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Improved Technique for Determining 
Complex Permittivity with the 

Transmission /Reflection Met hod 

Abstract -The transmission/reflection method for complex permittiv- 
ity and permeability determination is studied. The special case of 
permittivity measurement is examined in detail. New robust algorithms 
for permittivity determination that eliminate the ill-behaved nature of 
the commonly used procedures at frequencies corresponding to integer 
multiples of one-half wavelength in the sample are presented. An error 
analysis is presented which yields estimates of the errors incurred due to 
the uncertainty in scattering parameters, length measurement, and 
reference plane position. In addition, new equations are derived for 
determining complex permittivity independent of reference plane posi- 
tion and sample length. 

I. INTRODUCTION 
ROAD-BAND measurements of complex permittiv- ,B ity and permeability are required for a multitude of 

applications. Due to its relative simplicity, the transmis- 
sion/reflection (TR) method is presently a widely used 
broad-band measurement technique. The relevant litera- 
ture in this area is copious and no attempt is made in this 
paper to review it exhaustively. A measurement using the 
TR method proceeds by placing a sample in a section of 
waveguide or coaxial line and measuring the two-port 
complex scattering parameters, preferably by an auto- 
matic network analyzer (ANA). The scattering equations 
then relate the measured scattering parameters to the 
permittivity and permeability of the material. The system 
of equations contains as unknowns the complex permittiv- 
ity and permeability, the calibration reference plane posi- 
tions, and, in some applications, the sample length. This 
system of equations is generally overdetermined and 
therefore can be solved in various ways. From a pragmatic 
viewpoint, what is needed are equations that are stable 
over the frequency range of interest and equations that 
do not depend on the position of the calibration reference 
plane. 

With the development of modern network analyzer 
systems there is generally no paucity of data; thus correct 
and efficient numerical algorithms for the reduction of 
the scattering data are of paramount importance. To 
accommodate modern network analyzer acquisition sys- 
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tems, Nicolson and Ross [l] and Weir [21 introduced 
procedures for obtaining broad-band measurements in 
both time and frequency domains. In the Nicolson-Ross 
procedure, the equations for the scattering parameters 
are combined in such a fashion as to allow the system of 
equations to decouple, yielding an explicit equation for 
the permittivity and permeability as a function of the 
scattering parameters. This solution has formed the basis 
of the commonly utilized technique for obtaining permit- 
tivity and permeability from scattering measurements 
[3 ] - [5 ] .  The compact form of these equations, while ele- 
gant, is not well behaved for low-loss materials at fre- 
quencies corresponding to integer multiples of one-half 
wavelength in the sample. At these frequencies the solu- 
tion for low-loss materials is divergent. Many researchers 
have bypassed this problem by using samples which are 
less than one-half wavelength long at the highest mea- 
surement frequency. However, this approach, as shown 
later in the paper, severely limits the viability of the TR 
method since short samples increase measurement uncer- 
tainty. 

Stuchly and Matuszewski [6] presented a slightly differ- 
ent derivation from that of Nicolson and Ross and ob- 
tained two explicit equations for the permittivity. They 
showed that one of these equations was ambiguous;, the 
other equation was similar to the Nicolson-Ross equation 
which is unstable for low-loss materials at multiples of 
one-half integer wavelengths. Ligthardt [7], in a detailed 
analysis, presented a method for shorted line measure- 
ments where the scattering equations for the permittivity 
were solved over a calculated uncertainty region and the 
results were then averaged. The equations used by Ligth- 
ardt are useful for high-loss materials, but for low- 
loss materials they suffer the same pathologies as the 
Nicolson-Ross [l] and Weir [2] equations at multiples 
of one-half wavelength. It can be shown that the Nicolson- 
Ross-Weir solution for combined permeability and per- 
mittivity for low-loss materials is inherently divergent at 
integer multiples of one-half wavelength in the sample. In 
this paper we present a procedure for obtaining complex 
permittivity from the scattering equations which is stable 
over the frequency spectrum. This procedure minimizes 
the instability of the Nicolson-Ross-Weir equations by 
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A dielectric sample in a transmission line and the incident (inc) 

and reflected (refl) electric field distributions in regions I ,  11, and 111. 
Port 1 and port 2 denote calibration reference plane positions. 

Fig. 1 .  

setting k.*R = 1. This new procedure allows measurements 
to be taken on samples of arbitrary length. 

Another problem encountered in practice is the trans- 
formation of S-parameter measurements from the cali- 
bration reference planes to the ends of the sample. This 
transformation requires knowledge of the position of the 
sample in the sample holder; however this information 
may be limited in many applications. The port extension 
feature of network analyzers is of some help in determin- 
ing reference plane position, but does not completely 
solve the problem. Equations that are independent of 
reference plane positions are desirable. Also, equations 
that are independent of sample length are useful for 
high-temperature applications. In the past, other authors 
addressed the problem of either reference plane invari- 
ance or sample length invariance, for example Altschuler 
[81, Harris [91, and Scott [lo], but no one, to our knowl- 
edge, has addressed the problem of combined reference 
plane and sample length invariance. 

The goal of this paper is threefold: first, to examine the 
scattering equations in detail and to present an improved 
method for solving the transmission line equations in an 
iterative fashion with application to permittivity measure- 
ments; second, to derive scattering equations that are 
simultaneously invariant to the position of the reference 
planes and sample length; and, third, to present an uncer- 
tainty analysis for this new procedure. 

11. THEORY 
In the TR measurement technique, a sample is inserted 

into either a waveguide or a coaxial line and the sample is 
subjected to an incident electromagnetic field (see Fig. 1). 
The scattering equations are found from an analysis of 
the electric field at the sample interfaces. If we assume 
electric fields E, ,  E,,, and E,,, (with a time dependence 
of exp( ju t ) )  in the regions I, 11, and 111, we can write the 
spatial distribution of the electric field where the incident 
electric field is 1: 

where 

P = [ P Z  - ~ P % I P ~  = 1 1 2 ~ ~ .  (7) 

Here, j = a ,  cVac and clah are the speed of light in 
vacuum and in air respectively, w is the angular fre- 
quency, A, is the cutoff wavelength, eo and po are the 
permittivity and permeability of vacuum, E ;  and pg are 
the complex permittivity and permeability relative to a 
vacuum, and yo and y are the propagation constants in 
air and the material respectively. The constants Ci are 
determined from the boundary conditions. The boundary 
condition on the electric field is the continuity of the 
tangential component at the interfaces. The boundary 
condition on the magnetic field requires the assumption 
that no surface currents are generated. If this condition 
holds, then the tangential component of the magnetic 
field is continuous across the interface. The tangential 
component of the magnetic field can be calculated from 
Maxwell's equations. 

For a two-port device the expressions for the measured 
scattering parameters are obtained by solving (1)-(3) sub- 
ject to the boundary conditions. Since the S matrix is 
symmetric, SI, = S21. The explicit expressions are given by 

(9) 

where 

where L ,  and L ,  are the distances from the calibration 
reference planes to the sample ends, and R ,  and R ,  are 
the reference plane transformation expressions. Of course, 
(81410) are not new and are derived in detail elsewhere 
[ 11, [ 111. We define a reflection coefficient by 

Yo Y _ - _  
Po P 
Yn Y 

r=- 
-+ -  
Po I*. 

and for coaxial line (w,  + 0) the reflection coefficient 
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reduces to ,..+ 'lab 

r =  

We also have an expression for z ,  the transmission coeffi- 
cient: 

z = exp( - yL)  (15) 
where L is the sample length. We assume that we know 
the total length of the sample holder: Lair = L + L ,  + L,. 
Additionally, S,, for the empty sample holder is 

S;,= R,R,exp(-y,L) .  (16) 
For nonmagnetic materials, (81, (9), and (10) contain eh, 
E ; ,  L, and the reference plane transformations R I  and 
R2 as unknown quantities. Since the equations for SI, 
and S2, are equivalent for isotropic materials, we have 
four complex equations, (81, (91, (101, and (161, plus the 
equation for the length of the air line or equivalently, 
nine real equations for the five unknowns. Additionally, 
in many applications we know the sample length. For 
magnetic materials we have seven unknowns. Thus, the 
system of equations is overdetermined and it is possible to 
solve the equations in various combinations. As an exam- 
ple, in nonmagnetic materials if the position of the refer- 
ence planes is not known accurately, then L, and L, can 
be eliminated from the equations to obtain equations that 
are reference-plane invariant. There exists a whole family 
of reference-plane independent equations and only the 
most useful are given below as examples: 

(21) 

Here the vertical bar denotes the magnitude of the com- 
plex expression. Equation (19) is valid only for coaxial 
line. Equation (21) is the determinant of the scattering 
matrix; the determinant is well known as a quantity in- 
variant to rotations. 
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Fig. 2. The determination of the permittivity of a PTFE sample as a 
function of frequency using the Nicolson and Ross equations (solid 
line) and the iteration procedure (dashed line) (eq. (21)). 

Nicolson and Ross [l] and also Weir 121 combined the 
equations for SI, and S,,, (8) and (lo), and discovered an 
explicit formula for the permittivity and permeability. The 
solution of these equations, however, is not totally 
straightforward in that an ambiguity in phase must be 
resolved at each frequency by matching calculated and 
measured group delay. Also, this procedure does not 
work well at frequencies where the sample length is a 
multiple of one-half wavelength in the material. Typical 
results calculated from the Nicolson-Ross-Weir [ll, [2] 
equations are displayed in Fig. 2 as the solid line. At 
frequencies corresponding to integer multiples of one-half 
wavelength in low-loss materials the scattering parameter 
lSlll gets very small. The equations are algebraically un- 
stable as SI, -+ 0; also for small lSlll, the ANA phase 
uncertainty is large. Since the solution is proportional to 
($) we see that the phase error dominates the solution 
at these frequencies. To bypass this problem, many re- 
searchers resort to using short samples. However, use of 
short samples lowers the measurement sensitivity. In fact, 
as will be shown in Section 111, to minimize the uncer- 
tainty in low-loss materials a relatively long sample is 
preferred. 

Iterative solution of various combinations of (17)-(21) 
produces a solution that is stable over the measurement 
spectrum. Sample length and air line length can be treated 
as an unknown in the system of equations by solving 
combinations of (17)-(21). The solution of these equa- 
tions is then independent of reference plane position, air 
line length, and sample length. For example, (20) and (21) 
constitute four real equations that are independent of 
reference plane; they can be solved as a system with both 
the sample length and the air line length treated as 
unknown quantities. 

Another interesting result can be obtained if we assume 
that E$ and the measured value of an S parameter are 
known at a single angular frequency, w k .  In this case we 
can solve either (11) or (12) for the reference positions 
and then substitute this length into (8)-(10) to obtain 
relations for the reference plane positions at other fre- 
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quencies. This length is the equivalent electrical length of 
the section of line. If we let m denote “measured value” 
and S denote the right side of either (8) or (101, with 
R ,  = R ,  = 1, we obtain a relation for the reference plane 
rotation term at an angular frequency of wi (for coaxial 
line): 

(23) 

Thus, we can determine the reference plane positions 
in terms of e ; ( w k )  and the measured value of the scatter- 
ing parameter at wk.  Equations (22) and (23) may be very 
useful for problems where other methods have produced 
an accurate measurement of e: at a single frequency. 

Equations for Numerical Permittivity Determination 
There are various ways of solving the scattering equa- 

tions depending on the information available to the exper- 
imenter. For cases where the sample length and reference 
plane positions are known to high accuracy, we have 
found that taking various linear combinations of the scat- 
tering equations and solving the equations in an iterative 
fashion yields a very stable solution on samples of arbi- 
trary length. A useful combination is 

1 Z (  1 - r2) + p r ( i  - z2) 
1 - z 2 r 2  - I ~ ~ 1 2 + ~ 2 1 l + P ~ ~ 1 1 + ~ 2 2 1 ~  2 = 

In this equation the S parameters to be used need to be 
transformed from the calibration plane to the sample face 
by use of (11) and (12). Here p is a constant which we 
vary as a function of the sample length, uncertainty in 
scattering parameters, and loss characteristics of the ma- 
terial. For low-loss materials, the s,, signal is strong and 
so we can set p equal to zero, whereas for materials of 
high loss SI, dominates and a large value of p is appro- 
priate. A general relation for p is given by the ratio of the 
uncertainty in S,, divided by the uncertainty in S, , .  In 
Fig. 2 the iterative solution (in the dashed line) is com- 
pared to the Nicolson-Ross-Weir procedure for a sam- 
ple of polytetrafluoroethylene (PTFE) in 7 mm coaxial 
line. We see a striking contrast between the solutions. In 
Fig. 3 we reduce data for the permittivity for PTFE while 
varying the parameter p, which has low loss and relatively 
low e;; the best results are produced by using only S,, 
and S,, data. One requirement for an iterative technique 
is the selection of the initial guess for the permittivity. As 
an initial guess we use the solutions to the Nicolson and 
Ross equations as a starting value and then use the 
previously obtained permittivity at one frequency as the 
initial guess for the next frequency. 

I‘i,, , , ~, , , , , , ,;!:;, ._...- , , , , , I  
9 10 11 12 13 

2 04* 

Frequency (GHz) 

The permittivities obtained from (24) for various values of p 
for a sample of PTFE. The dashed line is for p +m,  the solid line for 
p = 0, and the dotted line for p = 1. 

Fig. 3.  

For cases in which the reference plane positions are 
uncertain, we find that (21) is robust. When using (21) no 
reference plane transformation need be performed since 
it has been eliminated by use of the relation Lair = 
L ,  + L ,  + L. Equation (21) works well for both low-loss 
and high-loss materials. If we solve (21) in tandem with 
any of (17)-(201, we can treat the measurement as inde- 
pendent of reference plane position and sample length. 

For magnetic materials, four independent real equa- 
tions are required (or two independent complex equa- 
tions). Since in this case we have seven unknowns and 
nine equations, it is possible to use various combinations 
of the basic equations (17)-(21); in this case (20) and (21) 
are recommended. However, for combined permeability 
and permittivity these equations may not be stable at 
multiples of one-half wavelength in the sample. To main- 
tain stability another approach is required and results of 
research will be reported in the near future. 

111. UNCERTAINTY ANALYSIS 
The sources of error in TR measurement include 

errors in measuring the magnitude and phase of the 
scattering parameters, 
gaps between the sample and sample holder and 
sample holder dimensional variations and errors in 
gap correction formulas, 
uncertainty in sample length, 
line losses and connector mismatch, 
uncertainty in reference plane positions, 
coupling to higher order modes. 

The error arising from gaps around the sample can be 
corrected for in part by using equations available in the 
literature [ 121-[14]. The formulas given in the literature 
generally undercorrect for the real part of the permittivity 
and overcorrect for the imaginary part of the permittivity. 
We assume in the following analysis that all measure- 
ments of permittivity have been corrected for air gaps 
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0 08 the scattering parameter, AIS,[ is the uncertainty in the 
magnitude of the scattering parameter, and A L  is the 

a worst case estimate. The uncertainty analysis in this 
section is for the scattering equations in (Sb(10). The 
derivatives of (81410) can be explicitly calculated. These 

uncertainty in the sample length. The calculated, A€,*, is 
0 0 6 -  

are given below, assuming pz = 1: 4 1 . w  004 

a€; 
JlS2, I Q 

[ 1 - r 2 z 2 ]  exp ( j e )  
-- (27) - 

0 0 2  

I I I 

SI1 
- 

(100 .0001)  ' ' 
R = 15 0 ,  0 001) 

-' 

- A 

where 

Q = ~ A I - ~ [ S , , Z  - 1]+ ~ [ ( i -  r2) + 2 s , , r 2 ~ ]  (30) 

0 

P 
y y  / '  I 

I 

L 
~ 

A, 

Fig. 5.  The relative uncertainty in E , * ( , )  for S , ,  from (2.5) for a 
low-loss material as a function of normalized length, with E ;  =(.5.0, 
0.001) in solid line and (10.0, 0.001) in dashed line. The S-parameter 
uncertainties are the same as in Fig. 4. (See footnote I.) 

w 2  1 
Y 

1-- 
YO 

l+- Y 
1+-  I Y o  

where 
(31) 

P =  A [ ( ~ - ~ ~ ) + ~ S , , Z ~ I - ]  + ~ B ~ z [ s , , ~ - I ] .  (37) 

The measurement bounds for S-parameter data are 
obtained from specifications for a network analyzer. The 
dominant uncertainty is in the phase of SI, as IS,,l --f 0. 
The uncertainty in lS2,1 is relatively constant until IS2,[ < 
-40 dB; it then increases abruptly. In Figs. 4-9 the total 
uncertainty in eh,€;, calculated from S,, and SI, is 
plotted as a function of normalized sample length for 
coaxial low-loss and high-loss materials at 3 GHz with 
various values of e,* and the guided wavelength in the 

'Trade names are included in order to allow the reader to duplicate 
the S-parameter uncertainties. Inclusion does not imply endorsement by 
the National Institute of Standards and Technology. 

(32) 

(33)  

(34) 

(35 )  

(36) 
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Am 

Fig. 6. The relative uncertainty in E ~ ( o )  for S2, from (25) as a 
function of frequency for a high-loss material as a function of normal- 
ized length, with E,$ = (5.0, 2.0) in solid line and (10.0, 2.0) in dashed 
line. The S-parameter uncertainties are the same as in Fig. 4. (See 
footnote 1.) 

L 
k m  
- 

Fig. 8. The relative uncertainty in E ~ ( w )  for SI, (25) as a function of 
frequency for a high-loss material as a function of normalized length 
with e: =(5.0, 5.0) in solid line and (10.0, 5.0) in dashed line. The 
S-parameter uncertainties are the same as in Fig. 4. (See footnote 1.) 

0.01 1 1 I I 
0 1 2 3 

L 
A, 

Fig. 7. The relative uncertainty in E;(w) for S,, from (26) as a 
function of frequency for a high-loss material as a function of normal- 
ized length, for E R  =(5.0, 2.0) in solid line and (10.0, 2.0) in dashed 
line. The S-parameter uncertainties are the same as in Fig. 4. (See 
footnote 1.) 

- 

material given by 
2a 

We see that the minimum uncertainty for low-loss materi- 
als occurs at multiples of one-half wavelength. The reason 
for this can be determined from examination of (8) and 
(10) in the limit where lSlll+O, 1 with r#O. 
These equations then reduce to 

2 -1 + 0. (39) 
Generally, we see a decrease in uncertainty as a func- 

tion of increasing sample length. In the case of S,, for 
high loss as shown in Figs. 6 and 7, we see first a general 

I i/ "--I ,eR = (10 0, 5 0) 

0.08k I L S " I 1 I 

L - 
A, 

Fig. 9. The relative uncertainty in E ; ( O )  for S,, from (26) as a func- 
tion of frequency for a high-loss material as a function of normalized 
length with E$ = (5.0, 5.0) in solid line and (10.0, 5.0) in dashed line. 
The S-parameter uncertainties are the same as in Fig. 4. (See foot- 
note 1.) 

decrease in uncertainty and then an increase in uncer- 
tainty. This increase occurs because AlS,,I increases when 
the transmitted signal is less than -40 dB from the 
reference. For the case of high loss, the uncertainty in S,, 
approaches a constant value. This is so because, for 
high-loss materials where the wavelength is much smaller 
than the sample length, only weak signals penetrate 
through the sample and thus the front face reflection 
dominates the SI, parameter. In Figs. 8 and 9 we note a 
number of peaks. These peaks occur when (37) gets very 
small. Also, the uncertainties in the S parameters have 
some frequency dependence, with higher frequencies hav- 
ing larger uncertainties in phase. In Fig. 10 a measure- 
ment of heavy metal fluoride glass is presented with 
uncertainty bounds. Note that the peaks of uncertainty 
coincide with the peaks in the measurement noise. Also 
note that the uncertainties are quite conservative. This is 
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Fig. 10. The permittivity of heavy metal fluoride glass sample in X- 
band waveguide and calculated uncertainty bounds using (21). 

due to the conservative estimate of the manufacturer for 
the S-parameter uncertainty. When (21) is used for per- 
mittivity determination, uncertainties in both S,, and SI, 
must be included in (25). 

Another important source of error is the uncertainty in 
the location of the reference planes. Generally, when TR 
experiments are carried out, the sample is placed flush 
with the end of the sample holder and hence coincident 
with a calibration reference plane. This placement proce- 
dure leaves room for positioning errors, particularly when 
the sample is loose. The error introduced by incorrect 
positioning of the sample can be estimated in terms of the 
error in the reference plane transformation terms (1 1) 
and (12). If we have an uncertainty of A L ,  in the sample 
position, then 

SI, = R:ISllleje = IS,,Iexp[ j6 -2y,( L ,  + A L , ) ] .  (40) 

The error in the measured angle is given by 

A L  
A6 = 2jy ,AL = 4rr-. (41) 

*air 

Therefore small reference plane positioning errors can, in 
principle, introduce large uncertainties in the SI, phase at 
high frequencies. One way to minimize this is to use 
equations that are invariant to reference plane position. 

IV. DISCUSSION AND CONCLUSIONS 
As we have seen, although the Nicolson-Ross-Weir 

approach is easy to implement numerically, it fails as a 
solution technique for broad-band measurement of low- 
loss samples of arbitrary length. The solution presented in 
this paper uses a Newton-Raphson iteration procedure 
on combinations of the scattering parameters. This proce- 
dure yields solutions that are stable at integer multiples of 
one-half wavelength in the sample; at the same time it 
does not unduly increase the complexity of the numerical 
solution. For materials where the transmitted signal is 
more than -40 dB from the reference signal, it is sug- 
gested that S,, data by themselves are sufficient to calcu- 

late permittivity. For materials of large attenuation, SI , 
by itself will produce optimal results. In general, we have 
found (21) to be robust for high-loss and low-loss materi- 
als. The problem of reference plane position has been 
addressed, and approaches for the minimization of the 
error have been presented. Equations that are indepen- 
dent of reference plane position and sample length have 
been presented. Equations that are independent of plane 
position should be very useful in elevated temperature 
applications. Generally, sample length can be measured 
with great accuracy at laboratory temperature, and for 
these problems it is preferable to use a measured length. 
However, in temperature-dependent applications it may 
be better to use equations independent of both sample 
length and reference plane position. 

An uncertainty procedure has been presented for the 
solution method expounded in this paper. The uncer- 
tainty analysis presented here differs in some respects 
from what has been presented in the literature previously. 
This difference is due primarily to the fact that the 
uncertainties in this paper are derived from S , ,  and S,, 
in isolation. The trend indicates that for low-loss materi- 
als the uncertainty decreases as a function of increasing 
sample length. For high-loss materials the uncertainty in 
S,, decreases until the signal reaches -40 to -50 dB, 
and thereafter the uncertainty increases and thus A € :  
increases. 
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