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Edge Detection Applied to Satellite Imagery of the 
Oceans 

RONALD J.  HOLYER A N D  SARAH H. PECKINPAUGH 

Abstract-A computer edge-detection algorithm is developed for au- 
tomatic delineation of mesoscale structure in digital satellite IR images 
of the ocean. The popular derivative-based edge operators are shown 
to be too sensitive to edge fine-structure and to weak gradients to be 
useful in this application. The new edge-detection algorithm is based 
on the gray level co-occurrence (GLC) matrix, which is commonly used 
in image texture analysis. The cluster shade texture measure derived 
from the GLC matrix is found to be an excellent edge detector that 
exhibits the characteristic of fine-structure rejection while retaining 
edge sharpness. This characteristic is highly desirable for analyzing 
oceanographic satellite images. The method is evaluated on an Ad- 
vanced Very High Resolution Radiometer (AVHRR) image of the Gulf 
Stream region. 

I. INTRODUCTION 
NFRARED (IR) images of the ocean obtained from sat- I ellite sensors are widely used for the study of ocean 

dynamics. Fig. 1 shows an IR image of the Gulf Stream 
obtained from the Advanced Very High Resolution Ra- 
diometer (AVHRR) aboard the NOAA-7 satellite. The 
North American continent extending from Florida to 
Newfoundland is blanked out at the left side of the image, 
which has been remapped to a Mercator projection. 
Brightness in this IR image is inversely proportional to 
the ocean surface temperature (dark areas represent 
warmer temperatures and light areas represent colder tem- 
peratures). Note the presence of the warm (dark) Gulf 
Stream, the cooler (lighter) waters on the continental shelf 
from Cape Hatteras northward, and the turbulent flow pat- 
terns resulting from the dynamic interaction of the various 
water masses of contrasting surface temperatures. Vor- 
tices (areas of closed circulation) within this turbulent flow 
pattern are called eddies. Fig. 2 shows the central portion 
of Fig. 1 at 1.5 km/pixel spatial resolution. Note in Fig. 
2 the ex-tence of a Gulf Stream meander at the top of the 
image, and three cold eddies to the south of the Gulf 
Stream. 

The Gulf Stream and its associated eddies are examples 
of mesoscale features. (“Mesoscale” is the name com- 
monly ap,plied to features existing on spatial scales on the 
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Fig. 1. NOAA-7 AVHRR image showing sea surface temperatures in the 
Gulf Stream region for April 28, 1983. The image is AVHRR channel 
four with a spectral bandpass of 10.5 to 11.5 pm. The image is subsam- 
pled to a Mercator projection at 4 kni/pixel resolution. 

order of 50 to 300 km.) Mesoscale features are important 
to the study of ocean dynamics, to fisheries, and to inany 
other diverse interests. Since satellite IR images often de- 
pict mesoscale features clearly (in the absence of cloud 
cover or excessive atmospheric water vapor), the use of 
AVHRR imagery for various oceanographic applications 
is expanding rapidly. The National Oceanic and Atmo- 
spheric Administration produces operational facsimile 
products depicting ocean mesoscale features. Satellite im- 
agery is a significant data source for thcse products. 
Within the research community AVHRR data analysis is 
also increasing in volume. For example, Brown er (11. [11 
studied a ten-year set of IR imagery in order to compile 
statistics on Gulf Stream rings. Thus, with the prolifera- 
tion of high-volume AVHRR image applications, it be- 
comes highly desirable for certain applications to move 
from the labor-intensive manual interpretation of IR im- 
agery toward a capability for automated interpretation of 
these images. The complete automation of the oceano- 
graphic image interpretation function is probably not fea- 
sible, but one can begin to address certain subsets of the 
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Fig. 2. The central portion of Fig. I expanded t o  show several typical 
eddies at 1 . S  km/pixel spatial resolution. 

problem with present-day image processing and artificial 
intelligence techniques. 

Several previous studies have addressed the automation 
of the analysis of IR satellite imagery for mesoscale fea- 
tures. Gerson and Gaborski [2] and Gerson et al. [3] in- 
vestigated the detection of the Gulf Stream in IR images 
from the Geostationary Operational Environmental Sat- 
ellite (GOES). This satellite, with its 0.5”C thermal sen- 
sitivity arid 8-km spatial resolution, gives a much coarser 
representation of the ocean surface temperature structure 
than that available in the present study, where the AVHRR 
data has 0.1 “C thermal sensitivity and I .5-km spatial res- 
olution. Gerson and Gaborski [2] used a hierarchical ap- 
proach where 16 x 16 pixel (128 x 128 km) “frames” 
within the image were evaluated for the possibility of con- 
taining the Gulf Stream. Frames flagged as Gulf Stream 
possibilities were then further evaluated to determine the 
exact location of the Stream within the frame by looking 
at statistics based on 5 x 5 pixel (40 x 40 km) “local 
neighborhoods.” A large number of first- and second-or- 
der statistics were evaluated in the study, and decisions 
were based on the Fisher Linear Discriminant function for 
both the frame and local neighborhood processing. As a 
result of this study three statistical features-mean, stan- 
dard deviation, and difl‘erence histogram maximum en- 
tropy-were shown to give good indication of the pres- 
ence of the Gulf Stream within a frame. Skewness of the 
5 X 5 pixel local neighborhood was found to be the best 
statistic for locating the front within the frame. Gerson 
and Gaborski [2] stated that they had clearly demonstrated 
that a fully automated system for locating fronts in satel- 
lite imagery is feasible. 

As an outgrowth of the work reported in 121 and [3], 
Coulter [4] performed automated feature extraction stud- 

ies using the higher resolution ( 1  km) AVHRR data. 
Mean, standard deviation, and gradient in a 3 x 3 pixel 
window were combined with a priori probabilities based 
on a large historical data set in order to classify each pixel 
according to Bayes’ decision theory. Boundaries between 
water classes then became an indication of edge locations 
within the image. Promising results were reported for this 
method for locating the Gulf Stream. However, Coulter 
[4] reported that eddy classification is more difficult be- 
cause their historical statistics are less stationary. Indeed, 
the requirement for a priori knowledge and stationary sta- 
tistics is a limiting factor in the use of this method. 

Janowitz [5] studied the automatic detection of the Gulf 
Stream eddies using AVHRR data. Recognizing that edges 
in this high-resolution IR imagery are too noisy, i.e., have 
too much fine-structure detail, for effectively locating ed- 
dies, Janowitz started with filtering to smooth the image. 
Smoothing was followed by an image simplification al- 
gorithm described in [6]. The smoothed and simplified 
image was then transformed into a binary edge image by 
a Kirsch edge detector (as described in [7]). The last step 
was ellipse detection on the binary edge image as a means 
of locating eddies. The centers of all three cold eddies in 
the test image (same image as shown in Fig. 2) were cor- 
rectly identified and no eddy false alarms were reported. 
The Janowitz study lends further support to the feasibility 
of automated mesoscale feature detection. 

Nichol [8] uses a region adjacency graph to define spa- 
tial relationships between elementary connected regions 
of constant grey level called atoms. Eddy-like structure is 
then identified by searching the graph for isolated atoms 
of high temperature that are enclosed by atoms of lower 
temperature (for the case of warm eddies). Although sat- 
isfactory emulation of human extraction of eddy structure 
is claimed for this method, Nichol [8] does point out that 
not all enclosed uniform areas identified by this method 
will correspond to real ocean structure. We agree with 
this conclusion. It seems possible that relatively uniform 
areas such as the Sargasso Sea that might be devoid of 
eddies could possibly contain more uniform areas than the 
region near the Gulf Stream where eddies exist but the 
spatial patterns of sea surface temperature are very com- 
plex. The “false alarm” statistics for Nichol’s method 
should be examined. 

Although these previous investigators have reported 
some success in their initial efforts to automate the ocean- 
ographic analysis of satellite IR images, the present study 
represents a departure from the previous work. This de- 
parture arises from a difference in philosophy between the 
present work and that previously reported. The previous 
authors were seeking conventional image processing al- 
gorithms that would perform the entire mesoscale feature 
detection function. In contrast, the present study is part 
of a larger effort to blend conventional image processing 
with statistical and artificial intelligence (AI) techniques. 
As examples of related analysis techniques, Carter [9] and 
Molinelli and Flanigan [lo] have examined the use of 
complex empirical orthogonal functions for representa- 
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tion of the North Wall of the Gulf Stream, while Lybanon 
et al. [ l  I], Lybanon [12], and Thomason and Blake [13] 
have developed an expert system that embodies the me- 
soscale dynamics of the Gulf Stream region in a rule-based 
expert system. As a part of this integrated approach we 
are seeking a low-level image segmenter that will provide 
useful edge information in a form that can be easily han- 
dled by subsequent statistical or AI modules where the 
feature detection work can be completed. We have there- 
fore developed a new edge-detection algorithm that is an 
effective preprocessor that transforms satellite IR images 
into relatively simple line drawings. 

We anticipate that the next step after edge detection in 
the automated analysis of IR imagery of the ocean would 
be automated labeling of the edge line segments to indi- 
cate association with certain mesoscale oceanographic 
features such as the North Wall of the Gulf Stream or a 
cold-core ring. The feature labeling step would involve 
ancillary information, previous analyses, and oceano- 
graphic context to assign labels to line segments. The ob- 
jective of this edge-detection work is to provide clean, 
simple line representations of thermal gradients for input 
to such a subsequent feature labeling step. 

11. EDGE DETECTION 
Edge detection is one of the most common problems 

encountered in image analysis. Applications of edge de- 
tection include the fields of remote sensing, industrial in- 
spection, optical character recognition, medical imaging, 
robotics, and many others. Edge detection is often an im- 
portant first stage in many types of image segmentation 
such as the present case, where edge detection can be used 
to simplify complex imagery in preparation for subse- 
quent feature identification. The plethora of edge opera- 
tors is very difficult to evaluate and compare. Trade-offs 
between edge detectability, noise sensitivity, and com- 
putational efficiency are always involved in selecting the 
appropriate edge operator for a given application. Nu- 
merous authors, among them Davis [ 141, Levialdi [ 151, 
and Kunt [ 161, have surveyed and compared edge opera- 
tors. We will not attempt a complete discussion of exist- 
ing edge-detection techniques here, but will comment 
briefly on some of the more common approaches in order 
to show the inadequacy of these methods for finding edges 
of mesoscale features in satellite IR imagery of the ocean. 

The most common and historically earliest image edge 
operators were based on approximation of the intensity 
gradient within the image. The two orthogonal compo- 
nents of the gradient vector g, and g, are normally cal- 
culated separately then combined to- give the gradient 
magnitude g 

g = <sf  + g y 2  

g = 1 8 x 1  + Ig,I. 

( 1 )  

( 2 )  

or for increased computational efficiency 

Investigators have proposed many ways to estimate g, and 
g,. from a discrete image function. Normally these esti- 

mation techniques are implemented as a convolution of 
the image with an appropriate gradient-approximating 
kernel. Examples of such kernels are given in Table I. Of 
those shown in the table, the Sobel operator is the most 
widely used. Davies [22] estimates that the Sobel operator 
probably accounts for some 70 percent of the usage of all 
edge-detection schemes. 

Another common approach to edge detection arises from 
the mathematical Laplacian. The discrete Laplacian can 
also be implemented as a convolution with a 3 x 3 kernel. 
The Laplacian kernel is also given in Table I. The Lapla- 
cian, being an approximation to the second derivative, has 
the disadvantage that it tends to enhance noise in the im- 
age. 

The gradient and Laplacian techniques, based on first 
and second derivatives, respectively, share a common 
shortcoming in the present application. Namely, they are 
too sensitive to noise, to fine-structure in the edges, and 
to weak gradients. To illustrate this problem, the g, and 
g, Sobel operators, selected as typical of the 3 x 3 kernel 
derivative approximation methods, have been applied to 
Fig. 2, and the gradient magnitude has been calculated 
using (1). Fig. 3 is an image of Sobel gradient values. 
The mesoscale features have been captured in the Sobel 
image, but many areas of the image void of mesoscale 
structure also exhibit edges comparable to those contained 
within the mesoscale features. Furthermore, the edges 
within the mesoscale features are very complex structures 
that show great detail. In many applications this enhance- 
ment of detail by the edge operator is desirable. However, 
a preferable result in the present application would be an 
edge operator that resulted in simple, smooth representa- 
tions of edges within the mesoscale features and no edges 
at all in the oceanographically bland areas of the image. 
This desire to eliminate the fine detail of the mesoscale 
structure is what prompted Janowitz [ 5 ]  to perform 
smoothing and simplification prior to edge detection. Of 
course, the derivative-based edge operators could be made 
less sensitive to detail and weak edges by increasing the 
size of the convolution kernel used to estimate the deriv- 
atives. However, larger kernels produce a “blurring,” 
which results in edges that are broad bands rather than 
sharp boundaries. 

Edge detectors other than those consisting of convolu- 
tion masks have also been developed. One example in this 
category is the sigma filter edge detector [23]. This edge 
detector is particularly noteworthy here since it is based 
on the sigma filter [24], which is purported to have ex- 
cellent noise smoothing characteristics. The design objec- 
tive for the sigma filter appears to be quite similar to the 
smoothing objective in the present study. In the sigma 
filter edge detector, pixels in the local 3 x 3 neighbor- 
hood are divided into three groups. Pixels with intensity 
values exceeding the intensity value of the center pixel by 
more than some threshold, called delta, are put into group 
A. Pixels with intensity values less than the center inten- 
sity minus delta are put into group C. All remaining pixels 
that have intensities lying between the center pixel plus 
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Fig. 3 .  Result of applying a Sobel edge operator to Fig. 2.  
Fig. 4. Result of applying a sigma filter edge detector to Fig. 2 .  

case is 3 x 3 and the minimum delta permitted is five. 
The sigma filter produces smoother edges and has better 

TABLE I 
KERNELS OF WELL-KNOWN IMAGE EDGE OPERATORS 

R o b e r t s  1171 

S o b e l  1181 

P r e w i t t  [ I 9 1  

F r e i - C h e n  [ Z O ]  

L a p l a c i a n  1211 

4, noise rejection than the Sobel operator, but the degree of 
smoothing is still not sufficient for the present application [ - n  A 3 and many edge detections result that are not associated 
with mesoscale oceanographic structure. 

[;; ; ; ]  [-; -! -1 1 It is desirable to develop an edge-detection technique 
that would reject detail in the edges to a higher degree 

[ : i s ; ]  [ : ; ; I  than shown in Figs. 3 and 4 while maintaining sharp edge 
-1 - 1  -1 - 1  definition and accurate localization of the edge. This ob- 

jective is difficult because edges are characterized by much i 41 [-: c q high-frequency content; henceforth, an edge detector must 1 -p - 1  
be, in effect, a high-pass filter. Passing high frequencies 
almost guarantees that edge fine structure will be pre- 
served. This paper presents a new edge-detection method 
that possesses these desired smoothing characteristics to 
a degree that is not obtainable from small convolution op- 
erators such as those shown in Table I. 

4Y 

-: 1 

delta and the center pixel minus delta are placed in cate- 
gory B. 

Either group A or group C ,  whichever has fewer mem- 
bers, will be merged with group B. The difference be- 
tween the mean values of the two remaining groups is 
interpreted as the edge magnitude. In the event that all 
pixels fall within group B, the delta value is lowered (typ- 
ically halved) and the process is repeated until an edge is 
detected or a minimum delta is reached. Lee [23] notes 
that ramp edges and isolated pixel edges cause problems 
for the sigma filter edge detector. Also, Lee [23] warns 
that care should be exercised when the window size is 
larger than 5 X 5 .  This makes it difficult to add additional 
smoothing to the sigma filter by increasing window size. 

Fig. 4 is an example of the sigma filter edge detector 
applied to the IR image of Fig. 2 .  The window size in this 

111. CLUSTER SHADE EDGE ALGORITHM 
The edge algorithm developed here is based on the clus- 

ter shade texture measure, which is derived from the gray 
level co-occurrence (GLC) matrix. The GLC matrix has 
been widely used as a texture analysis tool, e .g . ,  Haralick 
et al. [25] and Ballard and Brown [26]. Conners et al. 
[27] specifically point out that the GLC matrix contains 
edge information. Harlow et al. [28] used contrast and 
symmetry measures calculated from the GLC matrix to 
investigate edge detection on synthetic bar images. How- 
ever, previous atte npts at automated edge detection in real 
imagery based on the GLC matrix, or use of the cluster 
shade measure for edge detection, are not known to the 
authors. 

The ( i ,  j)fh element of the GLC matrix, P ( i ,  j l  A x ,  
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A y ) ,  is the relative frequency with which two image ele- 
ments, separated by distance ( A x ,  A y ) ,  occur in the im- 
age, one with intensity level i and the other with intensity 
levelj. Mathematically speaking, consider an M x Npixel 
image or local neighborhood within an image with L in- 
tensity levels ranging from 0 to ( L  - 1 ). Let f ( m ,  n )  
denote the intensity level of the pixel at sample m, line n. 
Then 

P ( i , j [ A x ,  A y )  = c A ( 3 )  
m , n  

whereA = l / [ ( M  - A x )  X ( N  - A y ) ]  i f f ( m ,  n )  = i 
andf (m + Ax,  n + A y )  = j .  Otherwise, A = 0. Both 
pixels at locations ( m ,  n )  and ( m  + Ax,  n + A y )  must 
lie within the M X N image space. P ( i ,  j I Ax,  A y )  is 
therefore an L X L matrix of second-order probabilities. 
In many texture problems several Ax,  A y  combinations 
are analyzed so that one actually works with a set of GLC 
matrices, one for each Ax,  A y  combination. 

The elements of the GLC matrix could be combined in 
many different ways to give a single numerical value that 
would be a measure of edginess. One such measure, called 
cluster shade, S( Ax,  A y )  [27], has been found here to be 
an especially good edge measure for the present problem. 

L - l  L - l  

S(Ax ,  A y )  = c ; = o  j = o  

P ( i ,  j 

where 
L - l  L - l  

p i =  C i C P 
i = o  j = o  

L - 1  L - l  

i = o  j = o  
pj = c c jP( 

3 :i + j - p; - pj)  

Ax, AY)  (4) 

The quantities pi and pj are estimates of mean intensity 
based on weighted summations of rows and columns 
within the GLC matrix. We have chosen to detect edges 
in the present study by computing P( i, j 1 Ax,  A y )  and 
subsequently computing S( Ax,  A y )  in overlapping local 
neighborhoods within an image. The center point of the 
neighborhood is then replaced by the S ( A x ,  A y )  value 
computed from its neighborhood, thus creating a ‘‘cluster 
shade image” of S (  Ax,  A y )  values. Fig. 5(b) shows one 
such cluster shade image for a 64 X 64 pixel portion of 
Fig. 2, which spans the north wall of the Gulf Stream 
(Fig. 5(a)). The intensity in Fig. 5(b) is given by cluster 
shade, S ( A x  = 0, A y  = 0).  (A later section will point 
out that the Ax and A y  values have very little effect in the 
resulting edge detection. We therefore use Ax = 0, A y  
= 0 because of simplification of the mathematics, and the 
reduced computation time that results.) Note that (a) 
S (  Ax,  A y )  can assume either positive or negative (black 
or white) values, (b) the values are the largest in the vi- 
cinity of the north wall of the Gulf Stream, (c) the values 
are negative to one side of the wall and positive to the 
other side, and (d) the transition point from large positive 

(c) (d) 

Fig. 5. Cluster shade detection algorithm applied to a 64 X 64 pixel test 
image spanning the north wall of the Gulf Stream. (a) The original sub- 
image containing the north wall, (b) cluster shade image where the in-  
tensity of each pixel is proportional to cluster shade calculated over a 5 
X 5 pixel local neighborhood in (a), (c) result of applying the thresh- 
olded zero crossing algorithm to (b),  (d) the edge from (c) overlain on 
(a). 

to large negative values coincides with the exact location 
of the edge of the Gulf Stream. These observations sug- 
gest that one could detect edges by finding the significant 
zero crossings in the cluster shade image. 

Significant zero crossings in the cluster shade image are 
found as follows. For each 3 X 3 pixel neighborhood in 
the cluster shade image (Fig. 5(b)) the absolute value of 
the center pixel is tested against a defined threshold. If 
this value does not exceed the threshold, then a “0” will 
be output to the binary edge image. If, however, the ab- 
solute value of the center pixel exceeds the threshold, then 
a test of the neighboring pixels is performed. If the ab- 
solute value of any of the eight neighbors also exceeds the 
threshold but is opposite in sign from the center pixel, a 
“1” will be output to indicate the presence of an edge. 
This algorithm has the effect of marking the major zero 
crossings in the cluster shade image with 1’s in the re- 
sulting binary edge image. Fig. 5(c) shows the result of 
applying this algorithm to the north wall test image. 

Because edges are detected by finding zero crossings, 
precisely positioned lines result even if the GLC matrix 
is calculated over a large window. (The lines are formed 
two pixels wide because the zero crossing algorithm we 
use detects both the large positive value with a large neg- 
ative neighbor and the large negative value with a large 
positive neighbor.) The cluster shade edge detector, 
therefore, does not give blurred or positionally uncertain 
edges when large windows are used. The desired edge- 
detection characteristics of retaining sharp edges while 
eliminating edge detail are thereby achieved. In addition 
to setting the window size to reject edge detail, the thresh- 
old used to determine which zero crossings are significant 
can also be adjusted to eliminate detection of weak edges. 
Therefore, two major tunable parameters are associated 
with this algorithm: window size and zero crossing 
threshold. The length and angle of the displacement vec- 
tor could also be changed in an attempt to tune the per- 
formance of this edge detector. However, we have found 
that the displacement vector is not a significant contribu- 
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Fig. 6. Edges detected in  Fig. 2 by the CSED algorithm with window = 
16 X 16 pixels. A.x and A y  displacerncnth = 0 pixels, and zero crossing 
threshold = 20. 

Fig. 7 .  Edges shown in Fig. 6 overlaid on Fig. 2 

tor to performance. The effects of changing parameter 
values are illustrated in a subsequent section. 

To illustrate the cluster shade edge-detection (CSED) 
algorithm, the AVHRR image shown in Fig. 2 has been 
processed with a displacement vector of zero length, win- 
dow size (local neighborhood) of 16 X 16 pixels, and 
zero crossing threshold of 20. The result is shown in Fig. 
6 as a binary edge image. The edge image is shown 
overlaid on the original image in Fig. 7. Note the delin- 
eation of mesoscale features in Fig. 6 is much “cleaner” 

than that generated by the Sobel operator (Fig. 3 )  or sigma 
edge detector (Fig. 4). 

IV. DEALING WITH CLOUD COVER 
The test image in Fig. 2 is not typical of IR images of 

the ocean because it is almost completely cloud free. In 
practical application one must consider the fact that par- 
tial cloud cover will exist in nearly every image analyzed. 
Therefore, any useful edge-detection algorithm must be 
able to locate edges of mesoscale features in the image 
while ignoring cloud edges. If we can generate a mask 
that consists of all cloud-covered pixels within the image, 
the CSED algorithm can be made to ignore cloud edges 
by simply assigning a value of zero to the cluster shade 
for any case where one or more of the pixels within the 
GLC matrix local neighborhood are covered by the mask. 

Cloud masks suitable for this purpose could be gener- 
ated by several methods. The two most common are de- 
scribed below. First, one can threshold on the near-IR 
(0.72 to 1 .0  pm) channel of the AVHRR. In this spectral 
band the clouds, which are highly reflective, are always 
brighter than the highly absorptive ocean and cloud/water 
discrimination is therefore an easy task. The disadvantage 
of near-IR thresholding is that the method can be used 
only for daytime images. A second possibility for gener- 
ating a cloud mask is to threshold on the IR image. Clouds 
are normally radiometrically colder than the sea surface, 
so this method will work in many cases on either daytime 
or nighttime imagery. The disadvantage is that clouds will 
not always be colder than the sea surface. This difficulty 
is especially serious when the image under analysis cov- 
ers a large latitude range. Over a wide latitude range the 
clouds in the lower latitude portion of the image will often 
be warmer than the water at the higher latitudes. 

Therefore, no single temperature threshold would mask 
out clouds over the entire image. Assuming one can pro- 
duce a valid cloud mask by one of the above or by any 
other method, the CSED algorithm with mask testing in 
each local neighborhood will not detect cloud edges. 

The fact that cloud rejection is implemented via masks 
opens up other possibilities. For example, masks could 
also be produced from bathymetry data, which could be 
used to force omission of edges in shallow water. Or 
masks could be generated on the basis of the mean posi- 
tion or last known position of the Gulf Stream in order to 
force detection on only those features within a certain dis- 
tance from these predetermined positions. 

To illustrate the detection of mesoscale features in the 
presence of partial cloud cover, a second subsection of 
Fig. 1 is selected. This area, to the east of that shown in 
Fig. 2,  is shown in Fig. 8. A cloud mask generated by 
thresholding the near-IR image corresponding to Fig. 8 at 
an albedo value of 0.05 is shown in Fig. 9. Fig. 10 shows 
the mesoscale edges detected by the CSED algorithm ap- 
plied to Fig. 8. Fig. 11 is Fig. 10 overlaid on the original 
image in Fig. 8. The CSED algorithm clearly detects those 
portions of major mesoscale features that are not cloud 
covered while ignoring the cloud-contaminated areas. 



t 

shade threshold of 20. A systematic study o f  the efyects 
of changing each o f  these prarneters has not bccu per- 
formed, hut a discussion of their eRects follows Exam- 
ples of changing these parameters ifre also included. 

First, let US consider the choice of length and o 
tion of the displacement vector used for GI-C matrix cal- 
culations. Several combinations o f  Ax and Ay were tned. 
Our observation (see Fig. 12 where vsirioris djsplacnnent 
vectors are applied ro the same image) is ihar ;L displace- 
merit vector niakes only a srnall digerence in the edge de- 
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Fig. 12. Application of the CSED algorithm to a subsection of Fig. 2 with 
various values of the displacement vector. (a) Ax = 5, A y  = 0, (b) Ax 
= 0, A y  = 5 ,  (c) Ax = 3, A y  = 2. 

tection result. If this is true then a zero length displace- 
ment vector can be selected to gain considerable 
computational advantage. For a zero length displacement 
vector, the following simplifications apply to the vari- 
ables occurring in (4). 

P (  i, j 1 Ax, A y )  = 0,  

P ( i ,  i ( A x ,  A y )  = H ( i )  

for i # j ( 5 4  

(5b)  

(5c)  

Pi = Pj = P 

where H (  i ) is the histogram of intensity values and p is 
the mean intensity within the local neighborhood. 

Substituting (5a)-(5c) into (4) results in a simplified 
expression for cluster shade. 

L -  I 

s ( A ~ ,  A Y )  = 2 C ( i  - p l 3 ~ ( i ) .  (6 )  
i = O  

From (6) it is obvious that cluster shade with a zero length 
displacement vector is actually a measure of the asym- 
metry in the gray-level histogram of the local neighbor- 
hood. That is, if H ( i )  is symmetrical about the mean, 
then the cluster shade is zero. However, if H (  i ) is skewed 
to the negative side of the mean, the cluster shade value 
will be negative. Likewise, a histogram skewed to the 
positive side of the mean will result in a positive cluster 
shade. Thus, the CSED algorithm with a zero length dis- 
placement vector should produce results similar to those 
that are obtained from finding zero crossings in the skew 
values for local neighborhoods within the image. It is in- 
teresting to note that Gerson and Gaborski [2] have re- 
ported zero crossings in local histogram skew as the best 
way to locate the North Wall of the Gulf Stream. Al- 
though the CSED algorithm resembles previous work with 

skew, CSED contains a major difference that is important 
to its performance. The equation for skew of a distribu- 
tion is 

where U is the standard deviation o f f (  m,  n). The nu- 
merator of (7) is similar in form to the cluster shade 
expression (6). However, the denominator in (7) normal- 
izes the skew value by the standard deviation in the local 
neighborhood. This normalization by standard deviation 
means that based on skew, a small gradient in a low con- 
trast area would be equally likely to be detected as would 
a large gradient in a high contrast area. This fact would 
cause many edges to appear in nearly isothermal areas of 
the IR image if skew were used as the basis for edge de- 
tection. This is an undesirable result for the present ap- 
plication where rejection of small gradients is required to 
reduce noise in the edge image. The CSED algorithm, by 
contrast, because it does not normalize its asymmetry 
measurement by standard deviation, results in an asym- 
metry parameter (cluster shade) that is proportional to 
gradient magnitude in an absolute (unnormalized) sense. 
This fact results in detection of the large gradients asso- 
ciated with the major features while ignoring the smaller 
gradients such as those in the Sargasso Sea at the bottom 
of Fig. 10. 

To summarize the discussion of selection of displace- 
ment vector values, we have shown that this is not an 
important parameter, and furthermore, selection of zero 
as the displacement vector length eliminates the require- 
ment for calculation of the GLC matrix in order to get 
cluster shade. Cluster shade is reduced to a histogram cal- 
culation (6) or alternatively 

M N  

S(Ax, AY) = c ( f ( m ,  .) - P ) 3 .  ( 8 )  
m = l  n = l  

Therefore, a zero length displacement vector is the ob- 
vious choice for most applications. 

The question of optimal window or local neighborhood 
size is highly dependent upon the application. No strict 
rules can be stated in this regard. However, the effect of 
changing window size can be demonstrated. Fig. 13 shows 
the CSED results for a subsection of our test image pro- 
cessed with window sizes of 3 x 3, 9 x 9, and 16 X 16 
pixels. The increase in window size has the effect of re- 
ducing fine detail and small spot noise in the edge repre- 
sentation. For our application the 16 x 16 pixel window 
gives the most suitable result. However, the scale of the 
features to be delineated and the desired degree of edge 
smoothing would lead to other choices for other applica- 
tions. 

The effect of the last CSED parameter, cluster shade 
threshold, is demonstrated in Fig. 14. As the threshold is 
increased the number of edges detected is reduced. There- 
fore, if only a small number of strong edges is desired a 
large threshold is employed; if many edges including rel- 
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Fig. 13. Application of the CSED algorithm to a subsection of Fig. 2 with 
various values of loci11 neighborhood size. (a) 3 X 3, (b) 9 X 9 ,  (c) 16 
x 16. 

k’ig. 13. Application of  the CSED algorithm to a subsection of Fig. 2 with 
various values o l the  cluster shiidc zero crossing threshold. (a) 5 .  (b) 20, 
( C )  100. 

atively weak ones are desired, the threshold is lowered. 
Cluster shade threshold like neighborhood size must 
therefore be determined for each application. 

The edges detected by the CSED algorithm can contain 
many one- or two-pixel-wide breaks in the lines (see Fig. 
6 ) .  These broken lines can be connected to form solid lines 
by dilationierosion operations. Fig. 15 shows such a di- 
lated/eroded result. The dilation (line thickening) algo- 
rithm, which also includes a test to remove spatially iso- 

Fig. 15. Edges from Fig. 6 after cleaning/dilation/erosion operations. 

lated points, operates as follows. First, a check for 
isolated points is performed by examining overlapping 
windows (called the cleaning window) in the binary edge 
image. The boundary pixels of each cleaning window are 
checked for “1” values. If a “1”  is found anywhere on 
the boundary the window is left unchanged. If, however, 
no 1’s are present on the boundary, all pixels within the 
window are set to “0.” This cleaning operation removes 
isolated edge points that are not connected to edge struc- 
ture of sufficient spatial extent to span the cleaning win- 
dow. Fig. 15 was produced using a cleaning window size 
of 16 X 16. Next, the dilation step checks each pixel in 
the binary edge image for a value of “ 1  .” For every “ 1” 
pixel, all eight of its immediate neighbors are also set to 
“1.”  An edge image may be subjected to more than one 
iteration of the dilation algorithm, with each iteration 
making the lines thicker. To produce the result shown in 
Fig. 15 only one iteration was used. Following dilation 
and cleaning operations the lines are eroded (thinned) back 
to single pixel width. The thinned lines are nearly iden- 
tical to the original edge lines, except that small breaks in 
the lines are now connected. The thinning algorithm used 
in the generation of Fig. 15 was taken from Pavlidis [29]. 

The dilation/erosion operations are applied here be- 
cause the output of our simple algorithm to detect zero 
crossings in the cluster shade image results in broken lines 
of up to three pixels in width. If a more complex zero 
crossing detector were used, connected, single-pixel-wide 
lines, such as those shown in Fig. 15, could probably be 
derived directly from the CSED algorithm and would 
eliminate the need for any subsequent processing steps to 
connect and thin. Such an improved zero crossing detec- 
tion algorithm would be a worthwhile enhancement to the 
CSED algorithm. 
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The question can be raised as to whether the CSED 
should be applied to the raw imagery data, or if some 
preprocessing step should be included to smooth the im- 
age prior to application of the CSED algorithm. Since 
smooth edges are the objective, some prior smoothing of 
the image would seem like a logical step. Several smooth- 
ing preprocessors, among them median filtering and sigma 
filtering [24], have been applied to our test images prior 
to CSED processing. The output of the edge detector was 
found to be virtually unchanged as the result of pre- 
smoothing of the imagery. We conclude therefore that the 
smoothing characteristics of the CSED method are pow- 
erful enough that presmoothing is redundant to that which 
occurs within CSED. Our test images indicate that the 
computational requirements associated with preprocess- 
ing are not justified by improved edge-detection results in 
this case. 

The effects of atmospheric attenuation play a role in 
edge detection on IR imagery of the ocean. Atmospheric 
constituents, principally water vapor, absorb and emit en- 
ergy in the wavelength bands sensed by the IR channels 
of the AVHRR instrument. The result of this atmospheric 
effect is typically a lowering of the apparent sea surface 
temperature (SST) by 1 to 3°C. An overall lowering of 
temperature values is of no consequence to an edge de- 
tector. However, the second result of atmospheric atten- 
uation is a reduction in the magnitude of SST gradients. 
Under some conditions the atmosphere can completely 
obscure SST patterns on the ocean surface. The severity 
of the atmospheric degradation of SST gradients depends 
on the amount and temperature of the atmospheric water 
vapor. Warm, humid atmospheres cause the greatest deg- 
radation of SST gradients; cool, dry atmospheres the least 
degradation. 

Multispectral techniques are frequently used to correct 
for atmospheric effects [30]. However, these correction 
techniques have been shown to introduce considerable 
noise into the resulting corrected SST image. The multi- 
spectral correction techniques also do not appear to re- 
store SST gradient magnitude as they should [31]. There- 
fore, it is not clear whether one would get better results 
from edge detection on raw imagery or on atmospheri- 
cally corrected imagery. In the present study we have used 
raw data from channel 4 of the AVHRR. Useful edge rep- 
resentations of the mesoscale features were obtained in 
this case because SST gradients are so large in the Gulf 
Stream region that they are easily discernable even when 
viewed through the atmosphere. In different locations, dif- 
ferent seasons, or under different atmospheric conditions, 
edge detection on IR imagery may not be possible without 
some type of atmospheric correction. The type of atmo- 
spheric correction that would best restore SST gradients 
to the imagery is an area requiring further investigation. 

Edges in IR imagery of the ocean are of varying mag- 
nitude and of varying widths. Fig. 14 has shown how the 
CSED algorithm can be tuned via the cluster shade zero 
crossing threshold to detect edges of greater or lesser 
magnitude. However, the issue of width of an edge has 

not been addressed here. Rather large gradients may not 
be detected if they occur over distances that are large with 
respect to the local neighborhood size. Clearly, it is a 
combination of edge magnitude and width that determines 
edge detectability for the CSED algorithm, or for any 
other edge operator. The interrelationship in the CSED 
algorithm between edge magnitude, edge width, and de- 
tectability, is a matter for further work. 

VI. CONCLUSIONS 
The GLC matrix based edge-detection algorithm pre- 

sented here has done an excellent job of delineating me- 
soscale ocean structure in the test images. The algorithm 
has the desirable characteristics of smoothing the fine 
structure in the edges while preserving edge sharpness and 
accurate localization. Edge detectors with these charac- 
teristics show promise as tools for segmentation of satel- 
lite IR imagery of the ocean. The CSED algorithm should 
be useful in other image processing applications where 
these characteristics are required. 

An improved algorithm for detecting zero crossings in 
the cluster shade image is recommended for future devel- 
opment. An improved zero crossing algorithm that would 
eliminate the small holes and double width of the edge 
lines would be useful in order to avoid the need for the 
dilation/erosion step required here to fill in the gaps. 

The relationship between edge-detection performance 
and atmospheric attenuation effects should be investi- 
gated. In particular, an atmospheric correction technique 
that restores the atmospherically diminished SST gra- 
dients to their true surface values would be useful. 
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