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Aided and Automatic Target Recognition
Based Upon Sensory Inputs From Image

Forming Systems
James A. Ratches, C.P. Walters, Rudolf G. Buser, and B. D. Guenther

Abstract —This paper systematically reviews 10 years of research that several Army Laboratories conducted in object recognition
algorithms, processors, and evaluation techniques. In the military, object recognition is applied to the discrimination of military
targets, ranging from human-aided to autonomous operations, and is called Automatic Target Recognition (ATR). The research
described here has been concentrated in human-aided target recognition applications, but some attention has been paid to
automatic processes. Definitions and performance metrics that have been developed are described along with performance data
showing the present state-of-the-art. The effects of signal-to-noise and clutter parameters are indicated in the data. Multisensor
fusion and model-based algorithms are discussed as the latest techniques under consideration by the military research community.
The results demonstrate that useful performance can be achieved, and tools are evolving to understand and improve the
performance under real-world conditions. The referenced research strongly indicates the need for the development of image
science, as described in the paper, to support the theoretical underpinnings of ATR.

Index Terms —Automatic Target Recognition, ATR, imaging sensors, image processing, aided target acquisition, multisensors,
sensor fusion, ATR algorithms, performance metrics, databases.

——————————   ✦   ——————————

1 INTRODUCTION

HE oldest imaging forming system used by humans has
been our visual system. The high-resolution eye sensor,

when coupled to the brain via the optic nerve, is the ulti-
mate objective in sensor, signal processor design. In spite of
the elegant design of the human eye–brain system, it has
serious shortcomings. For example, the eye is limited in the
wavelengths to which it is sensitive, it does not have capa-
bility at extended range, it does not see well at night, it does
not do well in transmission-attenuated atmospheres, and it
can be tricked rather easily. In response to these limitations,
humans have developed devices to view our environment
far beyond our sensing system that allow us to accomplish
increasingly complex tasks. However, the additional data
have begun to overwhelm our ability to quickly process all
the information and make decisions based upon these data.

In medical imaging, a wide range of modalities has im-
proved diagnostic capabilities. Also, our ability to acquire
imagery has increased: An echo planar image can be gen-
erated in 100 msec, and four computerized tomography
scan images can be generated in a second. Medical cost
containment prevents an increase in the number of physi-
cians, but the increasing quantity of images and image
types increases the need for more radiologists. The human

need for processing help is also found in automatic finger-
print and face recognition, manufacturing controls and in-
ventory screening, and robotics.

In the military, sensors have been developed for viewing
the battlefield at night and during obscuring weather, al-
lowing 24-hour, “all-weather” performance. Image intensi-
fiers, thermal imaging, high-resolution television, and la-
sers are prime examples of the technologies employed by
the military. The data from these sensors pour in along with
demands on the soldier to make rapid decisions. The sol-
dier, like the radiologist, is overloaded with information
from a vast array of sensors while responding to demands
of life-threatening dimensions. The soldier needs to effi-
ciently use all sensor information and requires image proc-
essing to aid the decision-making process. These require-
ments are the origin of the concept of Automatic (or aided)
Target Recognition (ATR) in the military and Guided (or
computer-aided) Diagnostics in the medical community.
ATR is a generic term used to describe various automated
and semiautomated functions carried out on imaging sen-
sor data to perform operations ranging from the simple—
cuing a human observer to a potential target, to the com-
plex—autonomous object acquisition and identification.

ATR is the machine function of detecting, classifying,
recognizing, and/or identifying an object without the need
of human intervention. In the military, the most sophisti-
cated example of ATR is the fire-and-forget, lock-on-after-
launch missile. Here, an ATR would recognize the candi-
date targets in the scene after it has been launched, select
the target of choice, track the target during the flight, make
final aim point selection, and conduct terminal guidance to
the target. In autonomous applications, an image may

0162-8828/97/U.S. government work not protected by U.S. copyright

————————————————

• J.A. Ratches, C.P. Walters, and R.G. Buser are with U.S. Army Communi-
cations—Electronics Command, Research, Development and Engineering
Center, Night Vision and Electronic Sensors Directorate, Ft. Belvoir, VA
22060-5806. E-mail: jratches@nvl.army.mil.

• B.D. Guenther is with U.S. Army Research Office, Research Triangle Park,
NC 27709-2211.

Manuscript received 3 Oct. 1996. Recommended for acceptance by R. Kasturi.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105307.

T



RATCHES ET AL.: AIDED AND AUTOMATIC TARGET RECOGNITION BASED UPON SENSORY INPUTS FROM IMAGE FORMING SYSTEMS 1005

never be displayed, as in the case of a fire-and-forget mis-
sile. Acceptable autonomous operation is still an unattain-
able goal of ATR in the military and is not yet an accepted
mode of operation in the medical community.

The less ambitious, current objective is to produce Aided
Target Recognition, i.e., the subset of ATR in which a hu-
man interacts with the system and makes some of the deci-
sions. The sensor-processor system recognizes the object of
interest and makes some annotations as to its classification.
The annotation may be derived using information from a
nonimaging sensor, such as a radar, from some measure of
functionality, such as an acoustic Doppler measurement of
blood flow, Global Positioning System (GPS), or from proc-
essing of the image data. The human confirms that the an-
notated object has been correctly identified. The benefit of
such an arrangement is that the human can accomplish
other functions or handle an increased workload with ATR.

In this paper, we will present a systematic review of the
development and evaluation of Aided Target Recognition
carried out by several Army Laboratories over the preced-
ing 10 years. Earlier surveys can be found in [1] and [2]. We
begin by describing the current performance metrics util-
ized for evaluation and the image databases utilized for the
creation of ATR algorithms. Over 75 ATR implementations
have been evaluated by the Army since the early 1980s. The
large number of implementations, and proprietary restric-
tions placed on some by their developers, forces us to limit
our discussion to general classes of algorithms.

A great deal can be learned from the results described
here without detailed descriptions of the algorithms. De-
scriptions of the general approaches taken in the develop-
ment of the specific algorithms can be found in the texts of
Marr [3], Pratt [4], and Zhou and Chellappa [5]. A recent
bibliography has been prepared by Rosenfeld [6]. As will be
seen in the historical evolution, early measurements dis-
covered that target boundary estimation techniques were
not robust because they exhibited sensitivity to noise, as-
pect, target variation, and partial obscuration. Current
model-based, target-recognition techniques, based on rela-
tionships among edges and vertices, have been found to be
more robust.

It seems obvious that with the increase of available im-
aging modalities, a combination of image data from a vari-
ety of sensors should improve the performance of an ATR
system. However, it is not necessarily obvious how one
should perform Multisensor Data Fusion. In the medical
community, success has already been obtained through the
fusion of functional and anatomical information. In the
military, as will be described here, fusion of range and spa-
tial information has led to increased performance.

The paper concludes with a description of future direc-
tions of Army research based upon the shortcomings of
current ATR implementations discovered in the past dec-
ade by Army Laboratories.

2 PERFORMANCE METRICS

The primary figures of merit for ATR systems are based on
their measurable ability to detect, classify, recognize, and
identify targets from background clutter and system noise.

Nearly 40 years ago, John Johnson [7] determined that a
person

• could detect an object given a resolution of one line
pair across the minimum dimension of the object,

• could recognize it given four line pairs, and
• could identify it given eight line pairs.

This was found to be true whether the person used the un-
aided eye or other sensors, such as night-vision goggles or
thermal imaging systems. The definitions for these metrics
(developed for the human operator) as originally proposed
in Johnson [7] and Ratches [8] are in common usage in the
military community:

1) Probability of detection is the probability of correctly
discriminating an object in the image from back-
ground and system noise.

2) Probability of classification is the probability of correctly
determining the class of a detected target. In the case
of Army tactical target acquisition, this means telling
if the target is tracked or wheeled.

3) Probability of recognition is the probability of correctly
determining the class membership of the target.
Again, for Army tactical targets, is the tracked vehicle
a tank, an armored personnel carrier, or a self pro-
pelled gun?

4) Probability of identification is the probability of cor-
rectly determining the exact identity of the target, e.g.,
for automobiles, is it a Ford, Chevrolet, or Plymouth?

5) False alarm probability is the probability of an error in
detection. The units of false-alarm rate are false
alarms per square degree in object space. (A square
degree is approximately one square meter at a range
of 60 meters.)

Using these levels of performance, several metrics have
been used to evaluate the algorithms developed for ATR.

1) Signal-to-noise: The objects in a scene under consid-
eration are corrupted by system noise and coherent
noise (speckle). Included in this metric is contrast,
which is the difference between the intensity from the
target, It, and the background, Ib, normalized by the
average background intensity:

I I
I

t b

b

-c h
.                                      (1)

2) Receiver-Operator-Curve (ROC): The performance of a
system degrades as the signal-to-noise ratio decreases.
It is useful to plot detection probability against false-
alarm rate as a function of signal-to-noise ratio to
produce an ROC similar to plots used in radar design.

3) Confusion matrix: This is a 2D array that indicates the
identity assigned to an object by one of several ATR
systems under comparison. For example, how often
was a Ford confused with a Chevrolet or a Plymouth.
In the case of detection, the confusion matrix reduces
to the classical false-alarm rate, i.e., the rate at which
an ATR declares a noise spike or background clutter
object as a target.

4) Consistency: This is a measure (see Walters [9]) of how
often a given ATR algorithm implementation gives
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the same declaration for successive image frames
having the same scene content. The difference be-
tween frames is noise from the atmosphere, the sensor
electronics, or display properties.

One would hope that the above definition of terms could
be expanded to produce some predictive parameters, but
obvious additions to the metrics have not led to good pre-
dictive capabilities. Two examples will illustrate the at-
tempts at expansion of the metrics. Futile attempts have
been made to find relatively smooth curves similar to the
ROC for the other levels of performance, such as recogni-
tion. A second example is the inability to successfully
quantify clutter. Clutter is a term borrowed from radar that
has been expanded from the radar definition to include all
signals in a scene of no interest to the observer; for example,
trees are of no interest to an observer looking for automo-
biles. Currently, clutter is classified by trained observers as
low, medium, or high, but we have been unable to quantify
a scene’s clutter content. Fig. 1 shows three typical scenes
that are examples of the three classes of clutter.

Attempts to create additional image metrics based on in-
formation theoretic approaches by Clark et al. [10], [11]
have not met with success. The failure in our ability to ex-
pand the available metrics is probably due to the enormous
variability of the input scene [12]. Backgrounds and targets
can undergo wide variations in a sensor image due to
weather, time of day, season, geographic location, target
history, occlusion, and tactical condition. Increased scene
variability can also result from camouflage and competing
background clutter objects. Recent attempts at addressing
the thermodynamic variation in targets in a rigorous man-
ner have been suggested by Lanterman et al. [13] and Coo-
per et al. [14].

3 DATABASES

The lack of a theory that can be used to design an ATR al-
gorithm and from which performance can be predicted be-
fore implementation means that experiments must be run
on the algorithm implementation using input data that
span the expected scene variability. These databases are
also used by the algorithm developer to provide the under-
standing of the physics of the scene and potential targets in
order to suggest, implement, and improve new algorithms.
In addition to a database for designing and training ATR
algorithms, a sequestered set of data is needed to test the
performance of the algorithms and to measure their per-
formance using the metrics defined above.

There is a hierarchy of sensor image databases that has
evolved over time in the defense community that meets
various levels of requirements for sensor and ATR devel-
opment. The complexity of modern signature databases is
due to the increased sophistication of modern sensors that
can require, for example, pixel-registered signatures in a
variety of simultaneous spectral regions. Table 1 shows the
hierarchy of sophistication that has evolved historically in
the military community based on the signature description,
the environment under which the signatures are acquired,
and the potential application. The complexity of the data
library increases as one moves down the table. Cost has

forced us to turn to synthetic scene generation and sensor
simulation to generate data for the lower table entries.

Figs. 2–6 show representative examples of this hierarchy
of target and background information, as well as the data
types available to the Department of Defense laboratories.
The data are not of the quality normally seen in image
processing publications but are the quality normally seen in
operational scenarios. Early data were in the form of simple
thermal maps of a target taken manually with a Barnes
PRT-5. Each measurement is an individual reading, with a
radiometer aimed at a particular location on the target. Fig. 2a

(a)

(b)

(c)
Fig. 1. Simulated infrared imagery representing clutter conditions. (a) Low.
(b) Medium. (c) High.
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is a schematic of some of those data. Fig. 2b is an example
of data from a modern imaging radiometer, which gives a
picture of a target with image brightness corresponding to
the temperature of the object. A computer-generated ther-
mal map of data collected with an imaging radiometer is
shown in Fig. 2c.

Fig. 3 contains simultaneous images of a target in the
passive infrared spectral region (Fig. 3a) and a laser radar
(LADAR)1 image (Fig. 3b).

Fig. 4 shows an image produced by a Forward Looking
Infrared (FLIR) sensor in a wide field (Fig. 4a) and electroni-
cally zoomed portion of the image (Fig. 4b). Shown, in Fig. 5,
is millimeter wave (MMW) radar scans (Fig. 5a) and high-
range resolution range data (Fig. 5b) of the same region
shown in Fig. 4. The images form a multispectral set that
meet current system requirements of large field-of-regard
imagery for detection and high-resolution images for target
recognition and identification.2 Finally, Fig. 6 shows a typical
synthetic aperture radar image of an airport.

4 ATR ALGORITHMS

It is convenient, although not always accurate, to think of
an ATR implementation as shown in Fig. 7. The scene is
imaged by some sensor(s) and converted into a signal to be

1. The kind of laser radar shown here is an incoherent laser range pro-
filer. Range to each pixel in the scene is measured and usually color coded
for presentation to an observer.

2. A database standard for the Department of Defense has been created
by the DOD ATR Working Group.

processed. The processor may be analog or digital, based on
optical or electronic designs. The typical implementation of
the processor is a digital electronic processor. The processor
performs operations that permit detection of an object of
interest and segmentation of that object from the rest of the
image. The processor may also receive information from
other sources, such as range from a laser rangefinder, posi-
tion coordinates from GPS, and weather data. The other

TABLE 1
SIGNATURE DATA

Signature
Description

Environment Military
Applications

Vis/NIR Contrast,
DT, Radar Cross
Section, Acoustical
Intensity

Vehicles in Day
and Night

• Sensor Range Pre-
diction
• Signature Suppres-
sion
• Scenario Modeling

Low Resolution,
Calibrated Images

Vehicles at Spe-
cific Geographic
Locations (Time
of Day, All Sea-
sons)

• ID Range Prediction
• Aim Point Selection

Target and Back-
ground Images

Vehicles at Vari-
ety of Aspects
Selected Geo-
graphic Locations

• Dynamic Search
Modeling
• ATR Development
• Camouflage

High Resolution,
Multispectral Images
(e.g., FLIR and
MMW/SAR)

Vehicles at Many
Aspects Wide
Range of Loca-
tions and Cli-
mates

• Sensor Fusion
• Combat ID
• Horizontal System
Integration

High Resolution,
Multispectral Video

All Vehicles
All Locations and
Weather
Many Aspects
Related to Digital
Map

• Sensor and ATR
CAD
• Virtual Reality

Real Time Imagery
High-Resolution
Multispectral with
Tactile and Acoustic
Data

All • Virtual Reality
Development

(a)

(b)

(c)

Fig. 2. (a) Temperature map collected by hand with a nonimaging
thermal radiometer. (b) Thermogram taken with an imaging radiometer.
(c) A modern thermal map generated by a computer and an imaging
radiometer.
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sources of data might provide contextual information that
can be used to reject some possible objects of interest. Fea-
tures are extracted from the segmented target to reduce the
processing load for the decision-making step. Various lev-
els of discrimination are then performed: classification, rec-
ognition, and identification. The location and description of
one or more targets of interest are annotated on the final
image to the operator.

The selection of features is key to the higher order dis-
criminations that occur after segmentation. Most formal
algorithms attempt to code the processes believed to be
occurring in humans [15], [16]. Fundamental ATR classifi-
cation is predicated on the transformation of the problem
from the image space to a feature space. Feature space is
made up of a set of basis vectors that correspond to certain
defined measurable quantities on the candidate targets that
have been segmented in the image. The feature basis set
may not be complete or orthogonal. Historically, feature
basis selection has been ad hoc, with examples such as pe-
rimeter length, height-to-length ratio, area-to-perimeter
ratio, and moments generally based on the early work of
Rosenfeld [17]. The target is then represented in feature

space as a vector whose components are the values of the
defined quantities that have been measured on the seg-
mented object. The location of the vector in feature space
determines the identification of that object as a target or not
based upon an identification of the region of feature space
as “target space” through the use of algorithm training via
a set of “typical” data.

Algorithms of the early 1980s were heuristic. Typically, de-
tection was based on some sort of threshold, determined by
the contrast of an object compared to the local background in
an arbitrary box drawn around the object [18]. The second
action in the process was a series of steps globally referred to
as segmentation. The first step in the segmentation process
was typically performed by running one of the standard-
textbook edge-finding operators on the region that had been
detected [19], [20]. A comparison of segmentation processes
can be found in Markham [21]. The next step logically con-
nected the edge segments and filled in the gaps to form a con-
tinuous line around the presumptive target. Finally, the region
was converted to a binary image by assigning a high-bit value
to all pixels inside of the line. Features were then calculated on
the segmented area. The calculated values were actually a
vector in feature space that could be subsequently used for
object sorting and so on. Classification was usually the highest
level of discrimination and was based upon some sort of sta-
tistical classifier, e.g., Bayesian [22], k-nearest neighbor, or
Parzen [23], [24]. Performance of these early ATR systems was
found to be marginal in government testing in facilities such as
those described in Section 6. Detection in low clutter did not
exceed 70 percent, and recognition was little better than that
obtained by random guessing. False-alarm rates in all but the
most benign clutter were unacceptable. An example of an an-
notated FLIR imaged scene generated during testing is shown
in Fig. 8. The annotations contain proper detection and classi-
fication events along with false alarms.

(a)

(b)
Fig. 3. (a) Conventional image in the passive infrared spectral region.
(b) A laser radar image of the same region as (a).

(a)

(b)
Fig. 4. (a) A wide field of view infrared image. Note the boxed region.
(b) A magnified display of the boxed region in the wide field of view.
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The performance shortcomings of the early processors
can be attributed to the ad hoc basis for the choice of target
features. The statistical distribution of these features was
measured or assumed, and thresholds were chosen for sta-
tistical classifiers. Guesses based upon intuition were made
by the algorithm designer as to what features needed to be
calculated that would permit separation of targets from
background and each other with high probability. No un-
derstanding or analysis of the scene content or the physics
behind the image formation was used or available. ATR

performance degraded significantly when new targets or
different environmental conditions were encountered be-
yond the set used to train the algorithms. In addition, the
implementation of the algorithms on serial processors lim-
ited the resultant performance, and information extracted
in one algorithm suite component could not be shared
among the various other components of the suite, e.g.,
frame-to-frame information or segmentor- and classifier-
extracted data could not be shared. These first, threshold-
based statistical ATR algorithms were not robust, as is
shown in Fig. 13.

In the late 1980s and into the 1990s, a new generation of
algorithms was developed that did not necessarily follow
the traditional sequential processing paradigm outlined in
Fig. 7. These algorithms used knowledge-based systems or
template-matching approaches [25], [26], [27]. The opera-
tion of this class of algorithms can be divided into two
stages: a region-of-interest (ROI) generation stage and a
target identification stage. The task of the ROI stage is to
locate all target-sized objects above some minimum con-
trast in the image. This is accomplished by convolving a
simple double-window filter [28] with the image. Regions
may also be expanded by merging neighboring regions
with similar characteristics. Examples of region growing
can be found in [29], [30], and [31]. Typically, the ROIs pro-
duced by this stage are then subjected to a template
matcher in which the contents of the inner window are
compared to stored templates of the target set, after ad-

(a)

(b)
Fig. 5. (a) A 2D display of radar range data of the object imaged in Fig.
4. (b) A high-resolution range profile of the object imaged in Fig. 4.

Fig. 6. A typical synthetic aperture radar image.

Fig. 7. The typical processing steps for an ATR from the sensor to
target discrimination.
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justment for pose and scale. The best match, usually in a
mean-squared-error sense, is identified as the object in the
ROI. Each match between an ROI and a template results in
a score that can be subjected to a thresholding procedure
for false-alarm reduction.

Performance of the advanced ATR systems has shown a
significant improvement in government-controlled testing
(see Fig. 13). Detection has increased to the 80 percent level
in low to medium clutter conditions. However, the false-
alarm rate is still high. The major improvement made in
performance has been in classification and recognition. In
testing of classification and recognition, two tests of in-
creasing difficulty have been used:

• a three-class problem requiring the sorting of objects
between a tank (M60), an armored personnel carrier
(M113), and an Army truck (M35) and

• an eight-class discrimination problem resulting in
eight possible responses to target identity.

Actual data are shown in Section 6 on measured performance.
The newest approach for increasing performance of algo-

rithms is through the use of independent information, such
as that available from multisensors, as well as integration of
spatial and temporal information. The use of a model-based
approach integrated with more human-like, perceptual proc-
essing neural networks is now under evaluation as a possible
approach for information integration. For a survey of neural
networks applied to ATR, see Roth [32].

5 PROCESSOR ARCHITECTURES AND HARDWARE

5.1 Architectures
ATR implementations can contain a wide variety of pos-
sible image-processing functions for automated process-
ing. The subsections below indicate the range of algo-
rithms and approaches that are found in the ATR systems
we have examined.

5.1.1 Image Enhancement/Restoration
Image modifications that are currently considered desirable
are automatic focusing, zoom, automatic gain and level

(dynamic range) adjustment, histogram equalization, image
contrast enhancement, false color, median filtering, and
sharpening filters. Both automated and interactive en-
hancement implementations are currently being investi-
gated. Image restoration becomes critical when the sensor is
an undersampled staring array of detectors.

5.1.2 Bandwidth Compression/Decompression
On the modern digital battlefield and, surprisingly, in the
modern operating room, imagery overwhelms the band-
width of the available communication links. It is reasonable
to associate the functions of image compression with the
sensor processor, since the compression routine may affect
the ATR implementation. A few compression routines are
currently available, such as the Joint Photographics Expert
Group (JPEG) routine based upon Discrete Cosine Trans-
forms (DCT). Although not yet commercially available,
compression techniques based on fractals and wavelets are
being developed. We will not report on compression and its
affects on ATR in this article.

5.1.3 Cuers/MTI
Cuing of a target is the first step in the classical ATR function
hierarchy. One method of performing this function is to do
Moving Target Indication through frame-to-frame correlations.

5.1.4 Trackers
Once a target or targets have been detected, tracking must
be carried out for most fire control solutions. Trackers must
be intelligent: For example, they must be able to track
through clutter and obscurations, reacquire lost targets, and
select aim points. Often, more than one target needs to be
tracked. The operation of trackers and tracking algorithms
will not be discussed further in this paper.

5.1.5 Recognizers/ID
Mistakes in identification in both medical and military im-
ages can have disastrous effects. Fratricide on the battlefield
during Operation Desert Storm pointed out the need for a
reliable method of identification on the battlefield. The ul-
timate solution to this battlefield problem will probably
have ATR as part of a sophisticated situational awareness
system. In medical applications, automated screening of
such diagnostic tools as Pap smears would do much to
lower medical cost but will gain acceptance only if the oc-
currence of false positives is at a very low level.

5.1.6 Sensor Fusion
The importance of fusion of information from multiple sen-
sors will be discussed in a later section.

5.2 Hardware
The fact that ATR is a difficult problem can be illustrated by
considering the number of possible computations that must
be carried out in order to process real-time images. Con-
sider a standard TV picture with approximately 100,000
pixels and five bits of gray scale. Both the size of the picture
in pixels and the dynamic range are very conservative for
advanced electro-optical imaging systems. However, for
this example, there are 10150,000 combinations of pixel values
that are possible and may be necessary for an ATR to make

Fig. 8. Example of a simulated infrared scene with annotations made
by an ATR of detections (boxes) and recognition decisions.
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decisions. Although many pixels may be inconsequential
and many combinations physically unrealizable, a huge
library of possible candidate decisions must be considered
by an ATR processor. In a dynamic scene where the image
may change at TV frame rates (30 frames per second), there
are potentially 108 digital values per second that must be
processed. Obviously, ATR requires an enormous amount
of processing power, speed, and memory and necessitates
smart software strategies.

The early history of military ATR emphasized hardware
development to supply greater computing power for the
algorithms to manipulate the sensor data. Fig. 9 shows the
growth in processor capability over the recent past and the
projection into the near future. The computation rate in
giga-floating-point operations per second is shown as a
function of chronology. Single-processor growth is plotted
along with that of parallel processing systems with N com-
ponents. Aladdin is a Department of Defense
(DOD)/Defense Advanced Research Projects Agency-
developed parallel processor designed into a miniature,
modular, high-density package for applications on small
platforms, such as missile seekers. A typical Aladdin design
will execute 500 million instructions per second and can be
contained in a 2.5 ¥ 4.5 ¥ 6 inch package. This processor can
perform ATR functions on a 128 ¥ 128 pixel image at 30
frames per second.

Current sensor design has been heavily influenced by
algorithm limitations. Second-generation FLIR focal plane
array specifications were proposed such that the sensor
output data would be computer “friendly.” Second-
generation focal plane arrays were required to have square
pixels, to be oversampled in two dimensions, to provide
baseline restoration, to utilize a noninterlaced scan, to pre-
serve scene dynamic range, and to have time delay and
integration of signal from successive pixels in order to in-
crease signal-to-noise ratio. These design characteristics
were implemented in order to present more stable, highly
sampled, and high signal-to-noise imagery with reduced
image artifacts for algorithm compatibility.

New infrared focal plane arrays for FLIR are being de-
signed and fabricated with a high degree of processing on

the focal plane (smart focal plane arrays), resulting in a sen-
sor that more closely resembles the eye and may provide a
better approximation to human eye–brain performance.

The present and future trend for DOD development of
ATR is through leverage of commercial hardware evolution
and concentration on more processing capability with mas-
sively parallel architectures. The current view is that the
hardware cannot be specified until we have a better under-
standing of the algorithms. Therefore, the emphasis is to
generate processor architectures and algorithms that have
significant processing potential and improved performance
and that can be hosted on processor hardware utilizing
commercial computer technology.

6 MEASURED PERFORMANCE

The primary factors that affect performance of ATR are sig-
nal-to-noise ratio, pixels on target, and target-like clutter. In
order to assess the performance of the various ATR imple-
mentations and algorithms, a center for ATR evaluation has
been created at the U.S. Army’s Communications—
Electronics Command Night Vision and Electronic Sensors
Directorate (NVESD) at Ft. Belvoir, Virginia. At this center,
ATR implementations involving man-in-the-loop are
evaluated under the controlled environment of the labora-
tory. A physical terrain board has been employed in order
to control input target parameters, scene characteristics,
and atmospheric environment. With a 400:1 physical terrain
board, shown in Fig. 10, the background texture and clutter
can be repeated, and targets of controlled contrast and sig-
nature can be examined.

Fig. 10. Night vision 400:1 physical terrain board.

Almost all DOD-developed processors have been tested
at least once in this facility since the early 1980s. Docu-
mented and quantitative data have been reported on the
performance of ATR systems that show improvement over
the years this facility has been operational. Much of the
data appears in the classified literature and was gathered,
for the most part, by C.P. Walters of NVESD.

Development is well along in the transformation of this
terrain board capability into a fully computerized version.
This electronic terrain board will generate multispectral
imagery synthetically, filter the images with the sensor of
interest representation, process the resulting images with

Fig. 9. Projected growth of processor computation rate as a function of
chronology for single and parallel processors.
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any algorithm that is being tested, and present the final
annotated image for a human operator or simulate closure
on a target for missiles. This capability is essential for the
scientific testing of the multisensor candidates of the future.

Fig. 11 shows the relationship between the probability of
detection and the local signal-to-noise ratio (SNR) for eight
of the ATR systems evaluated at NVESD. These evaluations
were conducted using digital imagery taken from the
NVESD physical terrain board. The algorithms cover a
wide range of approaches: relational template matching,
two versions of distance measuring with edge probing,
template matching with triple window detection, a statisti-
cal feature-based approach, two early model-based
(computational model matching) approaches, and an ana-
log optical correlator that located the peak in the correlation
signal (Flannery et al. [33], [34]). Note that it is common to
find a knee in the curves between SNR values of four and
seven. The best of these algorithms, in the sense of fewest
false alarms for a given high probability of detection (about
.80), are those that show a precipitous drop in detections
below an SNR of about four or five. The curves with the
high probability at the lower SNRs are those that have had
their thresholds adjusted to give this result, but with high
false alarms. The signal-to-noise ratio in these experiments
combines both contrast and sensor noise. It is defined as the
difference between the digital voltage in a target image and
the local background digital voltage (the contrast) ratioed
to the root mean square noise voltage due to the sensor. The
results shown are averaged over many targets and aspects.

The imagery used in these experiments was taken from
the NVESD physical terrain board. The sensor used in ob-
taining these results is a silicon TV that records reflected
ambient radiation in the visible to near infrared spectral
regions (0.4 to 1.2 micrometers). When the video is in-
verted, i.e., black-to-white and white-to-black, the resulting
imagery, subjectively, looks like FLIR imagery. It is impor-
tant to note that the targets and background rocks and trees
were painted by hand to emulate the thermal conditions of
real targets, rocks, and trees as viewed through a thermal
imager. Evaluation in the simulated world, in this case us-
ing physical terrain board data, was not intended to test the
absolute performance of an algorithm. Instead, it was in-
tended to provide a baseline against which progress within
an algorithm or differences between algorithms could be
scientifically assessed. The physical terrain board data were
always tested using algorithms designed to operate on
thermal imagery. A number of experiments have demon-
strated that performance of an ATR against “real” thermal
imagery and equivalent physical terrain board imagery
(same targets, same range, same thermal condition, same
target array, same aspect ratio) was statistically identical.

The data in Fig. 11 show a not unexpected trend. The
detection probability rises with the SNR and approaches a
limiting value, dependent upon the detection algorithm. Of
some surprise, however, is that each curve, which repre-
sents a different algorithm, has a knee around an SNR of
five, independent of algorithm. There appears to be no
theoretical rationale for an SNR of this value nor any intui-
tive reason based on experience with other signal process-
ing techniques. It must remain a goal of further research in

image science to explain this experimental observation. It is
important to note that these data do not include the false-
alarm rate and, hence, is not representative of an ROC. The
ATR algorithms used to generate the data in Fig. 11 give a
wide range in false-alarm rate at the same detection rates.

Fig. 12 shows the affect of sensor resolution on the prob-
ability of detection at several clutter levels for a modern
template-matching algorithm. These results also come from
an evaluation using the NVESD physical terrain board im-
agery. The algorithm generated a match score as a result of
comparing the inner window ROI data with stored tem-
plates of 10 different targets. The score was subjected to a
threshold to eliminate false alarms. There are several inter-
esting affects demonstrated in these results. First, note the
general trend of decreased detection performance as reso-
lution decreased (image pixels subtend larger amounts of
the real world). Second, note that in high clutter, there is
decreased detection performance both at high and low
resolution. The decreased performance at high resolution is
due to increased uncertainty about the boundaries of the
target. At high resolution, uncertainty over where the target
ends and a background object begins as well as uncertainty
over subareas within the target results in confusion of the
algorithms. Generally, the impact of clutter is to degrade
the maximum detection probability by up to 40 percent, as
can be seen in the figure. The clutter specification is arbi-
trary and subjective due to the lack of a scientific definition
of a clutter metric. The clutter types represented in the data
in the figure correspond to the clutter examples shown in
Fig. 1. Not shown in Fig. 12 is the fact that clutter has a very
severe affect on false-alarm rate.

While an ATR algorithm may exhibit performance
levels below the human’s in terms of probability of de-
tection, it is tireless, and the speed with which it per-
forms the functions is often many times faster than a
human can. The speed enhancement coupled with a hu-
man engaged in the final decision should result in the
execution of more tasks or tasks of greater complexity,
but currently a formal metric for this enhancement has
not been created.

Fig. 11. Laboratory-measured detection performance of eight ATR
algorithms as a function of signal-to-noise ratio.
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Fig. 12. Laboratory-measured detection performance for an ATR as a
function of resolution (range) for three different subjective clutter levels.

The question of how well an ATR implementation per-
forms compared to a human was addressed by Walters.
The algorithms tested included a variety of approaches,
ranging from a classic segmentation/statistical classifier to
several template-matching approaches and even included
an optical processor (an optical correlator using digitally
segmented images). Table 2 shows the results from exten-
sive testing with the same imagery given to humans and
ATR systems. The clutter level was relatively benign. The
probabilities reported were the maximum and minimum
values for either the humans or the two groups of ATR im-
plementations performing object discrimination: one ATR
implementation based on assignment to three classes and
one based on assignment to eight classes. Probability of
discrimination is conditioned on correct detection. The hu-
man testing was a forced-choice experiment, i.e., “don’t
know” was not an acceptable answer.

The results indicate that for the conditions and the ATR
implementations tested, the detection capabilities of the
humans and automatic systems were approximately
equal, whereas the false-alarm rate was significantly
greater for the ATR implementations, even in this low-
clutter situation. The performances for humans and ATR
implementations for the three-class discrimination prob-
lem were essentially equal. Eight-class discrimination was
significantly more difficult for the ATR implementations
than for the humans.

Table 3 is the confusion matrix produced during these
experiments of Walters. This table shows the assignment a
human or ATR gave to a detected object compared to the
object’s actual identity. Confusion matrices for detection
are convenient ways for comparing the information con-
tained in ROC curves. The results in Table 3 demonstrate
that the humans outperform the tested ATR implementa-
tions on all target types in the eight-class problem. The
human and the ATR implementations do not confuse the
same targets. It is possible that humans and ATR imple-
mentations are not using the same target features to per-
form recognition. These types of experiments may pro-
vide insight into the design of autonomous devices.

One of the great values of the performance data gained
from testing ATR implementations at the NVESD facility is
the historical perspective that can be obtained. The progress

made in ATR performance over the years can easily be
documented because of the controlled conditions under
which the testing is done. The same input scenes under the
same conditions can be repeated on new algorithms, mak-
ing comparisons possible of performance on different ATR
implementations separated by years.

Fig. 13 is an example of an analysis of performance over
an extended period. Probabilities of detection and recogni-
tion are plotted along the left-hand vertical axis, and false
alarms per square degree in object space are on the right-
hand axis. The horizontal axis represents chronological
time. It can be seen that in the mid to late 1980s, detection
performance was good, but three-class recognition was es-
sentially chance probability. The algorithms tested in 1984
and 1986 were traditional statistical classifiers. Starting in
1988, template-matching approaches were evaluated in
clutter environments that presented a significant challenge
to the algorithms. By 1992, the evaluations included both
more advanced template-matching approaches and primi-
tive model-based algorithms. In 1984 and 1986, the testing
was done only in backgrounds with no clutter because of
the high false-alarm rate. As the newer, template-matching
algorithms and model-based algorithms were designed,
significant improvements in recognition and false-alarm
rate were made. Further significant improvements in de-
tection, recognition, and false-alarm rates are expected with
the use of multisensor fusion, e.g., FLIR and MMW radar,
and is the subject of many papers in the classified literature.

7 MULTISENSOR FUSION

As improvements in sensors have been realized through
development of imaging technologies, the optical limits of
sensor resolution have been reached, and the second-
generation FLIR is a prime example. The size of the infrared
detectors are at the diffraction limit of the optical objective,
and the sensitivity is close to Background Limited Perform-
ance. Hence, more advanced sensors will provide only
small optical improvements over present capability. We
should be able to obtain more dramatic gains in perform-
ance through the use of independent information, such as
that available from multisensors, as well as integration of
spatial and temporal information. In order to make large

Fig. 13. Performance progress for ATR systems performing the three-
class sorting task for the condition of medium-contrast targets in low
clutter. There was no clutter in the imagery used in 1984 and 1986.
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increases in performance—for example, in false-alarm reduc-
tion in higher clutter—use must be made of new, independ-
ent information. Independent parameters not now available
in 2D imagery would be those derivable from information
from other sensor modalities or from nonimaging sources.

Range information is a prime example of a quantity that
would complement a 2D image. Range from a laser range-
finder or a radar can give critical new information to a proces-
sor trying to extract targets from FLIR or TV images. It is nec-
essary that the laser or radar returns be registered on the im-

TABLE 2
OVERALL PERFORMANCE FOR HUMANS AND ATR SYSTEMS

Probability
of

detection

False
alarm
rate

Probability
of 8-class

discrimination

Probability
of 3-class

discrimination

ATR
systems

Max 0.869 13.323 0.353 0.732

Min 0.604 3.532 0.268 0.541

Mean 0.688 8.195 0.289 0.705

Human
observers

Max 0.833 0.9 0.814 0.798

Min 0.52 0.017 0.298 0.343

Mean 0.683 0.234 0.586 0.663

TABLE 3
CONFUSION MATRIX FOR HUMANS, THREE- AND EIGHT-CLASS DISCRIMINATIONS

Ground
truth

System M60 M113 M35 M1 M2 M998 M163 M730

M60 3-Class 0.67 0.21 0.12 NA NA NA NA NA

8-Class 0.17 0.12 0.05 0.13 0.08 0.13 0.19 0.11

Human 0.77 0 0 0.07 0.09 0.02 0.02 0.01

M113 3-Class 0.08 0.66 0.27 NA NA NA NA NA

8-Class 0.02 0.25 0.12 0.07 0.02 0.24 0.19 0.09

Human 0.02 0.65 0.03 0.03 0.08 0.11 0.08 0.01

M35 3-Class 0.18 0.21 0.61 NA NA NA NA NA

8-Class 0.12 0.07 0.36 0.11 0.1 0.12 0.05 0.08

Human 0.01 0.06 0.85 0.02 0.01 0.01 0.01 0.02

M1 8-Class 0.04 0.2 0.15 0.43 0.06 0.09 0.04 0

Human 0.03 0.03 0.01 0.89 0.02 0.03 0 0

M2 8-Class 0.12 0.14 0.13 0.16 0.27 0.07 0.04 0.07

Human 0.16 0.04 0 0.01 0.58 0.02 0.14 0.05

M998 8-Class 0.02 0.17 0.09 0.05 0.09 0.42 0.13 0.04

Human 0.03 0.09 0.01 0.04 0.11 0.62 0.08 0.04

M163 8-Class 0.1 0.25 0.02 0.02 0 0.23 0.27 0.12

Human 0.02 0.19 0.01 0.02 0.25 0.04 0.44 0.02

M730 8-Class 0.15 0.21 0 0.1 0 0.01 0.16 0.37

Human 0 0 0 0 0.03 0.02 0.03 0.91
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agery, resulting in a 3D image. Range data can also be ex-
tremely valuable in sizing ATR processing windows around
potential targets that permit rejection of false alarms for objects
too small or too large to be a target at the range specified.

The data from more than one sensor can be fused by
several techniques: information/data, pixel, feature, and
decision-level fusion. Data fusion refers to the incorpora-
tion of target data from several sources, e.g., imaging sen-
sor, GPS, and digital map. Pixel fusion involves the overlay
of pixels from two sensors to form an image, e.g., TV and
FLIR. Feature fusion correlates independent feature infor-
mation from two or more sensors prior to making a deci-
sion. Decision fusion is a voting scheme in which each sen-
sor is polled as to the presence of targets. Other methods of
utilizing multisensor data corresponding to higher level
descriptions of images are expected to yield better perform-
ance from fusion. One of many possible formalisms that is
being pursued is the establishment of militarily relevant
perceptual building blocks for recognition similar to geons
[35] as well as application of Biederman’s Recognition-by-
Components theory [36] to the problem of extracting in-
formation from images that are important to recognizing
the object. Nair and Aggarwal [37], [38] have pursued a
recognition by object parts for target recognition in FLIR
images based on computer vision concepts. Similarly, Lan-
terman et al. [39] describe a pattern theoretic approach to
fusing MMW radar and FLIR imagery to perform detection,
recognition, and tracking.

A series of recent tests by the Army has demonstrated
the gains in automated performance that can be realized by
combining data from several sensors. In these tests, a mod-
ern FLIR imaging sensor (operating from eight to 12 mm), a
LADAR, and an MMW (35-GHz) radar were used in the
modes discussed in the following paragraphs.

Imagery was taken from an airborne platform by an
FLIR along with pixel-registered range and polarimetric
data obtained using a 35-GHz radar and LADAR range
profiles. This imagery was then processed by an ATR that
used a feature fusion approach. In one test, the ATR im-
plementation’s performance was evaluated using three data
classes: FLIR only, fused LADAR/FLIR, and fused
MMW/FLIR data. The imagery used in the experiment was
gathered at a variety of times in the diurnal cycle. NVESD
scientists, using data taken in a desert environment, re-
ported significant improvements in detection and recogni-
tion performance with dramatic improvements in false-
alarm rate. Fig. 14 shows the probability of detection versus
normalized false-alarm rate for the three data classes. There
is almost an order of magnitude improvement in false-
alarm rate for fusion over single-sensor data.

Other tests using imagery from a region of farmland and
wooded lots [40] show the overall benefit of feature fusion.
In Fig. 15, the probabilities of detection and recognition for
three data classes of FLIR only, MMW radar only, and
fused MMW/FLIR data display some improvement. How-
ever, the false-alarm rate in this experiment dropped sig-
nificantly for the conditions encountered in the test. This
data should not interpreted as demonstrating that false
alarms have been eliminated, but rather that there is ex-
perimental evidence that sensor fusion can provide signifi-

cant reductions in false-alarm rates, e.g., an order of mag-
nitude in some cases, over single-sensor performance. The
improvement in false-alarm rate due to sensor fusion is not
surprising but the extent of that improvement was unex-
pected. More details on this set of experiments are in the
classified literature.

These first-reported field experiments of sensor fusion
have shown dramatic performance improvement over sin-
gle-sensor processing performance. Other combinations of
multiple sensors will need to be investigated to determine
what, if any gains can be obtained utilizing other sensor
technologies, such as acoustic detection, near-infrared im-
age intensifiers, and visible television imagery. In addition
to sensor fusion, data fusion must be investigated to deter-
mine the merits of nonimage information for decision
making. Examples of sources for data fusion are weather
descriptors, map coordinates, and operational/contextual
information. Complete descriptions of sensor fusion activi-
ties in the military and university communities have re-
cently appeared in government reports and [41], [42].

8 FUTURE DIRECTIONS

There are nearly an infinite number of possible targets and
backgrounds in an imaged scene. There are a large number

Fig. 14. Detection performance versus false-alarm rate for a single
(FLIR) sensor and multisensors.

Fig. 15. Detection, recognition, and false-alarm performance for single
sensors (FLIR or radar) and sensor fusion.
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of interesting targets in military applications alone. These
various targets may have a variety of signatures in the vari-
ous spectral regions. Infrared and other passive imaging
modalities generate signatures that vary with time of day,
season, solar loading, history, geographical location, opera-
tional status, aspect of presentation, friction, atmospheric
conditions, and so on. In addition, the target may be par-
tially obscured, have low contrast, be contained in a low-
resolution image, be camouflaged, and so on. The back-
ground can have none or any amount of target-like clutter
objects that compete with the real targets for attention.

The essence of understanding performance of ATR im-
plementations is an understanding of image science, by
which we mean the mathematical descriptions of targets and
clutter that enable understanding of the fundamentals of the
image content. The hindrance to developing an understand-
ing is associated with the variability of the objects that must
be detected and recognized in a plethora of scene back-
grounds. The quantitative relationship between the physics
of the scene and what information can be extracted from it by
some form of processing does not exist. Adequate signature
models or scene descriptions that can be used as a starting
point for quantifying the input to an ATR implementation do
not exist. Once a formulation has been created, the sensor
effects could easily be introduced, since sensor phenomenol-
ogy is well-understood. However, even a technique for
bounding the performance of an ATR based upon scene
content would be a significant step forward. One of the first
steps is the bounding techniques for estimating target pose
shown by Grenander et al. [43] using Hilbert-Schmidt
bounds for estimators on matrix Lie groups.

Probably the key problem associated with understand-
ing and predicting ATR performance is the scientific under-
standing and quantification of clutter as it affects detection.
Understanding and quantifying clutter as it affects per-
formance is a problem that has defied solution for many
years. It was a problem when considering human perform-
ance but was largely ignored by designing experiments
with small false-alarm rates. Human observers were told to
respond only when they had a high certainty of the exis-
tence of a target and its identity. We do not have this option
with ATR testing.

There have been several attempts to quantify clutter.
Schmeider and Weathersby [44] used a target minus back-
ground radiance to root mean square clutter radiance ratio
with limited success, and Shirvaikar and Trivedi [45] used
gray-level co-occurrence matrices to define a texture-based
image clutter metric. The key to clutter quantification has to
do with how competitive the clutter objects are to targets.
For example, clutter in the U.S. desert in infrared imagery is
high when searching for men but is extremely low when
looking for vehicles. This is because the cacti look like men
in the infrared scene, but there is little that looks like an
automobile. Hence, any metric that purports to quantify
clutter must be related to the target of interest, and that
metric will significantly affect the design of detection algo-
rithms for separating targets from the background. A clut-
ter metric devoid of a target relationship will not work.
With the advancement of computer processing, some com-
puting-intensive technique might prove successful. For ex-

ample, the convolving of targets across a scene to generate
correlations between the target and scene objects might
provide a reasonable clutter metric. Some of the approaches
used to evaluate image complexity or image quality may
also offer useful metrics.

Once a clutter metric and a method for describing targets
and backgrounds are in hand, the next order of business is
the generation of a performance model for the sensor-ATR
system. Such a model would allow the design and optimi-
zation of the sensor and the processor for given scenarios.
Sensitivity analyses based upon validated models that
could show the affects on ROC curves and confusion matri-
ces due to sensor and algorithm variations would be an
enormous benefit to the development community. Skeptics
in the ATR community suggest that the lack of clutter met-
rics coupled with the wide variability of algorithm concepts
make the modeling problem intractable. Whether true or
false, the establishment of bounding techniques for ATR
performance will provide significant benefit to the system
designers, by showing how close a particular algorithm
implementation is to the theoretical bound of performance.

Limited progress in establishing a theoretical foundation
for ATR has been due to the fact that the military require-
ments have driven the community to ad hoc and heuristic
approaches to algorithm development. Lanterman et al. [46]
and Grenander and Miller [47] have shown recent progress
in applying pattern theoretic approaches to scene under-
standing in medical and military applications. However,
now that the need for a rigorous pursuit of an image sci-
ence has been recognized, it is clear that scientific experi-
ments must be performed that supply data for guidance of
theory, verification, and validation of models. Absolutely
essential to the experimental approach is a canonical set of
imagery, covering all spectral regions of interest, that is
broadly available to the research community.3 In the past,
such important data have been severely restricted due to
security classification guidelines. In addition to more repre-
sentative imagery, more human performance data are re-
quired in order to make comparisons between human and
automated performance. ATR performance is not expected
to be better than human performance in terms of probabili-
ties and false-alarm rate, but ATR is expected to perform
significantly faster. The level at which a human performs
must be accurately known, so that the trade-off can be
made by systems developers between the accuracy of the
human and the speed of processors.

As discussed above, recent experiments indicate that
multisensor integration may provide the level of ATR re-
quired by various applications. The utilization of inde-
pendent parameters from the scene appears to give per-
formance improvements that make ATR possible. In medi-
cal imaging, multisensor fusion is already used to provide
contextual information to the radiologist. Hand in hand
with the employment of multisensor input data must come
investigation of new paradigms, such as model-based algo-
rithms. Model-based algorithms contain libraries of models
of the targets for scenarios of interest. Target models cou-
pled with environmental affects models presumably can

3. A data base of military relevant targets is now available to the aca-
demic community at http://cis@cis.wust.edu.
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represent any state in which the target can occur. Then, the
images that the sensor produces are compared to the library
models until a match occurs with some level of confidence.
This model-based approach shown pictorially in Fig. 16 can
be compared to the previous approach represented in Fig. 7.
The model-based approach addresses several functions
simultaneously, such as recognition, classification, and
identification, whereas the older approach carries out these
operations serially. This image processing, model-based
concept for ATR is very familiar to the computer vision
community [48] ,[49]. For a more detailed example of a
model-based approach that fuses range and intensity in-
formation, see Verly et al. [50].4

Fig. 16. Model-based algorithm concept.

The building of the model templates from the canonical
database of targets is essential to the generation of model-
based algorithm development. Fig. 17 illustrates one possi-
ble procedure for the creation of the required library. From
a validated 3D computer-aided design model, 2D silhou-
ettes are fabricated by the computer. The image features of
the silhouettes are sampled to form clusters of targets with
common features. The clusters are then probed for edges,
vertices, and other qualities that distinguish the 2D repre-
sentations of the targets. A search tree is constructed that
can be interrogated in a logical process to arrive at the cor-
rect identity of an object. For an example of this approach to
relational template matching, see Kramer et al. [52].

The description of model-based algorithm development
highlights the necessity of real-world imagery or realistic
synthetic scene generation. The validity of imagery taken in
the real world is absolute. However, the environment in
which the target exists can make the database useless when
applications change. Synthetic scene generation provided in
an electronic terrain board, on the other hand, can give an
infinite variation of conditions, but the validity of the scene
must always be established. Established scene metrics
would allow validation of synthetic scenes without the
need to continually acquire real-world imagery. Even with
a good theoretical basis from image science, synthetic scene
generation is hampered by the very high data rates re-
quired for interactive simulation. Let us assume that the
synthetic image must have 10 times the sensor resolution
before sampling by the sensor. For a modern FLIR with 480
¥ 1,280 pixels and 30 frames per second, the scene generator
must produce 1.5 ¥ 108 pixels per second.

4. For definitions of the differences among image processing, pattern rec-
ognition, and computer vision, see Nandhakumar and Aggarwal [51].

Fig. 17. ATR relational template-matching concept for designing deci-
sion search trees from sampling target models filtered by the sensor.

9 CONCLUSIONS

As seen in this survey of the state-of-the-art of ATR technol-
ogy as measured by Army Laboratories, the present state-of-
the-art of ATR systems is still far from imitating the perform-
ance of the eye–brain combination except for a few select
ATR implementations. For some low to medium clutter sce-
narios in which the number of target possibilities is not very
great, the target acquisition performance by the ATR is good
enough to be useful to the military. The useful ATR systems
are realizable in hardware that host algorithm implementa-
tions that exist and have been demonstrated against militar-
ily relevant scenes. However, current ATR algorithms cannot
be accurately modeled; there is little correlation between
known image metrics and observed ATR performance.

Experimental results justify the pursuit of sensor fusion
by the military in order to realize significant improvements
in performance. Improvements imply maintaining prob-
abilities of detection, classification, recognition, and identi-
fication of larger classes of targets while reducing false
alarms in higher clutter levels. This means moving from
one set of ROCs to another higher performance set by in-
troducing new, independent information. The biological
examples of using several senses to make decisions about
scene content support the concept. However, the lack of
theoretical guidelines from image science does not suggest
how to proceed down this path.

This paper also suggests that the major shortcoming in
the ATR technology base has to do with the lack of scien-
tific underpinnings. The present indication that multisensor
fusion will provide the enhanced performance was not
based on any predictive scientific theory. It was based upon
intuition and trial and error. A strong, active image science
that provides image metrics—especially clutter measures,
understanding of scene information, and models—and that
performs experiments to generate data that lead to model
formulation and validation is needed to indicate the most
fruitful scientific endeavors for rapid progress in the tech-
nology area.

It is also contended, based upon the developments pre-
sented in this paper, that what are truly needed are new
ideas on the information content of a scene and how to take
advantage of it. It does not appear that a great increase in
processor computing power is required. The major increases
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in performance reported here have resulted from the transi-
tion to model-based algorithms and the employment of mul-
tiple sensors. These are the kinds of new ideas and concepts
that will generate significant leaps in ATR performance.

Finally, tools that will enable the ultimate solution to the
ATR problems are maturing. Signature and background
modeling and databases are being expanded with real-
world imagery, and synthetic generation efforts are under
way. Evaluation methodologies are continuing to evolve.
Algorithms are evolving, but so far not in a revolutionary
way. Rapid prototyping techniques for algorithm genera-
tion and processor hardware fabrication are expected to
permit the quick assessment and implementation of new
ATR improvements. As all these complementary activities
come to fruition, the establishment of an organized ATR
approach, at least in the DOD, will enable the efficient
fielding of many applications. Military fielding of ATR can
then set the stage for effective transition to civilian markets.
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