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Theory of the Optimally Coupled Q-Switched Laser 
JOHN J. DEGNAN 

Abstract-The general equations describing Q-switched laser oper- 
ation are transcendental in nature and require numerical solutions. 
This greatly complicates the optimization of real devices. In this paper, 
we demonstrate that, using the mathematical technique of Lagrange 
multipliers, one can derive simple analytic expressions for all of the 
key parameters of the optimally coupled laser, i.e., one which uses an 
optimum reflector to obtain maximum laser efficiency for a given pump 
level. These parameters (which include the optimum reflectivity, out- 
put energy, extraction efficiency, pulsewidth, peak power, etc.) can all 
he expressed as functions of a single dimensionless variable z ,  defined 
as the ratio of the unsaturated small-signal gain to the dissipative (non- 
useful) optical loss, multiplied by a few simple constants. Laser design 
tradeoff studies and performance projections can he accomplished 
quickly with the help of several graphs and a simple hand calculator. 
Sample calculations for a high-gain Nd :YAG and a low-gain alexan- 
drite laser are presented as illustrations of the technique. 

I. INTRODUCTION 
HE equations describing the operation of rapidly Q- T switched lasers were first derived over two decades 

ago [ 11, [2]. The Q-switched laser problem involves the 
simultaneous solution of two coupled differential equa- 
tions for the time rates of change of the population inver- 
sion density and the internal photon density in the reso- 
nator. Subsequent textbook descriptions of the theory [3] 
provided approximate expressions for parameters which 
are more directly useful to the laser engineer-such as 
laser energy, peak power, pulse duration, etc. Unfortu- 
nately, these equations are expressed in terms of the ini- 
tial and final population inversion densities which depend 
not only on the particular choice of output coupler, but 
which are also related via a cumbersome transcendental 
equation. Thus, in order to optimize a given laser for 
maximum efficiency, it is generally necessary to obtain 
numerical solutions on a computer. 

In Appendix A, we provide a complete and consistent 
derivation of the fundamental Q-switched equations in or- 
der to clarify some of the assumptions and notation in ear- 
lier treatments and to derive some expressions for key de- 
vice parameters which are useful to the laser engineer. In 
Section I1 of the present paper, we consider the theoretical 
problem of choosing the optimum output coupler reflec- 
tivity which maximizes the output energy and hence the 
laser efficiency at a particular pump level. We demon- 
strate that, using the mathematical technique of Lagrange 
multipliers, one can derive simple analytic expressions for 

all of the key parameters (optimum reflector, output en- 
ergy, extraction efficiency, pulsewidth, peak external and 
internal powers, etc.) which describe the optimally cou- 
pled laser. The aforementioned optimized laser parame- 
ters can be expressed as functions of a single dimension- 
less variable 2 ,  defined as the ratio of the unsaturated 
logarithmic small-signal gain to the dissipative (nonuse- 
ful) optical loss, multiplied by a few simple and easily 
accessible constants. In Section 111, we present several 
design curves which are useful to laser design and/or the 
projection of potential laser performance. The specific ex- 
amples of Q-switched Nd : YAG and alexandrite lasers are 
considered to illustrate the use of the design curves. 

11. THEORY OF THE OPTIMALLY COUPLED &-SWITCHED 
LASER 

As illustrated in Appendix A, the rapidly Q-switched 
laser problem reduces to the simultaneous solution of two 
coupled differential equations for the photon density 4 and 
the population inversion density n given by 

d4 2unl4 4 
dt tr t c  

t 1) - 

and 

In the latter equations, U is the stimulated emission cross 
section, 1 is the length of the laser medium, c is the speed 
of light, tr = 21‘/c is the roundtrip transit time in the laser 
resonator of length l‘,  and y is an “inversion reduction 
factor” discussed at length in Appendix B. The quantity 
t ,  in (1) is the photon decay time defined by 

(3 )  

where R is the output mirror reflectivity and L is the 
roundtrip dissipative optical loss defined by (A.2) in Ap- 
pendix A. An expression for the laser output pulse energy 
is derived in Appendix A, i.e., 

(4) 
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where hv is the laser photon energy and A is the effective 
beam cross-sectional area. As can be seen in the deriva- 
tion presented in Appendix A, (4) is an exact result to the 
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extent that the time dependence of the spatially averaged 
photon density in the resonator is truly described by the 
fundamental Q-switch equations (1) and ( 2 ) .  In situations 
where there is a strong longitudinal variation in photon 
density brought about by high gain or high transmission 
losses, deviations from this result might be expected. The 
initial and final population inversion densities ni and nfare 
related by the usual transcendental equation 

ni - nf = n, In (2) 
where n, is the population inversion density at threshold. 
It is of great practical interest to determine the value of 
the output mirror reflectivity which maximizes the output 
energy of the Q-switched laser, and hence the efficiency, 
for a given initial inversion density n;. The inversion den- 
sity is usually linearly proportional to the pump excitation 
rate-at least prior to significant pump saturation or the 
onset of parasitic amplified stimulated emission (ASE).  It 
will now be demonstrated that, in spite of the transcen- 
dental nature of ( 5 ) ,  simple analytic expressions can be 
obtained for all of the aforementioned parameters of the 
optimally coupled laser using the Lagrange multiplier 
technique. 

We begin by defining the new variables 

x = ln (k) 
nf y = -  
ni 

where we recognize the quantity on, as the unsaturated 
small-signal gain coefficient go and we have defined a new 
dimensionless parameter z, corresponding to the ratio of 
the roundtrip small-signal gain to roundtrip dissipative 
loss. Substituting (lob) into ( 8 )  and solving for x yields 
an expression related to the optimum reflectivity which 
depends only on the dissipative optical loss L and the gain 
to dissipative loss ratio z ,  i.e., 

with the optimum output coupler reflectivity given by 

Equation (1 la) is plotted in Fig. 1 .  
We can now express all of the important parameters of 

the optimized Q-switched laser as relatively simple aha- 
lytic functions of the dimensionless parameter z multi- 
plied by a few easily obtained constants. Substitution of 
(lob) and (1 la) into (7) yields a simple expression for the 
optimized output energy, i.e., 

AhvL 
Emax = - [ z  - 1 - l n z ]  

2oY 
which is plotted in Fig. 2. In the limit of large z ,  the out- 
put energy approaches the total useful energy stored in the 
rod given by 

. (13) E, = lim E,,, = - z = -  AhvL Vhvn; 
Z+CO 207 Y 

Thus, one can define an energy extraction efficiency 

(14) 
Emax ( 1  + In z) 
E, Z 

n&) = - = 1 - which, when substituted in (4), yield 
V h V  

2orl (7)  plotted in Fig. 3. Fig. 3 makes it clear that, beyond the E ( x , y )  = - - x l n y  

choice of an optimum codpler, laser efficiency can only 
be improved by increasing z. This can be accomplished 
either by 1) reducing the dissipative loss L ,  or 2)  increas- 

where v = AZ is the active gain volume. With the help of 
( A . 8 ) ,  (5) then becomes the constraint equation 

( x  + L )  In y ing and/or further concentrating the pump energy within 
the active mode volume. It is also interesting to note that ( 8 )  v, (x7 Y )  = 1 - Y + 2on;l = 0. 
the laser is over 80 percent efficient for z values greater 

still more pump energy. 

Using the Lagrange method 1 4 i 7  we now wish than 20 and increases only slowly with the depdsition of to solve the simultaneous equations 

aE aQ 
- + A - = O  
ax ax 

and 
aE av, 

ay ay 
- + A - = o  

Substituting ( l l a )  in ( A . 8 ) ,  we obtaih a simple expres- 
sion for the threshold inversion density in the optimally 
coupled laser, i.e., 

L 1  - - - 
L 

y = m - - - -  2gol - 2 
[z - [cl[ 1 + In (%)]I (16) 
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Fig. I .  The optimized laser coupling parameter x , , ~ (  expressed in units of 
the two-way dissipative loss L defined by (A.2). The optimum mirror 
reflectivity is given by R,,,, = exp [ - x ~ , ~ , ]  where x , , ~ ,  is the graph value 
multiplied by L. 
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Fig. 2 .  The output energy of the optimally coupled laser E,,, expressed 
in units of E,,,,, = A h z ~ L / 2 u y  where A is the average beam cross-sec- 
tional area in the laser media, hv is the photon energy, U is the stimulated 
emission cross section, y is the inversion reduction factor, and L is the 
two-way dissipative optical loss. 
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Fig. 3 .  The extraction efficiency of the optimally coupled laser expressed 
as a function of the dimensionless parameter z .  

and the FWHM pulsewidth: 

Fig. 4 .  The peak power P,,, of the optimally coupled laser expressed in 
units of P,,,,, = h v A L 2 / 2 u y r ,  where h v  is the photon energy, L is the 
roundtrip dissipative optical loss, U is the stimulated emission cross sec- 
tion, y is the inversion reduction factor, and r ,  is the roundtrip cavity 
transit time. This curve can also be used in conjunction with Fig. I and 
(17a) and (17b) to compute the peak two-way internal circulating power 
at the output mirror and rear reflector. 
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L 

Fig. 5 .  The FWHM pulsewidth of the optimally coupled laser in units of 
t , /L  where t ,  is the roundtrip cavity transit time and L is the two-way 
dissipative optical loss. 

The latter two equations are plotted in Figs. 4 and 5,  re- 
spectively. Figs. 1 and 4 can also be used to calculate the 
intracavity intensities at the output and rear reflectors via 
(A. 17a) and (A. 17b), respectively. 

111. USING THE DESIGN CURVES: Nd:YAG A N D  

ALEXANDRITE EXAMPLES 
Figs. 1-5 provide useful normalized design plots of the 

optimum coupling parameter, maximum output energy, 
extraction efficiency, peak power, and FWHM pulse- 
width. A typical design sequence would be to first read 
the minimum value of z necessary to achieve a certain 
laser output energy from Fig. 2 .  The value of the coupling 
parameter xOpt (or, equivalently, the optimum mirror re- 
flectivity) corresponding to that value of z can then be 
read off the ordinate of Fig. 1. This combination of pump 
level and mirror reflectivity represents the most efficient 
means of generating the desired laser energy for a given 
laser beam cross section A and optical dissipative loss L. 
The corresponding extraction efficiency can be read from 
Fig. 3 .  Clearly, the nonuseful loss L and pumping volume 
should be reduced to their smallest possible values in or- 
der to achieve maximum laser efficiency. The values for 
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peak power and pulsewidth associated with the optimized 
laser can be read directly from the ordinates of Figs. 4 
and 5 ,  respectively. Figs. 1 and 4 can also be used to 
obtain the peak circulating power inside the laser. 

As an illustration of the technique, we consider the most 
efficient design of a multimode Nd: YAG laser having a 
modest output energy of E = 50 mJ. We first compute 
Escale = AhvL/2uy. Three of the constants depend on the 
laser material itself, i .e.,  the laser photon energy hv = 
1.87 x J,  the spectroscopic stimulated emission 
cross section U = 6.5 X cm2 (from [5]), and y = 
1.3 (see Appendix B). If we assume a 2 mm radius mul- 
timode beam and a two-way dissipative loss of 4 percent, 
we obtain AL = ~ ( 0 . 2  ~ m ) ~ ( 0 . 0 4 )  = 0.005 cm2 and 
Escale = 0.55 mJ. We now compute the ratio E / E s c a l e  = 
90.9 and read the corresponding value of z = 90 off the 
abscissa in Fig. 2. The logarithmic single-pass small-sig- 
nal gain necessary to achieve this energy is given by gol  
= zL/2 = 90(0 .04) /2  = 1.8, corresponding to a power 
gain Go = exp ( gol  ) = 6.05. Reading off the ordinate of 
Fig. 3, we obtain an energy extraction efficiency of about 
91 percent. From Fig. 1, the value of the coupling param- 
eter xOpt corresponding to z = 90 is xOpt = 18.7L = 
18.7(0.04) = 0.75, which when substituted into ( l l ) ,  
yields an optimum output mirror reflectivity of 47 per- 
cent. From Fig. 5 ,  the FWHM laser pulsewidth is tp = 
O.ll(t , /L) = 2.8tr = 5.6 ns if we assume a nominal 30 
cm long cavity. From Fig. 4,  the peak power in the laser 
pulse is P,,, = 800 Pscale where Pscale = hvAL2/2uyt, = 
1.11 X lo4 W. Thus, P,,, = 800( 1.11 x lo4 W )  = 8.85 
MW. Using (A.17a) and (A.17b) in Appendix A and the 
value R = 0.47 obtained earlier from Fig. 1 ,  we can also 
compute the two-way peak circulating powers internal to 
the laser, i .e.,  PR = 2.77Pm,, = 24.5 MW at the output 
coupler and P R ,  = 2.58Pm,, = 22.9 MW at the rear re- 
flector. With the beam area assumed at the outset, the 
average two-way circulating intensity is about 189 
MW / cm2. 

We could have computed the peak laser power directly 
from the original energy and pulsewidth, i.e.,  P,,, = 
0.050 J /5 .6  X s = 8.9 MW without resorting to 
Fig. 4. However, one might want to design a laser which 
gives a particular peak power for a nonlinear optics ex- 
periment. In this instance, one could work backwards 
starting with Fig. 4 to determine a minimum z and then 
reading parameters off the other figures. One can also 
compute the maximum energy achievable with a particu- 
lar small-signal gain (pump level). Whatever constraint 
one applies, an optimally coupled (maximum efficiency) 
configuration satisfying that constraint results. 

Nd : YAG has a relatively high stimulated emission 
cross section compared to other solid-state materials such 
as Nd: glass and alexandrite, and it is worthwhile to il- 
lustrate the different results one gets with a lower gain 
medium. In this example, we will assume the same output 
energy, beam cross section, and dissipative loss for an 
alexandrite laser operating at 727 nm-well off the peak 
of its gain curve at 755 nm. Using hv = 2.73 x J,  

an effective stimulated emission cross section U* = 1.1 
x lo-*’ cm2 (from [6]), and an effective inversion reduc- 
tion factor y* = 1.02, we compute Escale = 61 mJ. The 
reader is referred to Appendix B for a discussion of effec- 
tive cross sections and inversion reduction factors as it 
pertains to alexandrite. Thus, E/Escale = 0.82 and we ob- 
tain z = 2.7 from Fig. 2. Fig. 3 yields an extraction ef- 
ficiency of only 26 percent. Fig. 1 yields xOpt = 0.715 = 
0.028, corresponding to an optimum reflectivity of R = 
97.2 percent. From Fig. 5 ,  the FWHM pulsewidth is t,, 
= 6t,/L = 300 ns and the peak power is 0.16 MW from 
Fig. 4. The internal circulating power is about 11 MW 
and the circulating intensity is 87 MW/cm2. 

Since the low-gain material has a higher value of Escale, 
operation at a given energy will occur for a smaller value 
of z ,  as can be easily seen from Fig. 2. Similarly, the 
remaining figures imply that the low-gain medium will be 
characterized by higher optimum mirror reflectivities, 
lower extraction efficiencies, longer pulsewidths, and 
lower internal circulating powers. 

IV. CONCLUSION 
In Appendix A, we have rederived the fundamental Q- 

switch equations and demonstrated the manner in which 
various device parameters of interest to the laser engineer 
can be computed from them. In Appendix B, we have ex- 
amined the dependence of the “inversion reduction fac- 
tor” on the magnitudes of the various level relaxation and 
sublevel thermalization rates relative to the Q-switched 
pulsewidth and discussed the use of effective versus spec- 
troscopic cross sections. In the main body of the paper, 
we have demonstrated that, in spite of the transcendental 
nature of the basic equations, simple analytic formulas 
can be derived for the key parameters of the optimally 
coupled laser. These equations are functions of a single 
dimensionless parameter z = 2uni Z/L multiplied by eas- 
ily obtained physical constants. Using the design curves 
presented in this paper and a simple hand calculator, one 
can develop maximum efficiency Q-switched laser de- 
signs and analyze their properties in minutes. 

APPENDIX A 
DERIVATION OF THE FUNDAMENTAL &-SWITCHED 

EQUATIONS 
We define 4 ( t , )  as the spatially averaged photon den- 

sity in the laser resonator at time t, = mt, where t ,  = 
21‘/c is the roundtrip transit time of light in the resonator. 
The photon density is actually the sum of two longitudi- 
nally varying components traveling in opposite directions 
within the resonator. The photon density at time = 

( m  + 1 ) t ,  after an additional roundtrip through the res- 
onator is given by 

2 o n ( r m ) /  -2011 4(4n+l) = 4(t,)e e mrII T; ( A . I )  
I 

where R is the output mirror reflectivity, R’ is the reflec- 
tivity of the rear mirror, T, is the one-way optical trans- 
mission of the ith internal element, U is the stimulated 
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emission cross section, n ( t , )  is the instantaneous popu- 
lation inversion density, 1 is the laser rod length, and a is 
the total loss coefficient in the laser rod. The latter coef- 
ficient is the sum of linear absorption and scattering com- 
panents. 

Taking the natural log of (A.l) and defining the dissi- 
pative (nonuseful) optical loss by 

L = 2al + In 
i 

we may write 

= 2an(c,)Z - [In (k) + L ] .  (A.3) 

Since the integer m is actually a time scale normalized to 
the cavity roundtrip transit time, i.e., m = t / t r ,  the time 
rate of change of the photon density is given by 

d+ d l n +  + A l n 4  
-=+TI-- dt c, Am 

I 

(A.4) 

where we have defined a photon decay time given by [3] 

The equation for the time rate of change of the population 
inversion density is now assumed to be of the form 

dn 
- = -yac+n 
dt 

where 0 I y I 2 has been called a “degeneracy factor” 
by Koechner [3], but is best described as an “inversion 
reduction factor” since it really corresponds to the net 
reduction in the population inversion resulting from the 
stimulated emission of a single photon. As discussed in 
Appendix B, the value of y depends not only on the level 
degeneracies, but also on the speed of the various relax- 
ation mechanisms in the laser medium relative to the 
buildup time of the Q-switched laser pulse. 

We eliminate time in the usual way [3] by taking the 
quotient of (A.5) and (A.6) to obtain the differential equa- 
tion 

(‘4.7) 

The threshold inversion n, is obtained by setting the left- 
hand side of (A.4) equal to zero, i.e., 

Equation (A.7) has the solution 

+ ( t )  = T ni - n ( t )  - n,ln 
1-f ‘ I  

From (A.9), the two-way photon density in the resonator 
reaches a peak value of 

when the population inversion density reaches its thresh- 
old value ( n ( t )  = n,). 

At the end of the pulse, the photon density is again zero. 
Thus, setting the left-hand side of (A.9) equal to zero 
yields the usual transcendental equation which relates the 
initial and final population inversion densities ni and nf ,  
i.e. [3], 

( A . l l )  

which must be solved numerically. From (A.4), we ob- 
tain the instantaneous power coupled from the cavity by 
the output mirror 

hvAl’ In P \  z 

where hv is the photon energy and Al‘ is the resonator 
volume occupied by the photons. 

The peak power external to the laser is easily obtained 
by substituting (A. 10) into (A. 12), i.e., 

P,,, = In ( ; ) i n j  - n,[ 1 + In (:)I]. (A.13) 
ytr 

To calculate the laser output energy, we first integrate 
(A. 12) over time from zero ( Q-switch transition) to infin- 
ity, change the variable of integration from time to pop- 
ulation inversion density through the use of (A.6), and 
perform the simple integral to obtain 

(A .  14) 
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Using (A.8) and (A. 1 l) ,  one can convert the latter expres- 
sion to the form given (but not derived) by Koechner [3], 
i.e., 

1 E = -  
^, 

(A.15) 
1 

-l 
E = - I/hv(nj - nf) ,, , 

In (i) + L 

where V = AZ is the effective mode volume in the laser 
rod. 

If we assume that the shape of the output pulse can be 
reasonably approximated by an asymmetric triangle of 
height P,,,, baseline width tb ,  and area E ,  an approximate 
expression for the FWHM pulsewidth is 

- -  t b - - = t  E ( 4  - nf) - -  

Because of its relevance to the optical damage problem, 
the peak two-way circulating intensity within the resona- 
tor is also of great interest to the laser engineer. The peak 
two-way power at the output mirror is clearly 

PR = - +-= RPmax (i  - 1 :)Pmax (A.17a) 
1 - R  1 - R  

where P,,, is the peak power external to the cavity given 
by (A. 13). Since the net gain in the resonator is zero at 
the point of maximum power, the circulating power ex- 
periences a one-way amplification of 1 / &. Therefore, 
if we assume that the reflectivity of the rear mirror is near 
unity, it can be readily shown that the peak two-way 
power at the rear reflector is given approximately by 

7 - 
P,,,. (A. 17b) 

(1  + R ' ) J R  2 J R  
P p  = Pmax - I - R  I - R  

APPENDIX B 
INVERSION REDUCTION FACTOR 

The population inversion density is given by 

n = n, - nb 

where, in a fairly general laser medium, the rate equations 
for the population densities of the upper and lower laser 
levels can be represented by [7] 

(B. 1)  

(B.3 1 
respectively. In the latter equations, A, and Ab are the 
pump rates, y, and yb  are the relaxation rates for the upper 

and lower multiplet states, yu and y1 are the thermalization 
rates within the upper and lower multiplet states, nu and 
nI are the instantaneous population densities in the upper 
and lower multiplets, fanu and fbnl are the Boltzmann 
equilibrium population densities of the upper and lower 
laser levels, and the final terms depending on q5 represent 
the stimulated emission terms. 

In a solid-state laser such as Nd : YAG, ya and yb would 
represent the relaxation rates of the 4F3/z and 4Z11 /2  mul- 
tiplets, respectively, whereas yu and yI are the thermal- 
ization rates within these multiplets. In our Nd : YAG ex- 
ample, the fluorescence lifetime of the upper laser multi- 
plet is 230 ps, the relaxation time of the lower laser mul- 
tiplet is about 300 ns, and the thermalization times within 
the multiplets are on the order of 12 ns [7]. 

In a molecular gas laser such as COz, y a  is the relaxa- 
tion rate of the 001 vibrational state, while y b  is the re- 
laxation rate of the 100 or 020 vibrational states for the 
10.6 and 9.6 pm transitions, respectively. Cheo [8] has 
shown that thermalization rates (thermalization times) 
among the rotational sublevels vary approximately lin- 
early (inversely) with operating pressure according to lo7 
p / s  . torr ( torr/p) wherep is in torr. The rates 
also vary somewhat with temperature and gas mixture. 

We will now investigate, for a general laser medium, 
the conditions under which the equation for the time rate 
of change of the population takes the requisite form in 
(A.6) in Appendix A. 

If one makes the common textbook assumption [9] that 
the spontaneous emission, pump, relaxation and thermal- 
ization rates are all slow relative to the @switch buildup 
time, we obtain 

s 

an 
at 
- 2: -2acnq5 

for the time rate of change of the population inversion 
density. The value y = 2 in (B.4) reflects the fact that the 
population inversion is reduced by two for each stimu- 
lated emission of a photon because, in the absence of rapid 
relaxation mechanisms, the emitting atom remains trapped 
in the lower laser level during the remainder of the pulse 
buildup. (In Nd : YAG, this value of y would only be valid 
for pulses much shorter than 12 ns.)  

If, on the other hand, the lower multiplet (or single 
level) relaxes very rapidly relative to the @switched 
pulsewidth ( t b  << t p ) ,  the instantaneous population of 
the lower laser level is negligible. We then have 

or y = 1 since the population inversion density is only 
reduced by one for each photon emitted. 

If lower multiplet relaxation is slow but thermalization 
times within the upper and lower multiplet states are rapid 
relative to the Q-switch pulsewidth ( t ,  << tp << t b ) ,  the 
lower state bottleneck is partially removed. Furthermore, 
the upper state population is refreshed by the thermal- 
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ization process. Under these conditions, the total popu- 
lation of the upper and lower multiplets is conserved, but 
the instantaneous population densities of individual levels 
follow Maxwell-Boltzmann statistics. Thus, we have 
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= - ( f u  +fb)ucn+ (B.6) 
or y = ( f, + fb) where f, and f b  are the Maxwell-Boltz- 
mann probabilities for the upper and lower laser levels, 
respectively. 

In Nd:  YAG at 300 K ,  f, = 0.41 andfb = 0.19, imply- 
ing y = 0.6 for Q-switched pulsewidths satisfying the 
condition 12 ns << tp << 300 ns. A value of y less than 
unity reflects the fact that the upper state population is 
refreshed by the thermalization process. For pulsewidths 
on the order of the 12 ns thermalization time, an inter- 
mediate value is probably appropriate, i .e.,  0.6 < y < 
2. 

One often defines an “effective cross section” as the 
product of the upper level Boltzmann factor and the spec- 
troscopic cross section, i .e. ,  U* = f,u. For example, in 
Nd : YAG, the spectroscopic cross section for the individ- 
ual transition between Stark sublevels has been recently 
measured [ 5 ]  to be u ( R 2  - Y,) = 6.5 x cm2. At a 
temperature of 295 K,  the Maxwell-Boltzmann fraction 
in the upper Stark sublevel is 0.427, implying an effective 
cross section for Nd:  YAG of u * ( ~ F ~ / ~  - Z11/2) = 2.8 
X cm2. When the effective, rather than the spectro- 
scopic, cross section is used, an effective excited state 
population density n* given by 

4 

n* = - n = ( n u  - E n , )  f b  

f, 
must be substituted for n in the fundamental Q-switch 
equations and in computing the small-signal gain coeffi- 
cient or the dimensionless parameter z .  For Nd : YAG, nu 
and n/ are the total population densities in the 4F3/2 and 
4Z1 I l2 manifolds, respectively. 

The concept of an effective cross section is especially 
important in complex vibronic laser media such as alex- 
andrite where individual Stark splittings are difficult or 
impossible to resolve. Walling et al. [6]  have applied the 
McCumber theory of phonon-terminated lasers [ 101 to the 

alexandrite medium to obtain an expression for the laser 
gain given by 

g& E )  = u,*,(l, E ) [ N *  - ( N  - N * )  

exp [ ( E  - E * ) / k B T ] ]  (B.8) 

where u,*(ff,  E )  is the effective cross section for radiation 
with energy E ,  unit wave vector 6, and polarization A,  N * 
is the total excited state population density, N is the chro- 
mium ion concentration, kB is Boltzmann’s constant and 
E * is a slightly temperature-dependent effective zero- 
phonon level which has a numerical value of 14701 cm-‘ 
for T = 300 K. The quantity ( N  - N * )  is the total pop- 
ulation density in the ground state manifold, and it is eas- 
ily shown from (B.7) and (B.8) that an “effective inver- 
sion reduction factor” for alexandrite is given by 

fb 
AI 

y* = 1 + - = 1 + exp [ ( E  - E * ) / k B T ] .  (B.9) 
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