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Abstract - The problem of modelling the frequency 
dependence of hysteresis in magnetic materials is 
approached in a new way. The de magnetization 
curve, or hysteresis loop, is assumed to be the 
equilibrium position for the bulk magnetization. 
All microscopic processes which occur under the 
action of a time-varying field can be averaged to 
give a time dependent displacement from the 
equilibrium, AM. In this paper, we examine the 
case where eddy current effects do not play a 
signillcant role, that is to say the model applies to 
"nonconducting" media. It is shown that AM obeys 
8 d8aped simple harmonic motion eqnation. This 
means that the time dependence of the displacement 
magnetization AM is the Laplace transform of the 
field waveform. This enables the time dependence 
of the magnetization to be modelled, once the dc 
hysteresis curve is known, with only two additional 
materials parameters of relaxation time and natural 
freqmency. The model emerges as a natural 
extension of the theory of hysteresis. 

INTRODU" 

The magnetization curves, or hysteresis loops of femmag- 
netic materials change as a function of the frequency and 
waveform of the applied magnetic field. Most measurements 
of hygteresis are performed under dc, or quasi dc, conditions. 
In most applications the material is subjected to an ac field. 
ILhedBeames between the dc andac hysteaesiscurves deped 
on a number of factors including the electrical conductivity 
and permeability of the material, the rate at which the mag- 
netic moments can rotate into the field, the fiquency of the 
applied field and its waveform, whether sinusoidal, triangular 
OrsQplaeWave. 

' h i s  paper introduces a new approach to modelling the 
changes in magnetic hysteresis curves as a function of fie- 
quency. The key development has been the identification of 
diffcrrntial equations representing the time dependence of hys- 
teresis curves in two principal cases. lhese are the effects of 
eddy currents in electrically conducting magnetic media and 
the effects of magnetic relaxation in nonconducting media. 
In this paper, we will discuss only the latter. 

In previous work, a phenomenological model of hysteresis 
has been developed [ 1.21 based on the conside" of energy 
loss due to, among other factors, domain wall pinning. The 
advantage of this model over others is that it is based on a 
considemtion of the underlying physics of hysteresis, and has 
a small number of physically interpretable parame$ers. To 
hhrmaui received Fcb. 15 1993. lhh wok rupportcd USDOE.-BES, 
Ev. d &tcri.ls Sciences: under contract No. W-74thNG-82 & by 
Mmutii Tedmolom. Inc. 

date, the theory has only dealt with time independent hystere- 
sis. The equations can, however, be extended to account for 
time &pendent effects. 

Non-Conducting Media 

In "nonconducting" media, we assume that the effects of 
eddy currents can be ignored. This approximation works well 
for high frequency femtes [3]. In this work, the time depen- 
&nce of the magnetization is treated as a second order linear 
differential equation, in which the equilibrium position of the 
magnetization at a field strength H, is simply the dc 
hysteresis curve. 

The change in magnetization in the low field region, where 
hysteresis occurs, is determined primarily by domain wall 
motion. The domain wall motion can itself be described by a 
second order linear differential equation, as discussed by 
D(lring 141 and later by ChiLaZumi [SI. This applies on the 
micromagnetic scale of a single domain wall, however, the 
concept can be scaled to describe the macroscopic 
magnetization changes, since the change in bulk 

dM magnetization with time, - is simply the average over the d t  
entire material of the individual domain wall movements. 

If we consider these averaged domain wall movements, it is 
clearly apparent that they cease once the magnetization M(t) 
at a given time t has reached the dc magnetization curve, 
which we will denote w. 

lim M(t) = K(H) (1) 

Equally clearly K(H) is a function of the magnetic field 
H, which must be described by a time independent hysteresis 
function. The value of &(H) is uniquely dehed by the 
magnetic field history of the specimen and is obtained by 
calculating the value of the bulk magnetization that would be 
achieved when all transients in the magnetization process 
have been completed. This means that M,,,,(H) is represented 
by the value of bulk magnetization on the quasi& hysteresis 
loop for a given sequence of field reversals and the prevailing 
magnetic field strength. In other words, &(H) is path 
dependent but is time independent. It can be modelled using 
the equations given in earlier papers for describing dc 
hysteresis loops [l], or by other descriptions of time 
independent hysteresis loops, such as Preisach models. Given 
this result, and the damped harmonic nature of the change in 
magnetization, the displacement magnetization 

obeys a differential equation of the form, 

t-b- 

AM(t,H) = M(t) - &(H) (2) 
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Values ofparameters 

A study has been made Of manganese zinc ferrite Philips 
series 3C81 ferrite material). The dc hysteresis parameters 
have been given previously [l], together with a C O m m S O n  
of the modelled and measured hysteresis curves. These 

30AOm-1, a = 10-5, = o.55. 

dition, Pi E2700 k 

0) -AM(t,H)+2X d2 zAM(t.H)+on2AM(t,H) d = 0 
dt2 

and since the he derivatives of &(H) are his gives 
B - M(t) + 2A $ M(t) + y12M(t) = y12MJH) dt2 (4) 

from ferromagnetic resonance [61 and A is a decay constant. 

the magnetic moments inside the material can oscillate in the 

the Larmor precession frequency of the electron spins under 

and LifschiQ [7]. ?he damping coefficient X in this equation 
is also to that in b h U - L i f s c k  
of motion. 

which we expect in he  
damped harmonic motion equation, because of the applied 
fEld, is implicit in the term on2(M&€) - M(t)). A simple 
physical argument can be used to prove this: once the magne- 
tization reaches &(€I), it is in equilibrium and SO them is no 
net face on the domain walls. 
€lado has investigated 

si- Of this phenomenon is that it relam the -yt 
frequency a, of domain wall motion to the initial 
permeability of the hysteresis curve via the equation 

(5) 

where % the natural 

The natural frecluencY represents the frequency at which From the 

which be dculated pmete r s  were Ms = 0.4 x 106 A.m-1, a = 27 A.m-1, k = 

initial permeability of the mat- under dc con- 
a frequency of = 550 

absence Of -Ping forces* This is equivalent to k& (* = 3.46x106 dsS- l )  was which agrees well 
the action of the anisotropy "field," a discussed by Landau with h e  "WfaCturer's specification 181. 

Ihe damping meter A determines the Of Of 
the magnetization to an external field, and from the equation 
this can be expressed in tenns of an equivalent relaxation time 
't = lh. For this material 't * lo4 Sec. found to give 
reasonable with ~sa-vatioa 

these equations the forcing 

RESULTS 

Model hysteresis were based on the pa- 
ramem given above. Figs. 1-3 show the hysteresis cwes  
of the modelled ferrite material under the action of a 
sinusoidal magnetic field of amplitude 100 A/m (1.25 Oe), at 

of 1, 50, and kHz. The V e a b f i Q  at 
1 kHz was almost identical to the quasi static initial 
permeability. From these results it can be seen that there is 
an iacrease in coercivity, hysteresis loss and remanence with 
increasing frecluency. An increase in initial permeability is 
predicted by the model, and this is followed by a decmse at where is the gyromagnetic ratio (0.22~10~ rads.m*s-l-A-l). 

pi is the relative initial permeability, which is dimensionless frequencies, both of which are observed in practice, 
(&-I = %i the initial susceptibility), Ms iS the SiituriltiOn changes in initial permability with fresuency for two 
magnetization, 6 is the wall thickness and d denotes the different sets of model parameters are shown in tables 1 and 2. 
averagedomain size. 
The actual values of o, can be OM experimentally from Table 1 . 3  

measurements of the initial susceptibility of materials as a 
function of frequency. The frequencies at which the maximum 
of the initial susceptibility occurred in the two materials mgane~e zinc fed& x8o 
studied here were v, = 0.768~106~'~ (* = 4.83~106 rads1) 

3.60~106 rads1) for the 3C81 Mn-Zn femte [8]. v(kilz) Pin Pin 

100 2100 2028 
(6) m 2200 2022 

500 2500 2161 
where bcr is the critical value of X, which is the value of A 1732 
separating conditions under which wall resonance, rather than #x)o 1500 1040 
wall relaxation, occur. This enables the natural frequency of 3Ooo 600 723 
the material to be determined from the initial susceptibility 4Ooo 300 55 1 
and the damping coefficient X in the differential equation of 5ooo 200 444 
motion. 

The results of solving equation (4) give increasingly values obtained with the following d l  m e t e r s :  
rounded hysteresis loops as the frecluency of excitation is in- Br43 Tesla, *27AOm-l, k=30AOm-l, a=5x10-5, 
creased 

~ . 8 3 x l O b d . ~ - ~  

-srith . .  

for the 3C80 Mn-Zn ferrite, and vr = 0.573~106 (or = Freauencv Msasm4 

related by the equation 10 2100 (&lo%) 202% 
The resonance frequency %and the natural !i-equency o, are 

lo00 2500 

cd.41, m.22x1~-8s-l (.F=9x10-9s), 
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a =  27" 
k =  3 0 ~ m  

alpha = .Woo5 

Table 2. - v u  .B!ittl 

Manganese-zinc ferrite x81 

Freauencv h4easId 
v(lrHz) Pin 

2700 &lo%) 
2700 
2700 
3000 
3300 
2900 
1600 
900 
550 
400 

2708 
2708 
2708 
2700 
2886 
2313 
1400 
965 
736 
593 

Values obtained with the following model parameters: 
B4.5 Tesla, a=27A*m'l* k=30A=m'l, (lt=5x1@5, 
~ 4 . 5 5 ,  k2.22x10Ss-l (~=9~10-9~e~),  ~ 3 . 6 0 ~ 1 0 6  
rads1 

CONCLUSIONS 

A model for descn'bing the 6requen~y dependence Of hystere- 
sis curves in non-conducting materials has been presented. 
The model is based on the second order linear differential 
equation of motion of domain walls, which is averaged to 
describe the behavior of the whole material. The result is a 
differential equation describing the displacement 
magnetization AM = M(t) - hL(H) where k ( H )  is the 
locus of points on the dc hysteresis curve. 

The main contribution of the present work consists of the 
incorporation of hysteretic effects into the equations of 
motion given first by Landau and Lifschitz [7] for the 
description of time dependent magnetization in magnetic 
matexiah. 

The ikqmcy dependent hysteresis curves h f m  consist 
of two independent contributions to the magnetization. These 
are the dc hysteresis curve, which represents the locus of qui- 
librium magnetization as a function of field, and the dis- 
placement magnetization, which obeys the damped harmonic 
motion quation. 

REFERENCES 

[I] D. C. Jiles, J. B. Thoelke and M. K. Devine. IEEE Truns. 

[2] D. C.  Jiles, IEEE T r m .  Mug.. vol. 28. p. 2603. 1992. 
(31 E. C.  Snelling, Sop Ferrites, 2nd ad.: Buttemorths, 1988. 
[4] W. Dl)ring. Z. Naturforsch., vol. 3A. p. 373. 1948. 
[SI S. Chikazumi, Physics of Magnetism, New York John 

Wiley. 1964. p. 349. 
(61 0. Rado, Rev. Mod. Phys.. vol. 25, p. 81, 1953. 
[7] L D. Landau and E. M. Lifschitz. Physik. 2. Sowjetunion, 

vol. 8. p. 153, 1935. 
[8] "Femte materials and components catalog," Philips Co., 

Publication No. FCO52-1. 1989. 

Mug.. VOl. 28, p. 27, 1992. 

Bs= .5Tesla 1 .o - 
a =  27Nm 
k =  30" 

alpha= .woo5 
c =  5 5  

Initial permeability = 27M 
-1 .o 

Fig. 1. Model hystaesis loop for 3C81 ferrite at 1 kHz. This 
curve is identical to the dc hysteresis curve on this scale. 

lnrtial permeability = 108: 
- 1  0 I 

Fig. 2. Model hysteresis loop for 3C81 fenite at 50 kHz. 

Fig. 3. Model hysteresis loop for x81 femte at 100 kHz. 


