden nodes and layers, 
learning rate and momentum term must all be investigated. The role 
of pre- and postprocessing transformations to enhance learning and 
robustness are sometimes key to system performance. Finally, once 
a network has been trained, the interpretation of system performance 
and a physical understanding of the network categorization is impor- 
tant to understand its extrapolation capabilities under different scene 
conditions. In this latter regard, we have found it useful to apply 
genetic algorithms to the learned network weights to visualize the 
network partitioning of the input feature space [16]. 

IV. METHOD 
The generation of training and test sample data sets was performed 

using the simple two-stream, radiative transfer model discussed 
earlier to predict canopy reflectance as a function of soil reflectance, 
LAI, and leaf optical properties. Attention was focused on sparse 
canopies, LA1 < 1.0, and two soil backgrounds. These data were 
then used in multiple regression analyses to establish the need for an 
alternate solution, e.g., ANN'S, and for benchmark comparisons. The 
neural network was trained on one sample of canopy reflectance data 
generated using one soil type and tested on a second, independent 
canopy reflectance data set generated using a second soil type. The 
ability of the network solution to generalize to new data was thus 
evaluated. The multiple regression solutions were similarly developed 
and tested for these cases. Experimental data required to run the 
scattering model to train and test the neural network were obtained 
from an intensive sensor fusion field experiment in Maine during the 
summer of 1990 [17]. 

A.  The Direct Problemqeneration of Training and Test Samples 
Measured leaf reflectance and transmittance data as well as soil 

reflectance data were obtained from the Maine sensor fusion field ex- 
periment. Three wavelengths were chosen for analysis corresponding 
to the green reflectance peak at 0.55 pm (TM2), the red chlorophyll 
absorption band at 0.67 pm (TM3) and the infrared plateau at 0.80 

0.9 

X 

0 = 0.8 
t 

0 

c 

c 

0.7 

c - 
e - 
$0.6 > 
P - t - 
8 

0.5 

z 

0.4 

m a a 6 Q  
0 

Q 

0 

Q 

0 

ID 
Soil 1 
Soil2 

0 

I . . , . . , . .  I . . , . '  

b t  A m  Index 

Fig. 1. Normalized difference vegetation index versus leaf area index for 
two soil types as calculated from simulated reflectance data. 

pm (TM4). These latter two wavelengths were also required to 
calculate the normalized difference vegetation index (NDVI). The 
measured soil reflectance values corresponded to a medium dark soil. 
A second set of assumed soil reflectance factors was calculated from 
the measured data using the method of Baret and Guyot [3] and 
corresponded to a medium bright soil. 

Leaf area index was varied from 0.1 to 1.0 in steps of 0.1 
corresponding to sparse canopies. Thus 10 canopy reflectance mea- 
surements were obtained for each of two soil types at each of three 
wavelengths.The 10 triplets of canopy reflectance values correspond- 
ing to the ten simulated leaf area indices for soil type 1 were treated 
as the training set. Similarly, the 10 triplets of canopy reflectance 
values corresponding to the same ten leaf area indices but for soil 
type 2 were treated as the testing set. 

B. Multiple Regression Analysis 
Straightforward multiple regression of leaf area index, LAI, against 

reflectance at 0.55 pm, p i s ,  reflectance at 0.67 pm, p m  and at 0.8 
pm, ~ x ( I ,  verified that while a good relationship could be developed 
for measurements obtained over only soil type 1 or only over soil 
type 2, neither relationship could be applied to data of the other soil 
type. Fig. 1 shows reduction in the variation of NDVI for the two 
soil types at higher LAI, but significant differences are still evident 
for LA1 < 0.5. 

After some experimentation the following multiple regressions 
were obtained between LA1 versus pS5 and NDVI. The R-squared 
values are included only for reference. The results section gives the 
application of these equations to calculate the absolute percent error 
in predicted LA1 for each LA1 between 0.1 and 1.0. 
Using Soil 1 data only: 

L-4I = -5.83 + SO.lp,, - G.9&\-D171 R-squared = 94% 

Using Soil 2 data only: 

L A I  = 30.7 - l l S p j i  - G.12-YDI-I R-squared = 98 5% 

Using both Soil 1 and Soil 2 data: 

LA41 = -1.31 + 2.5Sps, + 1.SSA\7DT71 R-squared = 71%. 
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For a strict comparison between the use of multiple regression 
versus the neural network approach, only the equation for Soil 1 
should be applied to the Soil 2 data (or vice versa). However, because 
of the large (off-scale) errors so obtained, the third regression equation 
was also obtained and applied to Soil 2 data to show comparisons 
within the same scale as the neural network. 

The results for regression analysis given in Section V clearly 
indicate the need for other approaches. 

C. Neural Network Analysis 
A considerable amount of computer time and personnel resources 

are required in order to hone in on an optimum ANN solution. A 
number of runs are required to fully explore the effect of the number 
of hidden nodes, number of iterations, learning rate, and momentum 
term on overall performance. For each exploration, replication with 
a set of random initial weight matrices would be desirable and 
appropriate averaging of the results performed. 

However, within the constraints of this analysis a good solution that 
would be both feasible and demonstrably better than, e.g., the multiple 
regression method, was sought. Ground estimation techniques of LAI 
using destructive sampling methods rarely yield an absolute percent 
error estimate of better than 30% and this was taken as an approximate 
definition of a good solution. 

A pragmatic approach was taken. Based on the multiple regression 
analyses described earlier, the input data to the neural network was 
taken to be the reflectance at 0.55 pm, p 5 5 ,  and the normalized 
vegetation index, NDVI. Both variables are bounded by 0 and 1.0 
The desired output of the network is the LA1 estimate. A feedforward 
network using 1 hidden layer with a 2 [input nodes] x N[hidden 
nodes] x 1 [output node] was selected. The number of hidden nodes 
was initially selected to be the “number of input nodes + number 
of output nodes + a few” or 7. The learning rate was selected to be 
0.15 and was not varied. The momentum value was initially selected 
to be 0.5, however, a broad exploration quickly established that the 
network was not sensitive to the momentum term and a value of 0.9 
was adequate. 

Attention was focused on the effect of random initial weights, 
the number of iterations, and the possible increase in the number of 
hidden nodes to 11. The number of iterations studied was 2000, 6000, 
and 10 000. Three runs were made for each iteration test correspond- 
ing to different random initial weight matrices. The network was first 
trained on the reflectance data for soil type 1 for the specified number 
of iterations and then tested with the reflectance data for soil type 2. 
The absolute percent error for each LA1 within the range of 0.1 to 1.0 
was summarized and compared, particularly for low LA1 values. The 
total normalized rms error for each run was also compared but this 
was not as instructive as the overall pattern of LA1 estimation errors. 

It was evident that the network was beginning to be overtrained 
at 10 000 iterations indicating that a reasonable bracket of iteration 
count had been explored. Variations of a few percent in absolute LA1 
error resulting from different random initial weight matrices were 
not deemed significant. The total rms errors were also comparable 
between runs for a given iteration count. Sample runs with 11 hidden 
nodes showed either comparable or decreased performance. 

V. RESULTS 

A. Regression Results 
Applying the Soil 1 regression equation to Soil 2 data yields 

absolute percent errors of 6062, 1995, 844, 4171, 223, 68, 34, 12, 
and 8 corresponding to LA1 of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, and 1.0. Similarly, the application of the regression equation 
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Fig. 2. Neural network error performance as a function of number of training 
iterations. 

developed over both Soil 1 and Soil 2 data applied to Soil 2 data 
only yields the following corresponding values: 145, 54, 73, 59, 40, 
22, 7, 5, 15, and 23. 

B. Neural Network Results and Interpretation 
Since comparable results were obtained with all three random 

initial weight matrices, one was selected arbitrarily. A plot of the 
absolute percent error variation with LA1 as a function of number 
of iterations is shown in Fig. 2. The horizontal 30% absolute error 
line taken as an indicator of a good solution has also been drawn. 
The matrix trained with 6000 iterations and using a 2 by 7 by 1 
architecture was deemed to satisfy the criteria of a good solution, 
generally less than 30% absolute percent error. The technique also 
shows dramatic improvement over the multiple regression results 
given above for these conditions. 

In order to understand how the trained neural network estimated 
LAI, a genetic algorithm was employed to do an inverse mapping 
of the neural network decision surfaces for LA1 [16]. Random 
populations of two genes, corresponding to values of NDVI and p 5 5 ,  

respectively, were presented to the algorithm. The genetic algorithm 
samples the decision space by generating new populations of genes, 
LA1 and p 5 5  values, based on fitness value calculations subject to 
crossover and mutation. Differences between the neural network 
output and a desired decision surface threshold corresponded to 
the fitness function. Fig. 3 shows the family of decision surfaces 
corresponding to LA1 values of 0.1 to 1.0 in steps of 0.1. The training 
and test simulation points for the two soil backgrounds are also plotted 
on the same graph. The network is generally able to separate the 
range of LA1 values for both training and test samples but it requires 
a family of linear decision surfaces with nonlinear separation. 

Finally, the trained network was applied to digital satellite data 
for Mogi-Guaqi. TM data from path 220irow 75, corresponding to 
the April 15, 1989 overpass of the area, were used. No atmospheric 
corrections were applied, but the data were preprocessed to effective 
reflectance at the top of the atmosphere [18]. The derived LAI 
disribution is shown in Fig. 4. Dark greylevels correspond to low LA1 
with brighter values corresponding to high LAI. The bare fields, field 
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Fig. 3. Genetic inverse mapping of neural network feature space. Straight 
lines (from left to right) correspond to decision boundaries for successively 
increasing values of LAI. 

Fig. 4. Neural network leaf area index image for 1989 Thematic Mapper 
scene of Mogi-Guap. (North is to the left.) 

and road boundaries, and relative mapping of new growth Eucalyptus 
with high LA1 and pine plantation with lower LA1 have been correctly 
differentiated. 

VI. SUMMARY 
For the simulation analyses performed, the neural network was 

able to map LA1 from reflectance data with accuracies comparable 
to that obtained from ground observations and proved more robust 
than standard regression techniques when applied to varying soil 
backgrounds. Initial application of the network to satellite data, 
even without retraining, provided good qualitative comparisons with 
available ground control information. 

While the technique appears promising, further exploration under a 
greater variety of soil reflectance backgrounds and solar illumination 
and viewing geometries is warranted. A wider variety of training and 
test samples for these varying conditions need to be generated in 
order to understand the limits of the network approach. In order to 

understand these more complex cases, other reflectance models which 
incorporate full bidirectional properties may need to be employed. 
Quantitative comparisons of satellite-derived LA1 with field data is 
also required for calibration. Finally, it should be noted that other 
neural network architectures may also lend themselves to the class 
of problems described here. 
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