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Multiresolution Feature Extraction and Selection for 
Texture Segmentation 

MICHAEL UNSER A N D  MURRAY EDEN, FELLOW, IEEE 

Absrruct-This paper describes an approach to unsupervised seg- 
mentation of textured images. Local texture properties are extracted 
using local linear transforms that have been optimized for maximal 
texture discrimination. Local statistics (texture energy measures) are 
estimated at the output of an equivalent filter bank by means of a non- 
linear transformation (absolute value) followed by an iterative Gauss- 
ian smoothing algorithm. This procedure generates a multiresolution 
sequence of feature planes with a half octave scale progression. A new 
feature reduction technique is then applied to the data and is deter- 
mined bj  simultaneouslj diagonalizing scatter matrices evaluated at 
t\+o different spatial resolutions. This approach provides a good ap- 
proximation of Fisher’s multiple linear discriminants and has the ad- 
vantage of requiring no upriori knowledge. This new feature reduction 
methods appears to be an improvement on the commonly used Kar- 
hunen-Loeve transform and allows efficient texture segmentation based 
on simple thresholding. 

lndex Terms-Feature reduction, filter bank, Karhunen-Loeve 
transform, local linear transform, (multiple or Fisher’s) discrimi- 
nants, segmentation. texture. threshold. 

I .  INTRODUCTION 
HE unsupervised segmentation of an image into re- T gions that are homogeneous with respect to particular 

characteristics. such as gray tone or texture, is an impor- 
tant task in many image processing applications. This 
problem has received considerable attention during the last 
two decades [ 11. Most segmentation techniques have been 
applied to the simple case for which the definition of “ho- 
mogeneous” is based on a single gray-level characteris- 
tic. These methods are usually classified as thresholding 
[2], edge detection or gradient-based [3], region growing 
[4], and hierarchical (or pyramidal) schemes [ 5 ] .  

Some of these techniques have been extended for the 
use of multiple features and have been applied to the more 
difficult problem of segmentation based on texture. A nat- 
ural generalization of applying thresholds to a single gray- 
level characteristic is segmentation based on clustering or 
classification in a multidimensional feature space [6]. 
Several edge oriented methods have been proposed (71, 
[8], these generally attempt to locate texture edges based 
on the computation of a multifeature gradient-like opera- 
tor. Hierarchical approaches using pyramid node linking 
[9] or applying the split-and-merge algorithm to the cooc- 
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currence matrix [ IO]  have also been described. When 
compared to gray-level based approaches, these methods 
are faced with the following difficulties. First, an appro- 
priate set of texture descriptors needs to be selected among 
the large number of features that may be proposed [ 1 11. 
Second, textures are undefined at the single pixel level but 
are always associated with image regions. As a conse- 
quence, the image has to be subdivided into elementary 
regions whose size needs to be adjusted to maintain the 
statistical fluctuation of the texture features within an ac- 
ceptable range while preserving spatial resolution insofar 
as possible. Finally, the dimensionality of the feature 
space is greater than one. That circumstance requires sig- 
nificantly greater complexity in decision making. Fur- 
thermore, it is more difficult, in  the absence of a priori 
knowledge, to define satisfactory similarity or grouping 
criteria in  a higher dimensional feature space, due to the 
likelihood of significant interdependence among the vari- 
ables. 

The approach described in this paper is an attempt to 
integrate simple and efficient solutions to the three diffi- 
culties that have been mentioned. At the most basic level, 
the choice of texture features computed from a bank of 
convolution masks is justified by the statistical properties 
of texture fields [14], as well as by recent findings on vi- 
sual perception [ 131. Such texture features have been used 
by several authors and have been found to compare fa- 
vorably with texture measurements based on cooccur- 
rence matrices [ 141-[ 161. The corresponding texture char- 
acterization is reasonably compact, easy to compute, and 
especially suited for parallel processing [ 171, [ 181. The 
problem of spatial localization of texture properties is 
avoided in part by computing all local texture features 
within overlapping windows of several sizes. This is ac- 
complished efficiently by using an iterative multiresolu- 
tion approach similar to that described by Burt [19]. The 
last problem, which relates to the dimensionality of the 
feature space is solved by using effective feature reduc- 
tion techniques. As an alternative to the classical Karhu- 
nen-Lokve transform (201, we introduce an unsupervised 
feature reduction technique that diagonalizes scatter ma- 
trices at two different spatial resolutions. This new method 
provides a close approximation of Fisher’s multiple linear 
discriminant functions [21], [22] that are optimal for re- 
gion discrimination but can only be determined when the 
feature mean vectors and covariance matrices associated 
with the different image regions are known. In many 
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cases, the initial set of texture features can be reduced to 
a single component that discriminates efficiently between 
the different texture regions. The obvious advantage of 
such a reduction is that it offers the possibility to use any 
of the segmentation techniques designed for the single 
gray tone characteristic as a subsequent step. 

The different components of the resulting system, as 
well as the notation that is used throughout the presenta- 
tion, are shown in Fig. 1. The highpass filter preprocessor 
largely eliminates the gray tone information but preserves 
the texture properties. For highly textured images the use 
of gray tone information is not essential and is not con- 
sidered further in this study. Next, particular texture 
properties are determined by convolving the preprocessed 
image { x k , / }  with a set of masks and computing local sta- 
tistics from the successive application of a nonlinear op- 
erator (rectifier) and an iterative Gaussian smoothing pro- 
cedure. A statistical justification of this approach as well 
as guidelines for the selection of suboptimal sets of con- 
volution operators are given in Sections 11-A-C. An effi- 
cient implementation of the smoothing algorithm that pro- 
vides local texture feature planes with a half-octave scale 
progression is briefly described in Section 11-D. The fol- 
lowing module performs a linear feature reduction by 
using texture measurements at two successive levels of 
resolution. This technique, which is described in Section 
111, has a number of attractive properties such as its good 
approximation of the optimal supervised solution (multi- 
ple discriminants) and its ordering of the reduced com- 
ponents according to their discriminability . In the simple 
case of two texture regions, the local feature vector is re- 
duced to a single component and an optimal threshold can 
be determined by using the method presented in Section 
111-D. Experimental results are presented and discussed 
in the final part of the paper. 

11. FEATURE EXTRACTION 
A fruitful approach to texture characterization is based 

on the extraction of local texture properties by means of 
linear filtering operators [ 141-[ 161, [23]-[26]. Recently, 
a unified treatment of most of these approaches has been 
proposed based on the notion of a local linear transform 
(LLT) [14]. In this formulation, the local texture prop- 
erties are characterized by a set of statistics associated 
with the channel histograms at the output of a filter bank. 
An important aspect of this study was the definition of 
statistically optimal and suboptimal operators for texture 
analysis and classification. From the reported experimen- 
tal evaluation and comparison with alternative approaches 
using correlation or cooccurrence-based measurements 
[27], it appears that advantages the LLT method may have 
for texture characterization make it particularly suitable 
for image segmentation by texture type. It performs tex- 
ture classification well with a smaller number of texture 
measurements than are used by other approaches [ 141. The 
method is robust, flexible and specifically designed for 
parallel and multichannel processing. 

In this section, we briefly recall the major results re- 
lated to this approach. We then describe a practical 
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Fig. I .  Block diagram of an image processing system for the segmentation 
of textured images. 

method for estimating local statistics over windows that 
are successively increased in size by a half-octave scale 
progression. 

A .  Local Linear Transform 
The principle underlying this approach is to character- 

ize the Nth-order probability density function (pdf)  of the 
pixels in a restricted neighborhood by N first-order pdf‘s 
(or histograms) estimated along a set of suitably chosen 
axes. These projections are obtained by a local linear 
transformation. 

This formulation establishes a correspondence between 
the original image { x k , , }  and a N channel multivariate se- 
quence of local neighborhood vectors { xk,(} defined for 
all spatial indices ( k ,  I ) .  The components of the local 
neighborhood vector xk,/ are the sequentially ordered gray 
level values belonging to an N point neighborhood cen- 
tered around the spatial position indexed by ( k ,  1 ). A lo- 
cal linear transform is defined by the matrix relationship: 

Yk. /  = TXk.1 ( 1 )  

where T i s  an N x N nonsingular transformation matrix. 
This equation has two complementary interpretations. 

First, (1) may be thought of as a rotation in the local pixel 
space in which the neighborhood vector is defined, or 
equivalently, as a change of the original coordinate sys- 
tem. Second, since (1) is defined for every couple ( k ,  1 ), 
it corresponds to the equation of a filter bank. In this inter- 
pretation, the local convolution masks-or elementary 
structure detectors-are obtained from the row-vectors of 
the transformation matrix T by using the spatial corre- 
spondence rule that defines the local neighborhood vec- 
tor. 

Following this transformation, a region of homoge- 
neous texture is characterized by the set of channel his- 
tograms computed at the output of the filter bank [14]. 
Depending on our interpretation, these quantities may be 
viewed as a collection of one-dimensional projective 
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views of the Nth order probability density function of the 
local neighborhood vector, or as measurements of the rel- 
ative strength of occurrence of some elementary spatial 
patterns in the texture field. A more compact (but less 
complete) representation is given by the variances of these 
histograms; these are often referred to as “texture energy 
measures” and were first used by Laws [ 151. 

B. Transform Selection 
It is not surprising that performance under this ap- 

proach depends on the choice of the transformation matrix 
T .  The most trivial example is to consider the use the 
identity matrix or any of its permutations. This particular 
choice is the least favorable, because the statistics of the 
initial components of the local neighborhood vector are 
all identical and contain no neighborhood information. 

The problem of the optimal selection of convolution 
masks has been discussed before; it requires that certain 
performance criteria for texture analysis and classification 
be defined [ 141. The optimal solution for analyzing a given 
texture was shown to be the local Karhunen-Lokve trans- 
form that diagonalizes the spatial covariance matrix. This 
transform has the remarkable property of producing the 
channel statistics that are the most different from one an- 
other; it also decorrelates the transformed coefficients, 
thereby justifying the approximation of the Nth order pdf 
by the product of N first-order pdf’s. The ability of the 
corresponding set of masks to extract the different con- 
stituents of a given texture has been demonstrated by Ade 
[26]. Similarly, in the context of classification, the opti- 
mal transform that discriminates maximally between two 
textures has been determined as the one that simulta- 
neously diagonalizes their spatial covariance matrices 

The use of these solutions, however, is restricted in 
practice because they are texture dependent. They are 
therefore not applicable to unsupervised texture segmen- 
tation. Fortunately, it has been demonstrated that almost 
equivalent performances could be obtained with subopti- 
mal separable transforms such as the discrete sine (DST), 
cosine (DCT), Hadamard (DHT), and real even Fourier 
(DREFT) transforms. Experimental comparison of these 
transforms has shown that classification performance is 
not greatly affected by the exact shape of the convolution 
masks, suggesting that the method is quite robust. The 
DST was found to perform slightly better for odd dimen- 
sions of the local neighborhood ( 3  x 3 ,  5 x 5 ) ,  while 
the DHT (or DREFT) gave slightly better results for even 
neighborhoods ( 2  x 2 and 4 x 4 )  [14], [17]. These 
suboptimal operators have some important advantages, 
including simplicity of implementation, the availability of 
fast algorithms and finally the guarantee that the perfor- 
mance is close to optimal for a large variety of textures. 

C. Estimation of Local Statistics 
Rather than estimating the channel histograms explic- 

itly over elementary image regions and evaluating their 
corresponding moments, it is advantageous to compute 
local texture statistics from the succession of nonlinear 

~ 4 1 .  

operators and averaging filters. This procedure produces 
a sequence of local texture features { u k , / }  characterizing 
the texture properties in small regions centered on sample 
positions indexed by ( k ,  1 ) .  An advantage of this for- 
mulation is that each component of the local feature vec- 
tor defines an image, which, as such, can be displayed 
and processed using conventional methods. 

1) Nonlinear Transformation: The purpose of the non- 
linear transformation is to provide a transformed feature 
sequence { uj,:) } which leads to feature vectors with dif- 
ferent mean values for distinct texture regions. This prop- 
erty is essential and is not usually satisfied by the rotated 
representations of the local neighborhood vector { y k ~ }  , 
especially for a high pass-filtered image within which all 
clusters are centered around the origin. This latter obser- 
vation also provides a simple explanation as to why tex- 
ture segmentation or classification procedures that con- 
sider the local individual pixel values as the components 
of a feature vector are relatively inefficient. It is therefore 
suitable to select a nonlinear transformation that converts 
differences in dispersion characteristics into differences in  
the region mean values. The consecutive application of a 
low-pass filter reduces the within-region variance and 
produces texture features that are local estimates of some 
related channel statistic. 

In our system where the input image has been initially 
high-pass filtered, we have used the absolute value oper- 
ator, which results in the evaluation of texture measure- 
ments that are local estimates of the channel mean devia- 
tions. The use of this particular set of features is motivated 
by the following reasons. First, the mean deviation ( 6 )  
provides a characterization of a distribution that is gen- 
erally similar to that obtained with the standard deviation 
( a )  [28]. For a given parametric form of a probability 
density function, 6 is usually proportional to a; for ex- 
ample, for the Gaussian distribution this relation is: 6 = 

a. The performance in texture classification is 
therefore very similar to that obtained with channel vari- 
ances [17]. Second, the absolute value operator is ex- 
tremely simple to implement and requires no scaling of 
the transformed images. 

The performance in texture classification could be im- 
proved slightly by adding higher order statistics such as 
the kurtosis and skewness [14]. We feel, however, that 
this small improvement is generally not worth the added 
computational cost and the increase in  the dimensionality 
of the feature space. It is usually more cost effective to 
increase both the number and the size of the convolution 
masks. 

2) Iterative Smoothing: The use of a low-pass filter fa- 
cilitates estimation of the local mean values of the trans- 
formed sequence, { ~ 2 , ‘ ; )  ), assuming that the input signals 
are locally stationary. The impulse response of this filter 
may be viewed as an estimation window applied to the 
signal. The choice of a Gaussian window which is com- 
monly used in image processing has several motivations. 
First, the corresponding low-pass filter provides an ex- 
cellent compromise between the conflicting requirements 
of effective stop band rejection and good localization 
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iteration Impulse response 

1 gl(k) = 

2 g2(k) = gl(k) * h,(k) 

3 &(k) = * hi(k) * hi(k) 
4 &(k) = g,(k) * hz(k) 
5 gs(k) = g,(k) * hz(k) * h2(k) 

2n 
2n+l  

g&) = gz ,~ l (k )  * h y - l ( k )  
gzn+,(k) = gzn(k) * h p l ( k )  * h2n~l(k) 
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Spatial variance Equivalent size 

02, M y =  W O ,  

o:= 1.02 MI = 3.50 
2 a: =2.04 
4 a: =4.08 
8 a: =8.16 

16 a: =16.32 

fi MI= 4.95 
2 MI= 7 

2 f i  MI= 9.89 
4 MI= 14 

22"-1 a: 2n-1fi  M I  
2'" a: 2" MI 

,... .... 

properties: it is the real operator that has the minimal 
product of second moments in space and frequency 1291. 
In addition, when compared to an equivalent rectangular 
window, the Gaussian window tends to be less sensitive 
to nearby edges since it gives the greatest weight to the 
pixels near the sample position and progressively less 
weight to more distant points. Second, repeated convo- 
lution with Gaussian kernels is equivalent to a single con- 
volution with a Gaussian kernel of greater size; this is a 
direct consequence of the central limit theorem [28]. This 
property provides a flexible way to increase the size of the 
observation window progressively by using iterative 
Gaussian filtering. Third, the isotropic Gaussian filter is 
the only real bidimensional operator that is both separable 
in  the two principal directions and circularly symmetric. 
Accordingly, all spatial directions are treated equally even 
if an efficient implementation is based on successive one- 
dimensional filtering along the row and columns. 

A fast iterative evaluation of Gaussian-like windows can 
be achieved by using the algorithm described by Burt 
based on the cascaded convolution of a kernel that is pro- 
gressively expanded and filled with zeros to provide an 
octave scale progression [ 191. We have modified the ini- 
tial scheme slightly to accommodate for a half-octave 
scale progression which we found to be preferable for tex- 
ture analysis. The corresponding sequence of operations 
is described in Table I. The successive levels of resolu- 
tion are computed from a cascaded application of the basic 
"Gaussian-like" one-dimensional symmetrical operator 

h , , ( k )  = U * 6 ( k )  + b [ 6 ( k  + n )  + 6 ( k  - n ) ]  

+ c . [ 6 ( k  + 2 n )  + 6 ( k  - 2 n ) ]  ( 2 )  
along the rows and the columns. 6 ( k )  is the one-dimen- 
sional unit impulse and a ,  b, and c are the weights of the 
impulse response, which are usually chosen as a = 0.4, 
b = 0.25, and c = 0.05 [19]. The condition ( a  + 2 b  + 
2 c )  = 1 ,  guarantees unity gain at zero frequency and thus 
insures that the output of the filter provides unbiased es- 
timates of the channel means for locally stationary sig- 
nals. The spatial variance 0; of the equivalent impulse 
response at each level of iteration can be determined by 
summing the second-order moments of the individual cas- 
caded operators, since all impulse responses are normal- 
ized to unity ( CT=m-m g, ( k )  = 1 ). The size of an equiv- 
alent (e.g., with the same second-order moment) window 
with constant weights is given by Me, = f i  c , ~ .  As 
shown in Table I ,  the progression of the size of the esti- 
mation window is exactly a factor h per iteration in the 
two principal directions. 

An interesting case is to consider the input of this sys- 
tem to be white noise with variance U:(,. After i iterations 
of the smoothing procedure, the residual variance U:, can 
be shown to be equal to 

0:; = 0:(]/(2'). ( 3 )  
For a half-octave progression, the variance is thus de- 
creased by a factor of two at each iteration. A similar pro- 

I I 

portionality can be observed empirically when iteratively 
smoothing the rectified outputs of the filter bank for most 
homogeneous texture fields, although the factor of pro- 
portionality is usually not precisely two. As mentioned 
earlier, this variance reduction property is useful for tex- 
ture segmentation because it will usually improve class or 
region separability. 

Since the sequences { U i:,) } are band-limited, the 
amount of computation and storage requirement may be 
reduced by resampling the data by a factor h at each 
iteration (or 2 every other iteration) and generating a 
Gaussian pyramid similar to that described in [ 191. By 
interpolation, the data at any level of resolution can be 
recovered with minimal loss. 

111. FEATURE REDUCTION AND DECISION 
In this section, we investigate the use of linear feature 

reduction methods that compress the set of initial feature 
planes into many fewer components while retaining the 
information for optimal discrimination between texture 
regions. We first consider the case of supervised classifi- 
cation and review the properties of the multiple discrim- 
inant representation that provides an upper theoretical 
bound for a common criterion for class separability; 
namely, the ratio of the between-region to within-region 
variances [21], [22], [30]. In the case of unsupervised 
segmentation, a somewhat less satisfactory feature reduc- 
tion is obtained with the Karhunen-Lohe transform. As 
an alternative to this classical approach, we present a 
multiresolution feature reduction technique that provides 
a significantly better approximation of the optimal solu- 
tion by combining the information of two different levels 
of spatial resolution. Finally, we describe briefly a thresh- 
olding technique that optimally selects a partition of a re- 
duced one-component feature space by maximizing the 
ratio of the between and within-region variances. 

A .  Optimal Supervised Feature Reduction 
Let Ro denote the set of all spatial indexes contained 

within the boundaries of the image to be segmented. Ro is 
assumed to be partitioned into r disjoint regions of differ- 
ent but homogeneous texture: Ro = R I  U R2 * . . U R,. 
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The number of pixels in each of those regions are n l ,  
. . .  , nr, respectively, and satisfy n1 + n2 + . n, = 
no where no is the total number of pixels. Given a se- 
quence of local texture features { uk, /  } ,  the decision pro- 
cedure should be optimized to produce a partition ( R i ,  
R i ,  . . * , R:)  that is as close as possible to the ideal on 
( R I ,  R?, * * * , R,). As pointed out previously, this task 
is simplified when the N dimensional feature vectors 
{ uL./}  are projected on a set of M < N (ideally, M = 1 ) 
axes specified by the basis vectors t , ,  . . tM 

(4) 
In order to be efficient, this dimensionality reduction must 
globally preserve class (or texture region) separability. 
This condition implies that the components of { u k , / }  
should individually be more discriminative than the orig- 
inal texture features. 

Let vk,/ = t T q l  where t i s  a given vector of coefficients, 
denote an arbitrary linear combination of the original fea- 
ture vector uk./.  Assuming that the texture regions are 
given, as might be the case in a controlled experiment, 
the between to within variance ratio (0) is computed as 
[301 

t Ts, t p = -  
t Ts,, t 

where S!, and S,,, are the so called between-region and 
within-region scatter matrices of the initial sequence of 
feature vectors. These matrices are defined by 

r 

I' 

S h  = H I  (mi - mO)(m~ - mO)T ( 7 )  
I =  I 

where mo is the global mean vector and m,, 
the mean feature vectors for each texture region 

* . , m, are 

It is well known that the sum of the between and within 
scatter matrices is equal to the total scatter matrix S, [30] 

In a practical segmentation problem, S, is the only acces- 
sible measure because the determination of S,c and Sh re- 
quires that the texture regions be known. 

The optimal transform that maximizes ( 5 )  is well known 
in the context of multiple discriminant analysis [22], [30] 
and is found by solving the generalized eigenvalue prob- 
lem 

S,t  = p s , , t .  ( 10) 
The maximum of p is given by the largest eigenvalue and 
is achieved when the data are projected on the axis spec- 
ified by the corresponding eigenvector. The complete set 
of eigenvectors with nonzero eigenvalue defines a non- 

orthogonal transform-the multiple discriminant trans- 
form (MDT)-that is optimal for a relatively large family 
of separability criteria defined for more than one compo- 
nent [ 3  11. The dimensionality of this subspace is at most 
equal to min { N ,  r - 1 }, since the rank of Sh cannot 
exceed r - 1 .  An important property of the data repre- 
sentation obtained with the MDT is that it is invariant to 
any nonsingular linear transformation of the initial feature 
vector. It is worthwhile mentioning that this representa- 
tion allows an exact and particularly efficient implemen- 
tation of the minimum Mahalanobis distance classifier, 
which performs a minimum error (or Bayesian) classifi- 
cation for multivariate Gaussian distributed feature vec- 
tors with equal covariance matrices. This property is re- 
markable as the dimensionality of the MDT representation 
( for example, M = 1 for two texture regions ) is generally 
much lower than the dimensionality of the original feature 
space. 

Although the usefulness of the MDT in our problem is 
mainly theoretical, it will be used later on for comparing 
the performance of more practical methods that are dis- 
cussed next. 

B.  Unsupertised Feuture Reduction 
Unlike the MDT representation, the methods discussed 

below require no a priori knowledge (e .g . ,  the scatter 
matrices Sh and S,,.) and are therefore directly applicable 
to unsupervised segmentation problems. 

I )  The Kurhunen-LoPve Transform: The Karhunen- 
Lotve transformation (KLT) provides a standard feature 
reduction method [20], 1301. It has been widely used in 
the context of multichannel image processing because of 
its global decorrelating properties. This transformation is 
defined from the eigenvectors of the total scatter matrix 
S, given by (9). The KLT is optimal in the sense that it 
provides the minimum error projection of the data in a 
subspace of dimension M < N .  However, there is no gen- 
eral guarantee that such a representation will be the best 
for class discrimination. In unsupervised classification 
problems, it is commonly used because representations 
such as MDT are generally not accessible and because it 
often achieves appreciable noise reduction. 

2)  Approximating the Multiple Discriminants Repre- 
sentation: An estimate of the MDT is obtained by taking 
advantage of the availability of feature planes at different 
spatial resolutions. Our method uses two sets of local fea- 
ture planes { U :!/) } and { U :.{ ) } computed at iterations i 
and j ( i  > j ) of the smoothing procedure. It is based on 
two hypotheses. The first one is that between-scatter ma- 
trices are almost the same at both resolutions: S i 1 )  s 
S i ' ) .  It appears to be a reasonable assumption for the 
only possible difference will derive from smoothing bor- 
der regions, which usually account for a small portion of 
the total image area. The second hypothesis is that MDT 
is not changed significantly from one smoothing iteration 
to the other. This last condition is generally well satisfied, 
especially when i and j are not too different, for smooth- 
ing tends to reduce the within-region variance isotropi- 
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cally. We can then apply the following theorem which 
demonstrates that the MDT solution can be computed by 
simultaneously diagonalizing the total scatter matrices 
S : ‘ )  and S , “ ) .  It should be mentioned that this technique 
usually provides a good approximation of the MDT ma- 
trix but does not explicitly estimate the eigenvalues: 
{ p ‘ l ) ,  i = 1, M I  or { p ” ) ,  i = 1, M } .  

Theorem: If t is a N dimensional vector such that 
s i o t  = p c r ) S ( ’ ) t  = S ‘ / ) t  = p ‘ / )  ( 1 )  

1, s,, t (11) 

where p C 0  and 0‘’’ are two unknown nonzero scalars 
and where S i ’ ) ,  SA’), S i J ) ,  and S , r J ’  are N X Npositive 
definite matrices, then t also satisfies the following equa- 
tion: 

s y t  = h ‘ S , ‘ J ) t  (12)  
where S / ’ )  = SL‘) + S i ’ )  and Sr(’) = S ( / )  h + S i ’ ) .  

that 
Proof: The two halves of (1 1) taken separately imply 

(13)  

(14) 

[S i”  + S,“”]t = ( p ‘ ”  + 1)  S: ,” t  

[ S i ”  + S : , ’ ) ] t  = (0” )  + 1)  S : , / ’ t .  

Furthermore, it is straightforward to show that 

s y t  = ( p ( J ) / p )  s y t  
which may be directly substituted in (13). The next step 
is to isolate S ; ” t  on the right-hand side of (13) which 
yields 

and to proceed in the same way for (14) 

We finally complete our proof by equating those two 
expressions and rewriting the resulting equation as 

[ S i ”  + S , r l ’ ] t  = A’[SLJ’  + S f ” ] t  

where A ’  is given by 

For practical purposes, note that the result of process- 
ing, { q(}, is independent of the order in which the dif- 
ferent operations (smoothing and linear transformation) 
are performed. This is a direct consequence of 1) the lin- 
earity of these operations, and 2) the parallelism by which 
the smoothing operators are applied to all channels simul- 
taneously. 

The solution of (12) defines the approximate multiple 
discriminant transform (AMDT). An efficient procedure 
to compute this solution is based on the property that the 
AMDT is independent of any linear nonsingular transfor- 
mation of the feature vector. The sequence of operations 
is the following. First, at iterationj, we replace the orig- 
inal feature sequence by its standardized KLT where the 

rotated components are normalized by the square-root of 
their corresponding eigenvalue. At this stage, the scatter 
matrix of the transformed data is proportional to the iden- 
tity matrix. Smoothing is then performed up to iteration 
level i. The AMDT is now given by the KLT of the cor- 
responding sequence, since the succession of this and of 
the previous transformations diagonalizes both scatter 
matrices S ! ’ )  and S : ’ ) .  The global transformation is thus 
given by: 

TAMDT = V;, . ( A , - ” 2 q )  = VqU$, (16)  

where UJ is the matrix of eigenvectors of S,‘ ), A,, the 
diagonal matrix of corresponding eigenvalues, and V,, the 
matrix of eigenvectors of the transformed scatter matrix 
( U 5 , j S / o U , $ ) .  It can be verified that the row-vectors of 
TAMDT satisfy (12). 

C. Threshold Selection 
We assume that the sequence of initial texture features 

{ uk,/} has been reduced to a single component { vk,/} that 
is optimized for maximum discrimination between texture 
regions. In this case, the final decision can be reached by 
simple thresholding. In order to be consistent with the 
previous development, we des,cribe a procedure for par- 
titioning the feature space in a way that maximizes the 
ratio of the between-region and within-region variances. 

Let us assume that { q l  1 has been quantified with qmar 
equidistant discrete levels which we denote by: { vy, q = 
1, * . - , qmax } . The histogram over the entire image is 
{N(Z+/), q = 1,  . . , qmax} where N (  U,) is number of 
pixels with feature value uq. In the simplest case of two 
texture regions, segmentation is performed on the basis of 
a single threshold T. Each value of T defines two comple- 
mentary decision regions Q ,  ( T )  = { q,  vq I T } and Q2 
= { q ,  U, > T } corresponding to a specific partition of 
R. Following some simple algebraic manipulations, we 
find that the separability criterion defined by ( 5 )  may be 
expressed as a function of T 

where n; ( T )  ( i  = 1,  2 )  are the number of pixels in the 
that regions defined by the threshold, mi ( T )  and s’ ( T ) ,  
( i  = 1, 2 )  are the corresponding estimated means and 
variances. These quantities are computed from the gray- 
level histogram 

( i  = 1, 2) (18) 



UNSER A N D  EDEK:  MULTIRESOLUTION TEXTURE SEGMENTATION 

~ 

723 

It is thus possible to compute /3 ( T )  for all admissible val- 
ues of T and select the optimum threshold T* : /3 ( T * )  = 

max { 0 ( T )  } . This computation is relatively inexpensive 
since the quantities defined by (18) to (20) may be up- 
dated recursively for successive values of T. 

This approach may be generalized for more than two 
regions, although the exhaustive evaluation of the perfor- 
mance criterion for all possible threshold configurations 
is unrealistic when r > 3 .  When more than two thresholds 
are required, the optimization should probably be per- 
formed using iterative searching methods. 

IV. RESULTS A N D  DISCUSSION 

A .  Examples and Experimental Evaluation 
For quantitative evaluation, we have used 128 X 128 

test images with two predefined texture regions that were 
created by combining original texture images taken from 
[32]. The original 8 bits/pixel texture images were pre- 
processed to compensate for transducer nonuniformities 
and had their histograms equalized with 32 equiprobable 
gray-level values [ 141. The use of such texture compos- 
ites, as opposed to real world images, has at least the three 
following advantages. First, the image regions are un- 
ambiguously defined, which allows an objective perfor- 
mance evaluation. Second, due to preprocessing, the dif- 
ferent texture regions have identical first-order statistics 
(gray-level histograms), which guarantees that segmen- 
tation is achieved using higher order texture properties 
exclusively. Third, the use of computer generated images 
allows us to vary important structural and geometrical pa- 
rameters (e.g., use of different textures, size or the shape 
of the image-regions) in order to investigate their influ- 
ence on the performance of the algorithm. 

A typical illustration of the way the algorithm operates 
is given by the series of images in Fig. 2. All images that 
are shown in this and in the following figures had their 
gray scale linearly expanded to fill the range of the dis- 
play. The test image created from the Brodatz D57 (grass) 
and D9 (paper) textures, and the masks defining the tex- 
ture regions are displayed in Fig. 2(a) and (b), respec- 
tively. The input image was filtered using the local 2 X 
2 discrete Hadamard transform and thereafter rectified. 
The corresponding channels are represented in Fig. 2(cl)- 
(c4). The first operator ( I  1 I )  is a low-pass filter while 
the three others are vertical ( I 1 I; I ), horizontal 
( 1 - 1  - ! I ) ,  and diagonal ( 1 - 1  - 1 1 )  edge detectors, re- 
spectively. Two global indicators of individual channel 
performance have been included: vi is the current relative 
energy contribution in channel i, and /3, is the correspond- 
ing ratio of the between- and within-region variance. This 
latter quantity was computed using the predefined regions 
displayed in Fig. 2(b), and provides an objective measure 
of the individual texture discrimination power of channel 
i (c.f. 3.1). The channel histograms are also represented. 

For the initial sequence { U:,‘;’ }, the discrimination 
power is very small, although it can be seen that the tex- 
ture regions differ slightly in their mean values. The effect 
of smoothing is to decrease the within-region feature 

A 
r ’  

Fig. 2.  Illustration of the segmentation algorithm. (a):  128 X 128 test im- 
age created using D57 and D9 Brodatz textures, (b) definition of image 
regions. (cl-4):  filtered channels using masks obtained from the 2 X 2 
DHT, (d l -4) :  feature planes at iteration 3 of the smoothing algorithm 
(M,,, = 7 ) ,  (e l -4) :  KLT rotated feature planes. ( f l -4)  AMDT rotated 
feature planes, (g) MDT reduced feature sequence, (h l -3 )  binary result 
of segmentation obtained by thresholding the components displayed in 
( e l ) .  ( f l ) ,  and (g),  respectively. 
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variance as illustrated in Fig. 2(dl)-(d4). They display 
the sequence of local texture features { U i , ; )  } , after 3 it- 
erations of the Gaussian filter. The equivalent diameter of 
the spatial window is approximately 7. Channel No. 2 is 
the most discriminative with p2 = 1.08 and has a histo- 
gram that is slightly bimodal. Fig. 2(el)-(e4) show the 
rotated feature planes obtained using the KLT, ordered 
according to their relative energy contribution. In this 
particular case, the first eigencomponent turns out to be 
the most discriminative with PI = 0.87 but is not better 
than channel 2 taken on its own. The rotated feature planes 
obtained with the AMDT which simultaneously diagon- 
alizes the scatter matrices at iteration 2 and 3 (e .g . ,  
S&” and Si”) are represented in Fig. 2(fl)-(f4). The 
first component is the only interesting one with PI = 1.67 
and provides an excellent approximation of the optimal 
MDT solution [Fig. 2(e)] computed using the procedure 
described in Section 111-A, (/3* = 1.71 ).  In this example, 
as well as in all other cases that we have considered using 
different Brodatz textures, the discrimination power of the 
first component of the AMDT solution was always found 
to be superior to any individual channel or to any com- 
ponent of the KLT. The texture regions usually appeared 
to be more nearly uniform and the modes in histogram 
were always more pronounced. The binary images ob- 
tained by thresholding the first components of the KLT, 
and AMDT and the theoretical MDT with a threshold cal- 
culated according to the technique described in Section 
111-A are displayed in Fig. 2(hl)-(h3), respectively. The 
corresponding probabilities of errors are shown. They are 
very close to the minimum values (given in parentheses) 
which could theoretically be obtained using an optimal 
Bayesian (minimum error) threshold. Again, the results 
obtained with the AMDT are very close to those obtained 
with the MDT and are superior to those of the KLT. 

To quantitate the performances of the algorithm as a 
function of the size of the observation window, we have 
used the 0,’s for the most discriminative channels asso- 
ciated with the initial representation, the KLT, and AMDT 
and the optimal MDT, which is used as a theoretical up- 
per bound for performance. We have also computed the 
minimum error probabilities obtained by thresholding in 
an optimal way the first components of the different fea- 
ture reduction techniques. These measures are repre- 
sented as functions of the equivalent window size (diam- 
eter) of the Gaussian observation window whose increase 
with the number of iterations is given by Table 1. Unless 
otherwise stated, the AMDT is computed by simulta- 
neously diagonalizing the scatter matrices S i ’  ) and 
S i ‘ - ’ )  obtained at two successive iterations. Fig. 3 dis- 
plays these results for the test image in Fig. 2 in the case 
of a 4 channel ( 2  x 2 DHT) and 9 channel ( 3  x 3 DST) 
feature extraction. Interestingly enough, the reduced set 
of 2 X 2 operators performs nearly as well as the larger 
set of 3 X 3 operators. For small window sizes, the per- 
formances of the AMDT and the optimal MDT are almost 
undistinguishable and always significantly better than 
those of the KLT. For this particular test image, the op- 

0 10 20 30 0 10 20 30 

Window size Window size 
2x2 DHT 

m 

5 2  

fT.T.1 9 AMDT 

0 i o  20 30 0 10 20 30 

Window size Window size 

3x3 DST 
Fig. 3 .  Performance of the most discriminative component of various fea- 

ture vector representations a s  a function of the size of the spatial eati- 
mation window for the test image in Fig. 2 :  (a)-(b) separability measures 
and segmentation errors when using 4 texture features computed from 
the 2 X 2 DHT: (c)-(d) separability measures and segmentation errors 
when using 9 texture features computed from the 3 X 3 DST. 

timal window size for minimum error thresholding can be 
seen to be approximately 14 ( 5  iterations). Beyond this 
limit, the performance tends to degrade progressively. 
Apparently, spatial averaging smears out interregional 
sharpness more than it diminishes the within-region vari- 
ances. The interpretation is further supported by noticing 
that up to this optimal window size the increase in B / W  
ratio for all methods is approximately linear, as would be 
predicted by ( 3 ) ,  until there is a change in tendency and 
that the curves saturate progressively. An important phe- 
nomenon, which has also been observed in several other 
cases not shown here and which is particularly clear in the 
third graph in Fig. 3, is that the approximation provided 
by the AMDT tends to be less satisfactory for spatial win- 
dows that are greater than the optimal size. This obser- 
vation is not very surprising since the basic hypothesis on 
which the method is based, namely that SL‘) = SL‘ - l ) ,  
can be expected to break down progressively as the av- 
eraging window is increased. 

Among the various texture composites that we have in- 
vestigated, the previous example is representative of a sit- 
uation in which the KLT performs quite well. However, 
as illustrated by the next example (Figs. 4 and S ) ,  this is 
not always the rule. As in the previous case, the AMDT 
performs nearly as well as the optimal MDT. The perfor- 
mance of KLT, in contrast. is surprisingly bad (roughly 
4-5 times worse). As it may be seen from Fig. 5 ,  the 
optimal window size for minimum error thresholding with 
the AMDT (or MDT) is now M,,  = 20 corresponding to 
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Fig 3 Example of texture segmentation id )  128 x 118 te\t image created 
uung D29 and D84 Broddtz textures. ( b )  definition ot image regions. 
( c l - 2 )  hrst component ot the KLT and corre\ponding bindry \egnicnta 
tion. ( d l - 2 )  first component of the AMDT and correspondlng binar) x g  
nientdtion Texture fedture? 4 mean de\iatlon\ of the 2 X 2 DHT com- 
puted using 3 iteration\ of the \moothing procedure i M L, = I O )  

0 * o  io 3: 

3 

Window size Window sue 

( a )  ib) 

Fig. 5 .  Separability measures ( a )  and segmentation errors (b) obtained ui th  
the most discriminati\c component of various feature veetor represen- 
tations a h  a function of the size o f t h e  spatial estimation window for the 
test image in Fig. 4 (a ) .  Texture features: 4 mean deviations of the 2 x 
1 DHT. 

6 iterations of the smoothing algorithm. The compara- 
tively poor performance of the KLT results in a much less 
satisfactory feature reduction and texture segmentation as 
shown in Fig. 4 ,  which displays the reduced components 
of all three methods after 4 iterations (Mcq = 10) and 
their corresponding binary images obtained by applying 
the threshold maximizing the criterion defined by (17). 
For this particular image. we were also surprised to find 
that the most discriminative component of the KLT did 
not always correspond to the largest eigenvalue. For ex- 
ample, at iteration 2, we found the following values of 

0.1177. P K L T - 3  = 0.1859, P K L T - 4  = 0.1914, which have 
to be compared to (PU, = 0.005, PUz = 0.0004, PU3 = 
0.3012. Pu4 = 0.2529) for the initial representation and 

0.017, - 4  = 0.01 1 ) for the AMDT. These results 
clearly indicate a reversed tendency; the smallest eigen- 
value of the scatter matrix corresponds to the most dis- 
criminative component! An explanation for this unex- 
pected result lies in  the fact that the most discriminative 
channels for this particular image (e.g., channel No. 3 
and 4) only account for a relatively small proportion of 

the performance measures: P K L T  - , = 0.012. P K L T  -1 - - 

( P A M D T - I  = 0.6483, P A M D T - ~  = 0.013, P A M D T - ~  - - 

the total energy and, as a consequence, do not contribute 
much to the first component of the KLT. 

In order to investigate the dependence of the algorithm 
on geometrical parameters of the texture regions, we cre- 
ated test images with a “cross-like’’ central region of 
variable size using the same textures as in the first exper- 
iment. An example of such an image with a central region 
occupying 20 percent of the total area is shown in Fig. 6. 
The result of the unsupervised segmentation after 4 iter- 
ations of the smoothing procedure (Meq = 10) using the 
KLT and the AMDT are displayed in Fig. 6(c) and (d), 
respectively. The effect of varying the size of the central 
region is illustrated by the graphs in Fig. 7. Once again, 
the performance of the MDT and AMDT are almost un- 
distinguishable and always superior to that of the KLT. 
The general shape of the variance ratio curve in a given 
feature channel can be predicted if one assumes that the 
mean feature values in the different texture regions are 
approximately independent of the region size and that the 
variances are roughly the same over the entire image. In 
such a case, can be shown to be proportional to 
( A I A 1 ) / ( A l  + A ? )  where A ,  and A ,  are the areas of both 
texture regions. In the present example, this relation is 
relatively well satisfied ( < 2 percent relative error) for 
the most discriminative channel of the initial representa- 
tion as well as for the MDT or AMDT. This also means 
that the relative superiority of the AMDT (or MDT) in 
performance over that of the initial representation is in- 
dependent of the size of the central region. Obviously, 
this proportionality relationship does not hold for the KLT 
which tends to be less performant on both ends of the 
scale. The second graph in Fig. 6 shows the proportion 
of segmentation errors as a function of size of the central 
region and essentially compares the performance of the 
thresholding technique described in Section 111-C with the 
optimal minimum error Bayesian strategy. The perfor- 
mance is close to optimal for a large central region but 
degrades progressively as the region becomes smaller. 
This observation is not surprising since the histograms are 
no longer bimodal for small texture regions and that it is 
then extremely difficult to select a satisfactory threshold. 
A simple way around this problem may be to compute the 
threshold adaptively over image regions of smaller size or 
to use a pyramid node linking approach as suggested in 
191. 

B. Discussion 
The examples that we have considered indicate that the 

segmentation algorithm should perform quite well for a 
relatively large class of natural textures. The global per- 
formance of the procedure, however, has been found to 
depend on several factors. The most important one is 
structural and relates to the way the different image re- 
gions are differentiable based on their local texture prop- 
erties. A second aspect is related to the geometry of the 
texture regions. mainly to the relative proportion of bor- 
der points and also, to some extent, to the size of the re- 
gions. 
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Fig. 6.  Example of texture segmentation. (a) test image with a central cross 
(20 percent of total area) created using DS7 and D9 Brodatz textures, (b)  
definition of image regions, (c l -2)  first component of the KLT and cor- 
responding binary segmentation, (dl-2)  first component of the AMDT 
and corresponding binary segmentation. Texture features: 4 mean devia- 
tions of the 2 X 2 DHT computed using 4 iterations of the smoothing 
procedure ( M , ,  = I O ) .  

~ 

- Unsupervised 

Relative area 0 1  central region Relative area 01 central region 

( a )  (b)  
Fig. 7 .  Separability measures ( a )  and segmentation error5 (b) obtained with 

the most discriminative component of various feature vector represen- 
tations as a function of the size of central region lor test images of the 
type displayed in Fig. S(a). Texture features: 4 mean deviations of the 
2 X 2 DHT computed using 4 iterations of the smoothing procedure ( M , ,  
= 10 ) .  Threshold: unsupervised (maximum BIW ratio criterion) or 
Bayesian (minimum error). 

From the evaluation of the performance of various fea- 
ture reduction techniques under a variety of experimental 
conditions, it appears that the AMDT is generally supe- 
rior to KLT in the sense of providing a much better ap- 
proximation of the optimal MDT solution and therefore 
allowing a better segmentation. In addition, the relative 
performance of the KLT with reference to the MDT is 
significantly more sensitive to changes in structural and 
geometrical factors. 

An essential parameter of the algorithm is the size of 
the estimation window. Increasing the size of the aver- 
aging window generally increases class separability but 
also deteriorates performance in border regions. It is 
therefore not surprising to find an optimal window size 
for a given image, resulting from a tradeoff between struc- 
tural and geometrical picture properties, for which seg- 
mentation performance is optimal. Up to this limit, it is 
reasonable to assume that between-scatter matrix is not 
changed significantly by averaging; this explains the ex- 
cellent performance of the AMDT for small window sizes. 
In the examples that have been considered, the KLT was 

usually found to perform poorly for small window sizes 
sometimes even less well than the original unrotated fea- 
ture sequence. However, as the window size is increased 
the performance of the KLT tends to improve and gener- 
ally surpasses those of the initial representation. This last 
result is consistent because averaging usually decreases 
the within-scatter matrix so that the total scatter arises 
mainly from the between-region differences. 

Unlike the KLT, and AMDT is independent of any non- 
singular linear transformation of the local texture feature 
vectors. This invariance property has some particularly 
useful practical implications. Instead of dealing with the 
original feature vector sequence, we can replace it at each 
iteration with a standardized and rotated version obtained 
by using the KLT and subsequently rescaling each com- 
ponent with a normalized total variance. As stated earlier 
(e .g . ,  Section 111-B), this method computes all succes- 
sive AMDT's at no more cost than the KLT and decreases 
storage requirements. This approach is also quite favor- 
able from the point of view of roundoff errors since the 
data in each channel is rescaled for full dynamic range 
before averaging. Among other advantages is the possi- 
bility of discarding unpromising components at early 
stages of processing. 

From this computational scheme, it appears that the 
only difference between our feature reduction method and 
a comparable system that would compute KLT's at suc- 
cessively decreasing spatial resolutions, is in the stan- 
dardization option preceding a smoothing iteration. Some 
insight in the way the AMDT operates is gained by ob- 
serving that Gaussian smoothing reduces the within-re- 
gion variance by a factor that is approximately the same 
for each channel, usually leaving the between-region 
variance unchanged. If we start with the same energy in 
each channel, after Gaussian filtering the components with 
the greatest contributions are those which have the greater 
between-region variance. It follows that the AMDT tends 
to put more weight on channels which, according to our 
hypotheses, are assumed to be the most discriminative. 
The prewhitening transformation is intended to maximize 
this effect. A direct consequence, however, is that the 
method breaks down as soon as the decrease of the be- 
tween-region variance exceeds that of the within-region 
variance. As observed in our experimental examples, this 
might happen when the averaging window is increased to 
the point at which it has a size close to the smallest di- 
mension of a texture region in the image. An easy remedy 
is to cease standardizing the rotated decorrelated compo- 
nents after a specified number of iterations while contin- 
uing with the standard KLT instead. 

An advantage of the AMDT over the KLT is that the 
eigensolutions of (12) are almost always ordered accord- 
ing to their discriminative power. This is not necessarily 
the case for the KLT, as observed in the second example. 
A demonstration of this property of the AMDT is possible 
i f ,  in addition to the two basic assumptions of Section 
111-B, we assume that the ratios between all paired separ- 
ability measures at iteration steps i and j are constant: 
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P i ‘ ) / f l i ’ )  = (y 2 1 ,  k = 1,  . . . , M .  For a half octave 
scale progression, the proportionality factor a is approx- 
imately 2.  By using ( 1 3 ,  the eigenvalues of (12), { Xi ,  k 
= I ,  M ), are thus related to their corresponding optimal 
between-within variance ratios { /3 j i  ), k = 1, M } by 

(21) 
P,! + 1 A; =-. 
P k  + 

Since dhf /d /3  > 0 for any 0, X’  is a strictly increasing 
function of o f ,  which implies that the hi’s will be ordered 
according to their decreasing p i i ) ’ s .  

To illustrate the performance of our procedure, we have 
only shown examples with two image regions. When there 
are more than two distinct textures in an image, the 
AMDT described in Section 111-B is still applicable and 
we have had no difficulty in using it with 3-4 regions of 
approximately the same size. We have also found that the 
efficiency of this approach relates to the size in pixels of 
these regions and we are still actively pursuing the matter. 
For images with more than two regions, the number of 
components contributing to class separability is usually 
greater than 1 and can be determined by retaining only 
those with eigenvalues greater than a threshold l / a ,  
which is the expected energy reduction obtained with 
noise only and is obtained by substituting (3 = 0 in (21). 
Segmentation based on simple thresholding of a single re- 
duced component, as described in Section 111-C, is then 
usually not the most efficient approach and more refined 
clustering algorithms operating in a higher dimensional 
space should be used instead. 

V .  CONCLUSION 
This paper has described an approach for the segmen- 

tation of textured images. The first step of processing in- 
volves the extraction of pixel neighborhood properties 
using a local linear transformation, which is equivalent to 
processing the image with a bank of FIR filters. Subop- 
timal convolution operators are obtained from the basis 
vectors of the local discrete sine or Hadamard transforms. 
Local texture “energy” measures corresponding to var- 
ious levels of resolution are thereafter estimated using an 
iterative Gaussian smoothing procedure with a half octave 
scale progression. Linear feature reduction is achieved by 
diagonalizing simultaneously the scatter matrices at two 
successive level of spatial resolution. This procedure en- 
ables a satisfactory segmentation of a variety of textured 
images by using a single reduced component. This ap- 
proach should be useful in many practical applications, 
on account of its good performance, its flexibility and its 
highly parallel structure. 

The multiresolution feature reduction technique that has 
been presented has been shown to be more powerful than 
the conventional Karhunen-Lokve transform. It usually 
provides a closer approximation to the optimal linear mul- 
tiple discriminant functions, especially for small estima- 
tion windows. Furthermore. it produces a reduced feature 
set which, unlike the KLT, is ordered with decreasing dis- 
crimination power. 

Insofar as segmentation is concerned, we have consid- 
ered only the simplest approach based on the thresholding 
of a reduced component. The threshold is selected by 
maximizing an objective criterion of separability. The 
current approach could be potentially improved by using 
more sophisticated schemes such a coarse-to-fine strategy 
to refine the location of the texture edges or relaxation 
labeling techniques. An open problem that is still under 
investigation is the unsupervised determination of the op- 
timal window size for minimum error segmentation. 
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