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Abstract-The open-ended coaxial probe with lift-off is studied 
using a full-wave analysis, and an uncertainty analysis is pre- 
sented. The field equations for the following terminations are 
worked out: (1) the sample extends to x in the positive axial di- 
rection, (2) the sample is backed by a well-characterized material, 
and (3) the sample is backed by a short-circuit termination. The 
equations are valid for both dielectric and magnetic materials. 
The model allows the study of the open-ended coaxial probe 
as a nondestructive testing tool. The analysis allows a study of 
the effects of air gaps on probe measurements. The reflection 
coefficient and phase are studied as a function of lift-off, coaxial 
line size, permittivity, permeability, and frequency. Numerical 
results indicate the probe is very sensitive to lift-off. For medium 
to high permittivity values and electrically small probes, gaps 
on the order of fractions of a millimeter strongly influence the 
reflection coefficient. In order for the field to penetrate through 
the air gap, larger size coaxial line or higher frequencies need to 
be used. A comparison of the theory to experiment is presented. 
The results are in close agreement. A differential uncertainty 
analysis is also included. 

I. INTRODUCTION 

PEN-ENDED COAXIAL PROBES are commonly used 0 as nondestructive testing tools. In most applications the 
coaxial probe is pressed against a sample, and the reflection 
coefficient is measured and used to determine the permittivity 
of the sample. Over the years, the open-ended coaxial probe 
has been studied extensively both theoretically and experi- 
mentally. There is a copious literature, and no attempt at 
a comprehensive review is attempted here (see for example 
[1]-[13]). (In the proof stage of this paper we also became 
aware of additional work performed at the National Physical 
Laboratory [14], [ 151.) The method, although nondestructive, 
does have limitations. For example, the fields at the probe end 
contain both E,  and E,, components. If there is an air gap 
between sample and probe, the discontinuity in the normal 
electric field causes a large error in the predicted permittivity. 
For this reason the probe has been used primarily for liquid and 
semiliquid measurements, where good contact can be obtained. 

Very recently, a number of publications have addressed 
the layered problem using the full-wave model [9]-[15]. It 
is important to have a model that will allow the study of 
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the effects of air gap on dielectric measurements. Also, in 
process control, such as rolling stock on assembly lines, a 
noncontacting probe may be required. For this reason it is 
important to have a model of a coaxial probe which includes 
lift-off. This paper reports on a study of the effects of probe 
size, frequency, and lift-off for obtaining optimal material 
measurements. To this end we present the full-wave theory for 
open-ended coaxial probes with an air gap between the ground 
plane and the material under test. Equations are worked out 
for various terminations. These terminations include a semi- 
infinite material, the sample backed by a perfect short circuit, 
and a material termination. 

An open-ended coaxial probe consists of a coaxial line 
where the outer conductor is flared out into a ground plane 
as indicated in Fig. 1. The coaxial line with inner dimension 
a and outer dimension b is filled with a material of per- 
mittivity €kc and permeability &,. The material under test 
is assumed to extend to infinity in the radial direction and 
have a homogeneous and isotropic complex permittivity and 
permeability 

Here to and po are the permittivity and permeability of 
vacuum, and c;ts and pks are the complex permittivity and 
permeability of the sample relative to vacuum. The short- 
circuit termination model allows the realistic modeling of 
substrate materials which are metal-clad on the bottom. The 
semi-infinite model is useful for materials thick enough that 
boundary effects are not important. Finally, the dielectric- 
terminated geometry is useful when the fields penetrate the 
sample. The terminations allow measurements to be taken 
either in strong magnetic fields using a short circuit or in strong 
electric fields using an open circuit. The field extension from 
the end of the coaxial line can be controlled by the frequency 
of operation and coaxial line diameter. At lower frequencies 
the fields penetrate very little beyond the end of the coaxial 
probe tip. In such cases it is very hard to obtain good material 
measurements, particularly magnetic measurements. The goal 
of this paper is to study the effects of lift-off as a function of 
probe size, frequency, and material parameters. Also results of 
permittivity and permeability measurements from an inverse 
numerical calculation will be presented. 
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& ( 3 ) ( P I  d+ )  = q b ( Z ) ( P ,  d - )  
Hd(4)(P3d+ L + )  = H @ ( 3 ) ( P . d +  L - ) .  

(6) 
(7 ) 

In addition, the electric fields are matched at the probe-material 
rk ground plane 

z = o  

, * ! i l l ) /  2 ;  

P L R . ‘ ~ . ~ ~  gap (2) r = d  
P&, sample (3) z = L  + d interface. For a material termination, 

termination ( 4 ) c L .  p b  

K / l [ 4 ) [ P >  + ..) + 0 (8) 

EP(& d + L )  = 0. 

Fig. 1, The open-ended coaxial probe over a sample with an air gap between 
sample and probe. The cases considered arc ( I )  semi-infinite media, (2) 
short-circuit termination location at z = tl + L, and 13) material termination 
where a well-characterized material occupies the region starting at : = d+ L 

and for a short-circuit 

and extending to x. (9) 

We will assume that the system operates at such a frequency 
that only the fundamental TEM mode propagates in the coaxial 
line. Evanescent TMoll modes are also assumed to exist in 
the coaxial line near the probe end. The existence of TiWO1l 
modes in the coaxial line is necessary to match boundary 
conditions at the probe-material interface. The fields generated 
in the material under test are primarily reactive; however, 
radiative fields may also exist. We assume that the probe 
operates at a known lift-off position. For cases where lift- 
off is unknown it  is possible to operate the probe to obtain 
relative measurements. In the coaxial line and the material 
under test the magnetic field is assumed to be azimuthally 
symmetric. Therefore only the Hd, component needs to be 
calculated. 

In the next section we will develop the theory of the 
probe with lift-off. The method is based on a Hankel trans- 
form with respect to the radial coordinate, so the problem 
is reduced to one dimension. The theory is exact; but, in 
numerical calculations only a finite number of TiW~~, modes 
are used. In the last section, numerical solutions to the equa- 
tions will be displayed. Numerical solutions, for the case of 
zero lift-off, will be compared to published results. Finally, 
the effects of lift-off on the reflection coefficient will be 
studied. 

11. REFLECTION COEFFICIENT OF THE 
OPEN-ENDED COAXIAL PROBE WITH Lim-OFF 

The radial component of the electric field can be calculated 

It can be shown rather easily that the solution to (3) with 
boundary conditions (4) through (9) is unique. 

A. Fields in Sample and Cup 

We will proceed by taking the Hankel integral transform 
of (3) with respect to p. The transformed field is denoted by 
fidcL,, where C is an eigenvalue corresponding to the radial 
coordinate. In the air gap, the sample, and the termination 
material the transformed form of (3) is 

where 8 denotes region. We define propagation constants yz = 
J /-, for R(k.,) > <, 1 = 2.3 ,4 ,  and yz = /- if 
!R(kL) < <. The Hankel transform we use is defined a5 

(12) 

and the inverse transform is defined as 

the sample is L. 

satisfies 
The magnetic field in region (i) as indicated in Fig. 1 

(17) 

The problem reduces to solving (1 1) in each layer, matching 
field components at the boundaries of each layer, and then 
taking the inverse Hankel transform. The boundary conditions 

transformed solution in (1  1) is a damped sinusoid, 

1 aH,(l) 
We have assumed a time dependence of ~xp( ju ‘ t ) .  The E,(,,(<.Z) = j w c r  dz ‘ 

wave numbers in the coaxial line, gap, material under 
test, and termination material are k: = t ~ c / i , R c ( ~ / ~ V , c ) 2 ,  

k.; = ~ ~ g p ~ g ( ~ / ~ ~ l a ~ ) 2 ,  k:: = f~,p&,(w/c,.,,)2, k: = 
f;ldp;d(w/c,a,)2 respectively, where C , , ~  is the speed of 

(4) 

( 5 )  

I light in vacuum. The boundary conditions are yield relations between the coefficients. In Region 2 the 

Hd>(,)(/ j  + xj. z )  + 0, ( i  = 2 . 3 . 4 ) .  

ffIb(2)(P?0+) = ffd(I)(P.O-) f i , ( 2 ) ( < . 2 )  = Aexp(-?~(z - d))+Bexp(y2(z - d ) )  (18) 
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and in Region 3 the solution is also a superposition of forward Therefore 
and backward traveling waves of the form 1 

fiq(3)(z) = Eexp(-Y3(z-d) )+Fexp(yj (z - -d) ) .  (19) 
and 

In the case of semi-infinite media, as L --+ x, F + 0 in order 
to satisfy physical constraints. In the termination material 

B .  Fields in Coaxial Line 

Since the Laplacian is separable, the solution to the normal- 
ized radial electric field in the coaxial line can be written as a 
linear combination of TEM and TMo, modes: 

for a 5 p 5 6 and zero for values of p outside this region. 
In the coaxial line y1 = j~d=/c\,~~. The coaxial line 
TMo, propagation constants are 

(26 )  

1 
' (27) 

- T k . T , ( , )  
- 

1 c -  '" - Glbpii/(p)(i ,I  Jz Jm 
~- 
J , L ( L , , ( ,  ~ b )  

Unless stated otherwise we will assume that the radial eigen- 
functions are normalized. The eigenvalues k, , ( ,  , are obtained 
from the condition of vanishing tangential electric field on the 
conductor walls. The tangential electric field is given by (23). 
These are the rtth solutions of 

The functions R, ( 7 . )  satisfy a Sturm-Liouville problem, which 
yields Bessel functions. The radial eigenfunctions are orthog- 
onal over [U, 61 with respect to the weighting function p .  The 
procedure is to perform the Hankel transform on ( 2  I ) to allow 
the matching of the transformed fields in the axial coordinate. 
The transformed radial electric field in the coaxial line is 

Using appropriate signs for evanescent waves, Yo(<) = 7 1  and, 
rrI is the reflection coefficient of the n,th mode. The ground 
plane that connects to the outer conductor of the coaxial probe 

The coefficients D T , ( { )  = Jab p J l ( < p ) R , ( p ) d p  can be found 
analytically. F~~ ,,,, = 0 

1 J l ( b M  
is assumed to extend to infinity in the radial direction. At the 
inner and outer conducting surfaces of the coaxial line, the 
tangential electric field E; for the TMo, modes must approach 

1 
Do(<) = ~ 

JLqii 

- JWC (30) 
1 1  

[Jo(C.) - . ' O ( O ) l  ~- - zero. The z-component of the electric field is given by 

c Therefore the radial eigenfunctions in the coaxial line that 
2 c, 1 
-- - satisfy the correct boundary conditions on TMo, modes on - 

the inner and outer conductors are h ( C )  *'o(k71(c)6) "(.) - <' 

for ,=O (TEM mode) 
= C,[Jl(k,(,)p)No(k,,(,)a) - ~ l ( k , ( , ) / ~ ) ~ ' ~ ( k , ( ~ ) f ~ ) ]  The azimuthal magnetic field in the coaxial line can be found 

\ " ' from Maxwell's equations: 
7? > o ( T M ,1 modes ) 

where N7 are the Bessel functions of the second kind and the 
constants C, are obtained by requiring orthogonality [4], [ I 1 1: 

[ <R,(b{)R,,(n<)ct< = b,,,,,. ni. n = 0. 1 . 2 .  . . . ( 2 5 )  
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Therefore the transformed magnetic field is An expression for the reflection coefficient rn of the TEM 
and T M o n  modes can be found by taking the inverse transform 
of (35) in the radial coordinate: 

(41) 

In order to obtain ro we multiply this equation by P&(P)  on 
both sides and integrate this equation Over [a,  b]: 

C .  Field Matching at Interfuces 

The tangential component of the transformed electric field is 
continuops across the coaxial line-air gap interface. Therefore 

modes, 
from (18) and (29) and the impedance relationship for TM CO 

rm = - Jd CDm[AeYzd + Be-Y2d] l (  
jWEO&, 

Ym 
CO 

(42) 
j W f o t ; t c  

(1 + T0)DO + rnDn = -2 ( - A  exp ( 7 2 4  +- &no. 
n=l j W f g  71 

+ Bexp (-’d)). (34) Therefore in matrix form we can write 

The tangential component of the magnetic field is also contin- 
uous across this interface; from (18) and ( 3 3 ) ,  

= A exp (yzd) + B exp ( -72d).  (35) 

At the interface between the air gap and the sample we also 
have continuity of the tangential components; from ( 1  8) and 
(1913 

A + B = E ( 1 +  0 )  (36) 
Y2 Y3E -(B - A) = T ( 0  - 1) 
“K, ‘Rs 

(37) 

For a shorted termination at z = d + L, 0 = exp ( -2y3L). 
For a material termination at this position we define 
0 = exp(-2y3L)( l  - 0 2 ) / ( 1  + O Z ) ,  where 0 2  = 
( ~k,~4) / ( tk~72) .  In the limit of semi-infinite material, 
L + 30 and since €fils > 0 we obtain 0 -+ 0. 

We can solve (34), (36), and (37) simultaneously for the 
unknown coefficients A, B,  E ,  obtaining (38)-(40), shown at 
the bottom of the page. 

CO 

(43) 

n = O  

where the equations at the bottom of the next page (45)-(46) 
hold for m, n = 0 , 1 , 2 ,  . . . , N .  The reflection coefficient of 
the TEM mode is of primary interest since the other modes 
are evanescent in the coaxial line. 

The z-component of the electric field is found from (22). The 
Bessel function relationship may be used for the derivatives: 

(47) 

In region (2), 

I r roc) 
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The radial electric field is 
2-2 

Similar equations exist for the region 3. 

111. UNCERTAINTY ANALYSIS 
Unceitainties in open-ended coaxial measurements include 

calibration and measurement errors. Here we consider the 
uncert&ty in a measurement due to phase, magnitude and 
lift-off. We consider that calculated permittivity is a func- 
tion of the following independent variables: eks(  lrJ, 82, d) ,  
where i denotes measurement standards and coaxial line. The 

the measurement standards are combined with the network 
analyzer uncertainties. A worst-case differential uncertainty 
analysis assuming no cross-correlations requires that 

I estimated magnitude and phase uncertainties introduced by 

A similar equation exists for cLs. Implicit differentiation can 
be used to find the necessary derivatives: 

(53) 

A two-dimensional uncertainty plot is shown in Fig. 2. We 
see generally an increase in uncertainty as lift-off increases 
and frequency decreases, however not always. 

Fig. 2. 
parameters used were e* 

Two-dimensional plot of the combined uncertainty in ~ k , .  The 
= (10, - . O l ) ,  six TMo,L modes, Ad = 0.000251 

m, U = 0 . 5 0 ,  A i r o r =  0.002. 

0.684 o'686 7 
4modes x 0.68 i 

- 
0.678 

0.676 

0.674 

0.672 

- Gmcdes U 

Bmodes 
12modes 8 

24mcdes I 

0.67 I I 
-167 -166.6 -166.2 -165.8 -165.4 

e (degrees) 

Fig. 3. The magnitude of the reflection coefficient for d = 0 versus phase 
at 1 GHz for a = 2.333 mm and 6 = 7.549 mm, = 2.15,  with 
fkb = (100. -100) where .z denotes current paper results and 0 denotes 
Hodgetts' results. 

IV. NUMERICAL RESULTS 
In order to check the analytical model a number of nu- 

merical solutions were generated. In Fig. 3 we compare our 
solution for the special case of no lift-off to the results of 
Hodgetts [13], [14]. In this limit, the agreement is excellent. 

Knowledge of the variation of the reflection coefficient as a 
function of lift-off is very important for many applications. In 
Figs. 4 and 5 we plot the variation of the magnitude and phase 
of the reflection coefficient as a function of lift-off over a lossy 
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Fig. 4. The magnitude of the reflection coefficient as a function of lift-off 
for various frequencies of a slab occupying the lower half space. The probe 
is assumed to have h = 14 mm and (/ = 6.08 mm with ~6~ = 2..54, 
6;- = (10. -l),  and six TMor, modes were used. 

2b x,, 
0 0.1 0.2 03 0.4 

Fig. 7. The phase in degrees as a function of coaxial line outer conductor 
radius, normalized to wavelength in air, of a slab of varying dielectric 
parameters occupying the lower half space. The computation uses h = .35 
mm and b / a  = 2.3, zero lift-off, and six TMo,, modes were used. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

d ("1 
Fig. S. The phase of the refection coefficient in degrees as a function of 
lift-off for various frequencies of a slab occupying the lower half space. 
The simulation uses b = 14 mm and (I = 6.08 mm with 6kc = 2.54, 
f G h  = (10. -1). and six T M o , ~  modes were used. 

1 .o 

0.9 

0.8 

0.7 
l r o l  

0.6 

0.5 

I 
0 0.1 0.2 0.3 0.4 

2b x;, 

0 4  ' 
Fig. 6.  The magnitude of the reflection coefficient as a function of coaxial 
line outer conductor radius, normalized to wavelength in air, of a slab of 
varying dielectric parameters occupying the lower half space. The computation 
uses D = 14 mm and (I = G.08 mm with fg ,  = 2.54, = (10 .  -1). zero 
lift-off, and S I X  TMo,, modes were used. 

dielectric. The reflection coefficient approaches 1 as lift-off 
increases. The approach to 1 is slower for higher frequencies. 
In Fig. 5, we see that the phase of the reflection coefficient 
approaches 0 as lift-off increases for the lower frequency 
measurements. At 1 GHz the phase does not attain 0. In Figs. 6 
and 7 we plot the variation of the magnitude and phase of the 
reflection coefficient as a function of coaxial line size. We see 
from Figs. 8 and 9 that even small air gaps can influence the 
solution greatly for high dielectric constant materials. Surface 
wave phenomena are also possible. The electrical size of the 

l.w , v 

0.59 

0.98 

0.97 

0.96 

0.95 

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1 

d (") 

Fig. 8. Magnitude of the reflection coefficient as a function of lift-off for 
various permittivities of a slab occupying the lower half space. Frequency is 
1 GHz, b = 3.5 mm, h / t r  = 2.3 ,  and six TMo,, modes were used. 

-120 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-120 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

d (") 

Fig. 9. Phase of the reflection coefficient in degrees as a function of lift-off 
for various pemnittivities of a slab occupying the lower half space. Frequency 
is 1 GHz, B = 14 mm, ( I  = 6.08 mm, c k c  = 2.54, and six TMo,, modes 
were used. 

coaxial line determines the field penetration from the end of 
the probe. For X >> b - (L the extrusion of the fields is minimal. 
In order for open-ended coaxial probes to operate effectively 
with lift-off, either larger probes or higher frequencies should 
be used. Waveguide modes can be excited. 

Figs. I O  and 1 1 show a measurement of reflection coefficient 
as a function of frequency. The results are compared to 
the theory. We see good overall agreement. Higher lift-off 
measurements agree better with theoretical predictions than 
lower lift-off measurements. 
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Fig. 10. The real part of the reflection coefficient as a function of lift-on‘ 
compared with theory, f:{,. = 2.51, 6;. = (G.l3,-.029), and six TMo,, 
modes were used. The o denotes experimental values. The combined standard 
uncertainty at zero lift-off due to the uncertainty in lift-off is U ,  = 0.045. 

In order to obtain simultaneous measurements of permittiv- 
ity and permeability two independent measurements must be 
made. This is accomplished for thin materials by measuring the 
material with and without a short-circuit backing. The short- 
circuit termination induces a stronger magnetic field than when 
an open circuit is used. Another approach is to measure the 
material with two different lift-off positions. The two measured 
scattering parameters are then used to form two equation5 
in two unknowns. As a typical magnetic measurement, the 
measured permeability of a ferrite using the probe at zero 
lift-off was pk = (.0113 -4.7). 

v. CONCLUSION 

In this paper we have developed a model for the electro- 
magnetic response of a coaxial probe with lift-off. The model 
incorporates a finite gap and finite sample thickness into the 
coaxial probe theory. The model is useful only to the extent 
that the experiments adhere to the underlying assumptions. 
For example, the probe used in the experiments has only 
a finite ground plane; also, the sample is considered to be 
infinitely long in the radial direction. Good agreement was 
obtained between measurements and theoretical predictions for 
the case of a semi-infinite sample with lift-off. The model was 
also shown to compare very well with published results at 
zero lift-off. In order to increase interaction of the fields with 

I 0 

5.5 I 
5.0L ’ ’ ’ ’ ’ ’ ’ 

0 1 2 3 4 5 6 7 8  
Llnoff (mm) 

Fig. 12. 
the inverse problem using measured reflection coefficient. 

The real part of the permittivity for a glass sample as obtained from 

the material under test either large diameter probes or higher 
frequencies need to be used. 

The analysis can be used to optimize probe size for a partic- 
ular nondestructive application. Probes with lift-off should be 
useful for nondestructive material property testing and material 
thickness testing. These types of probes could be particularly 
useful for nondestructive testing of substrates. 
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