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A Study of the NBS Time Scale Algorithm 
M. A. WEISS, D. W. ALLAN, AND TRUDI K. PEPPLER 

Abstract-Since 1968 the NBS time scale algorithm has been gener- 
ating a clock which is theoretically better than any of the individual 
clocks in its ensemble. In the last few years, thanks to the Global Po- 
sitioning System, we have been able to measure the time difference be- 
tween the NBS time scale algorithm and the other time standards 
around the world. We are able to study long-term stability of the order 
of years, and short-term stability of the order of days. We now have 
estimated fractional frequency stabilities for averaging times out to a 
year of about 1.5 X 

In this paper we study various aspects of the algorithm theoreti- 
cally, comparing the NBS algorithm with a Kalman filter to discuss 
questions of optimality. We see that since we do not measure the time 
of a clock, but only the time difference between clocks, a time scale 
should not attempt to optimize time accuracy, since that has no mean- 
ing. However, time uniformity and frequency stability can be opti- 
mized. 

We further study the practice of monitoring the clocks in a time 
scale for frequency steps, and removing a clock from the scale when a 
step has been detected until the new frequency is learned. We show 
that the effect of this practice on the algorithm is to translate random 
walk behavior in the individual clocks, due to the frequency steps of 
the clocks, to flicker noise for the ensemble. The implication here is 
that careful monitoring of the scale can significantly improve its long- 
term performance. 

I. INTRODUCTION 
TIME SCALE algorithm can enable a time labora- A tory to increase the stability, accuracy, and reliability 

beyond the performance level of the physical clocks in its 
ensemble. The NBS time scale algorithm is a three-tiered 
process, estimating time, weight, and frequency for each 
clock at each measurement cycle [ 11. It is an adaptive fil- 
ter, adjusting weights in each measurement cycle accord- 
ing to the size of the time residuals. The equations of the 
algorithm are shown in the Appendix. In this paper we 
study various aspects of the algorithm, stating the as- 
sumptions for which the estimate are optimal, discussing 
the validity of those assumptions, and deriving aspects of 
the algorithm not heretofore published. 

One interesting part of this study relates to an obser- 
vation which has been made with real clocks concerning 
the long-term stability of the algorithm. In practice the 
clocks in the ensemble generating the time scale are care- 
fully monitored. When a frequency step is detected in a 
clock, that clock is kept from contributing to the scale 
until the scale learns its new frequency. The effect of this 
practice on the algorithm is to translate random walk be- 
havior in the individual clocks, from the frequency steps 
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of the clocks, to flicker noise for the ensemble. This ten- 
dency has important implications for improving the long- 
term stability of an ensemble’s net performance. This ef- 
fect is investigated using simulation. 

11. THEORETICAL ANALYSIS 
We compare the NBS algorithm to the Kalman filter 

formalism. Time scales using a Kalman filter design have 
been studied elsewhere [2]-[6]. The purpose here is to use 
the theoretical least squares nature of the Kalman filter to 
compare to the NBS scale. First we study the structure of 
the NBS algorithm to verify its optimality for estimating 
the behavior of clocks. Second we consider the question 
of optimal weights. We find that, though the forms of the 
equations for predicting and updating clock estimates are 
identical, there is some disagreement over the weights the 
two methods consider optimal. 

Both algorithms allow states of time and frequency, x 
and y, for the clocks, as well as considering a constant 
frequency drift, D,  which is not estimated within either 
filter. The prediction forward in time is identical in the 
two algorithms. For each clock 

x(n + 1 )  = f ( n )  + y(n)  * 7 
y(n + 1 )  = 9(n)  + D * 7. 

The updates can be shown to be identical, if one 
matches the Kalman gains with weights and filter time 
constants in the NBS scale. 

For the Kalman, if X is the n-clock state vector: 

= y1, ’ Y xfl, yfl]’ 

and K is the Kalman gain vector: 

= [ k 1 7  k2? * ’ 9 k h - l ,  k ! n ] ’  
we may update sequentially n - 1 times, for each inde- 
pendent measurement xZ1 = clock, - clockl, using the 
measurement matrix h, , defined by 

H, * x = fi - fl. 

Then the ith update is 

x = 2 + K, * [Xil - fj + R I ]  

where the denotes the previous best estimate, either the 
last prediction, if this is the first update, or the last up- 
date. Previous work has documented some stochastic 
models for the commercial cesium beam clocks in the NBS 
ensemble [2] .  From this work it has been shown that a 
two-parameter model is efficient, namely, specifying the 
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white noise frequency modulation (FM) level and the ran- 
dom walk FM level. We denote these as U, and a,. This 
overall design for a Kalman filter estimating time from an 
ensemble of clocks has been used elsewhere [3] - [6] .  

For the NBS algorithm we update our estimate of the 
time of clock i against the scale, x, , using the weights for 
each clock, wI, and the measurements of clock i minus 
clock j : xZj:  

n 

x, = c WJ * (2] - x,). 
J = l  

We update our estimate of the frequency of clock i against 
the scale, y2, using an exponential filter: 

E l  = (x2@ + 4 - x l G ) > / T  

Yl  = (E2 + N, * Y J A 1  + W .  
In a two-clock system, the update equations are equiv- 

alent if we identify 

W ,  = kl ~2 = -k2 

l /(Nl + 1 )  = 7 * k 2 / k l  

1/(N2 + 1 )  = T * k4 /k3 .  

In a three-clock system, from algebraic manipulations we 
find that the update equations are equivalent under an 
identification. Recall that we now have two updates, 
hence, two Kalman gain vectors. Let us denote 

K~ = [ k 1 ,  i2, , I ~ ,  1 ~ 1 ’  
and 

K2 = [ k i ,  k2, * * * , k5, k ] ’ .  
Then there is a system of identifications for the time up- 
date as follows: 

~2 = kl + k1 * ( I 5  - I , ) ,  ~3 = kl 

~1 + ~3 = - I 3  - k3 * ( I 5  - I l ) ,  ~3 = k3 

~2 = I 5  + ks * ( I 5  - & I ) ,  W I  + W ,  = -k5. 

The system of identification for the frequency update is 

w 2 / [ ( N I  + 1) * T ]  = f 2  + k2 

* ( I 5  - 11)  
W 3 / [ ( N I  + 1) * 71 = k2 

- ( w l  + w 3 ) / [ ( N 2  + 1)  * 71 = I4 + k4 

* ( I ,  - I t l )  

W 3 / [ ( N 2  + 1 )  71 = k4 

* ( I 5  - I , )  
W 2 / [ ( N 3  + 1) * 71 = I 6  + k6 

- ( W 1  + W 2 ) / [ ( N 3  + 1 )  * T ]  = k6. 

We see that the Kalman filter, which is optimal in the 
least squares sense, is functionally identical with the NBS 
time scale algorithm given certain identifications of the 
weights. There remains the question whether these iden- 
tifications hold true in practice. Now, the NBS algorithm 
is adaptive; i.e., the weights vary as the measurements 
change. We can hope that in steady-state performance of 
the clocks, i.e., the adaptive weights become constant, 
the above identifications hold true asymptotically. 

For a two-clock realization of the NBS algorithm this 
is not possible. With only two clocks in the adaptive al- 
gorithm, the clock with the least random walk FM has 
weight 1 in the asymptotic limit. This makes sense theo- 
retically, since with only two clocks there is no way to 
separate them given only one measurement of their dif- 
ference. This can be seen mathematically in the equations 
for the algorithm by assuming a steady-state condition and 
attempting to solve for the weights. Either they are the 
same, or one is zero. The asymptotic value for the Kal- 
man gains, from theoretical computations with a fre- 
quency Kalman filter and from simulation, are the follow- 
ing functions of the white FM level, U,, and random walk 
FM level, a,: 

K’ = b,,J* a,*, --U,I? -f* %J’/(% + a,*) 

f =  CY * ( ( 1  + 4,’CY)1’2 - 1)/2 

CY = ( U ; ,  + 

where 

and 

+ U:,) .  

A special case of the above results has been published 
before by Barnes and Stein [5]. If we do fix the weights 
in the NBS algorithm for equivalence with the Kalman 
filter equations in the two-clock realization, there are two 
distributing observations. One is that the weights for time 
updates in the NBS algorithm become functions of only 
the random walk FM parameters. This is contrary to in- 
tuition and experience with the adaptive NBS algorithm, 
where the weights are typically proportional to 1 /o f .  Sec- 
ondly, the exponential filter time constants for frequency 
update become equal. Again it has been shown that the 
optimal value for this parameter is a function of U, and U, 

for each clock. 
For the three-clock realization, the asymptotic value for 

the Kalman gain is not known in closed form. But from 
simulation we see that the above problems still apply. For 
the identification, the weights for time updates would need 
to be functions of the a, values only. However, the values 
from the Kalman gains appear to be different from those 
of the adaptive NBS algorithm. Since both are optimal 
estimators in some sense, we must conclude that they are 
optimizing somewhat different things. 

The difference between the Kalman algorithm and the 
NBS time scale can be attributed to the nature of what a 
time scale is. We do not measure time. We measure time 
differences. We have no measurement of the time error of 
any clock, only time differences. A time scale does not 
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estimate time; it generates time. A time scale takes clock 
difference measurements and decides the offset from each 
of the clocks to define the time of the scale. This decision 
must be guided by optimality criterion. From the mea- 
sured time differences we can optimize stability of the 
scale, since there is enough information in the measure- 
ment of three clock differences to estimate clock vari- 
ances. We also have estimates of the process noise param- 
eters of the clocks from an estimate external to the 
algorithm. These can be used as guides to limit the devia- 
tion of the scale in time. If we wanted only to maintain 
as accurate a time estimate as possible, intuitively we 
should simply take the time of the clock with the smallest 
random walk FM. In fact, this is exactly what the Kalman 
formalism does. In deriving the Kalman formalism one 
minimizes the square of the time estimation error to de- 
termine the form of the equations. We argue that for a 
time scale this is not what we want. 

111. FREQUENCY STEPS IN COMMERCIAL CESIUM 
CLOCKS 

As mentioned above, it has been shown that a two-pa- 
rameter stochastic model for the commercial cesium beam 
clocks in the NBS ensemble is efficient; namely, speci- 
fying the white noise FM level and the random walk FM 
level. The white noise FM is theoretically well under- 
stood as to its source and level. The random walk FM is 
not. Whether this latter FM process has a Gaussian dis- 
tribution and/or whether the frequency changes occur as 
discrete steps or gradual changes is not known. Some re- 
cent work has indicated some possible causes for fre- 
quency steps [7]. 

There have been indications from some of the clock data 
that steps in frequency were a possible cause of the above 
random walk FM being a reasonable model. We have been 
investigating various efficient methods of frequency step 
detection. Over the years of running the NBS time scale 
AT1, from which UTC(NBS), the official time and fre- 
quency signal from the Bureau, is derived, we have com- 
pensated for these steps in various ways. Big steps are 
easy to sense. It is the small steps, less than a part in 1013, 
that can have adverse long-term effects on a time scale, 
effects that are difficult to detect. The smaller the step, 
the longer the integration time to detect it, which is con- 
trary to running a real-time scale. 

Recently, we have had some indication that because we 
have monitored these steps to minimize their adverse ef- 
fect, this effort has netted better long-term frequency sta- 
bility in our time scales, NBS(AT1) and UTC(NBS) [8]. 
Without monitoring these steps the long-term stability 
should be characterized by a random walk FM process, 
but at a level better than the best contributing clock. Ex- 
perimental evidence had indicated that monitoring them 
causes the long-term stability to improve to more like a 
flicker noise FM process. 

Since for integration times from a month to about a year 
this stability improvement represents a cost savings of the 
order of a million dollars, we felt it wise to study and 
document this stability improvement concept more care- 

fully. In other words, if no effort were made to compen- 
sate for the random walk FM in the NBS time scale clocks, 
we would need about four to 16 times as many clocks in 
order to achieve the same level of stability as with the 
frequency-step compensation. 

To study this concept theoretically was somewhat in- 
tractable, so we chose to study it by using simulated data. 
In this simulation we generate data using a random gen- 
erator to effect a white FM level of about 3.5 ns at one 
day in ten clocks with frequency steps occurring at ran- 
dom times of random sizes. The mean time interval be- 
tween steps was 175 days, with a standard deviation of 
40 days. The frequency steps were generated with a mean 
of 0 and a standard deviation of 1.2 ns/2 h. In attempting 
to simulate what is actually possible, a clock with a step 
was allowed to pull the scale off for a period of time until 
it was “discovered.” The time interval until discovery 
was proportional to the white FM level, and inversely 
proportional to the actual step size. The constant of pro- 
portionality was set to three different values. On one run 
of the program the steps were discovered after the fre- 
quency step produced a time deviation of twice the white 
FM level. On a second run the steps were discovered after 
the step pushed the time deviation to three times the white 
FM level. On a third run, the steps were never discov- 
ered. In both cases where steps were discovered, when a 
step was discovered the sigma for that clock was set large 
enough to keep it from contributing to the scale. After 
three times the time constant of the exponential filter for 
frequency, the sigma was reset to twice what it had been 
before the step. During the time of deweighting, the adap- 
tive algorithm learned the new frequency of the clock au- 
tomatically. 

Fig. 1 shows the ay ( T )  plot of four representative sim- 
ulated clocks in the ensemble. Fig. 2 shows the ay ( T )  plot 
of the scale itself, the result of the run where clocks were 
deweighted after time deviated to 2 * U,. Fig. 3 shows the 
analogous result, now deweighting clocks after time de- 
viates to 3 * oe. Fig. 4 shows the behavior of the scale 
when the clocks have not been removed at all after fre- 
quency steps. We see from comparing Figs. 2,  3,  and 4 
that the effect of monitoring the scale and tending to fre- 
quency steps can improve the scale at an integration time 
of 1 / 3  years (lo7 s) by a factor of 2 to 4. 

Since we have been talking about the NBS time scale 
algorithm acting on a simulated ensemble of clocks, we 
thought we would conclude with the actual performance 
of the atomic time scale at NBS, AT1. Fig. 5 gives an 
estimate of the stability of AT1 obtained from a three- 
comer hat estimate comparing it with PTB Cs. 1 and an 
ensemble made up of satellite clocks in the Global Posi- 
tioning System. The integration times range from ten to 
320 days. 

IV. CONCLUSIONS 
The NBS time scale algorithm is an adaptive filter pro- 

ducing a time scale whose short- and long-term stabilities 
are better than any of its contributing clocks. We have 
seen that the equations are optimal in the least squares 
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Fig. 1. Performance of four representative simulated clocks. All have a 
white FM level of 3.5 ns at one day and random frequency steps. 
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Fig. 2. Performance of the scale, the output of the algorithm, after oper- 
ating on an ensemble of simulated clocks. Clocks have been removed 
from the ensemble following a frequency step when the time deviation 
due to the step corresponds to twice the white FM level. 
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Fig. 3. Performance of the scale, the output of the algorithm, after oper- 
ating on an ensemble of simulated clocks. Clocks have been removed 
from the ensemble following a frequency step when the time deviation 
due to the step corresponds to three times the white FM level. 

sense by comparison with the Kalman filter formalism if 
weights for time update and time constants for frequency 
updates are identified properly with elements of the Kal- 
man gain vectors. We have noted that the actual weights 
and time constants used in the NBS algorithm, which have 
been shown to be optimal, differ from those used in the 
Kalman filter. The significant difference here is that the 
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Fig. 4. Performance of the time scale after the algorithm has operated on 
the simulated clock ensemble with no response to frequency steps. 
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Fig. 5.  An estimate of the stability of the actual NBS time scale, ATl,  
obtained from a three-comer hat estimate comparing it with clock Cs. 1 
of the Physikalisch Technische Bundesanstalt, Federal Republic of Ger- 
many, and an ensemble made up of satellite clocks in the Global Posi- 
tioning System. The integration times range from 10 to 320 days. 

Kalman formalism is designed to minimize time error, 
while the NBS algorithm optimizes time uniformity and 
frequency stability. Minimization of time error is a mean- 
ingless concept. 

We have also seen that the way in which an algorithm 
is maintained can be important. Carefully monitoring the 
behavior of clocks in an ensemble for frequency steps rel- 
ative to the scale can improve the stability of the scale at 
periods of 1/3 year by a factor of about 2-4. In other 
words, if no effort were made to compensate for the ran- 
dom walk FM due to observable frequency steps in the 
NBS time scale clocks, we would need about four to 16 
times as many clocks in order to achieve the same level 
of stability as with the frequency-step compensation. 

APPENDIX 
EQUATIONS OF THE NBS TIME SCALE ALGORITHM 

Dejinitions 

X ,  ( t ) ,  ( t )  estimates of time and frequency offsets, re- 
spectively, of clock i at time t with re- 
spect to some reference time scale; 
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predicted time offset of clock i at time t ;  
estimate of frequency of clock i at t Over the 

measured time difference between clocks i 

Equation (6) is the accumulated error in the estimate of Xi 
over the interval T. The additive term Ki accounts for the 
fact that the term in brackets on the right-hand side of (6) 
is biased because clock i is part of the ensemble. See (10) 
to calculate IC,. 

x1 ( t )  
U, (t,) 

interval t to t + 7; 
a n d j  at time t ;  

X1,W 

E i ( 7 )  

( E :  (7) ) 

0 indicates time average; 
7 time interval between measurements; 
NT 

n 
“mini 

accumulated error in time estimate of clock 

mean squared error in ensemble time over 
i over the interval T; 

the interval 7 at time t ;  

time constant of exponential filter to esti- 
mate the current mean squared error; 

number of clocks in the ensemble; 
value of 7 at minimum ay (7) on Allan vari- 

ance curve for clock i .  

Equations 
Time Estimate: 

2 i ( t  + r )  = X , ( t )  + Y,(t)r.  (1) 
Equation (1) forms a prediction of the time offset for each 
clock for the next measurement time ( t  + T )  based on the 
current estimates of time and filtered frequency. 

n 

4 ( t  + 7 )  = c W , ( 7 )  [2;(t + T )  - xjj(t + T ) ] .  (2) 
i =  I 

Equation (2) estimates the time offset of each c lock j  at 
time t + 7 given the measurements XG ( t  + 7). 

Frequency Estimate: 

x i ( t  + T )  - x ( t )  

7 
q t  + 7 )  = ( 3 )  

Equation (3) estimates the average frequency of each clock 
over the interval r based on the latest two estimates of Xi .  

1 
mi + 1 

K ( t  + 7) = ___ [ $ ( t  + T )  + m ; ~ , ( t ) ] .  (4) 

Equation (4) incorporates past measurements into an ex- 
ponentially filtered estimate of the current average fre- 
quency of clock i. The exponential frequency-weighting 
time constant ( m i )  is determined from the relative levels 
of white noise and random walk (or flicker) FM for clock 
i ( 5 ) .  

Equation ( 5 )  computes mi used in equation 4 to form the 
filtered estimate of the frequency of clock i .  This value of 
mi can be shown to minimize the error in predicting time 

Equation (7) is an exponential time filter for the deter- 
mination of the mean squared time error of each clock. 
Since the noise characteristics of a cesium clock may not 
be stationary, past measurements are deweighted in the 
averaging process. The time constant for the filter is typ- 
ically chosen to be N,  = 20 days. The initial value of 
( E?( 7) ) can be estimated as .’a;( r ) .  

Equation (8) forms an estimate of ensemble time error. 
Any clock can only improve this number-a poorly per- 
forming clock cannot harm the stability of the ensemble. 

(9) 

Equation (9) calculates the weight to be used in (2) for 
each clock. When calculated this way, the resulting error 
in ensemble time with respect to a perfect clock can be 
shown to be minimized in a least squares sensei 

Equation (10) estimates the bias in the error estimates 
from the first term on the right of (6). This error estimate 
is biased small, on the average, because each clock is a 
member of the ensemble and sees itself through its 
weighting factors. The larger a clock’s weight, the larger 
the bias. Under the assumption of a normal distribution 
of errors the size of the bias can be estimated as given by 
(lo), which is added to (5) in order to remove the bias, 
on the average [6 ] .  
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