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An Equivalent Transmission-Line Model Containing
Dispersion for High-Speed Digital Lines—With an
FDTD Implementation

Alberto Scarlatti and Christopher L. Hollowaylember, IEEE

Abstract—The increase in processor speeds in the last few yearswhere the transmission line parameters are approximated by
has created a growing need for the accurate characterization of Debye rational functions. It is illustrated how this equivalent-
waveform propagation on lossy printed-circuit-board (PCB) rans- 45 39mission-line model (i.e., the first-order Debye form) is

mission lines. Due to the dispersive nature of pulse propagation Il suited f imol tation into finite-diff fi
on lossy transmission lines, approximations of the classic trans- Well SUlted T1or easy impiementaton into nnite-aiierence ume-

mission-line model can fail in this application (i.e., lossless or dc domain (FDTD) transmission-line codes. Details of the FDTD
losses approximations). This paper will show how an equivalent- implementation are presented here.

transmission-line model can be used to analyze dispersive trans-  The conventional approach to analyzing propagation on
mission lines for high-speed digital applications. The equivalent- yansmission lines is to use the classic transmission-line model,

circuit elements of this transmission-line model incorporate the , . o . .
frequency dependence of the per unit length impedance and admit- and the telegrapher’s equations or transmission-line equations

tance caused by the finite conductivity of the conductors as well as [19]-[22]

the dielectric losses. We will show that these equivalent circuit el- v

ements can be readily implemented into finite-difference time-do- — 71

main (FDTD) transmission-line codes, and we will present such a 0z

FDTD implementation. S-parameters and pulsed waveforms for ol - YV 1
a circular wire, coplanar waveguides (CPW) and microstrip lines a9~ @)

are shown. Finally, we present approximate expressions for ana- ) L L
lytically obtaining the resistance and inductance per length of a Z andY represent, respectively, the distributed series impe-
microstrip line. dance and shunt admittance p.u.l. of the line and are defined

Index Terms—Equivalent transmission-line model, FDTD, fre- aS

guency dependent parameters, high-speed digital lines, lossy lines, ) )
signal integrity. Z=R+jwlL and Y =G+ jwC (2)

where R(Q2/m), L(H/m), C(F/m), and G(S/m) represent,
I. INTRODUCTION respectively, the per unit length (p.u.l.) series resistance, series
HE increase in processor speeds in the last few years jaductance, shunt capacitance and shunt conductance. In gen-
resulted in faster pulses on printed-circuit-board (PC al, all four of the transmission-line parameters are frequency
transmission-line structures. Faster pulses imply higher fl@@pendent [21]. The frequency-dependent naturéiof, C,

quency content than the electromagnetic compatibility (EM@NdG causes time-domain high-speed digital waveforms to alter
community has been concerned with in the past. ChandB§!f shape when propagating along a dispersive transmission

in high-frequency propagation characteristics can have S )
adverse effect on signal integrity in high-speed digital lines. A multiplication in the frequency-domain corresponds to a

This has spawned a growing need to understand and accura@ivolution in the time-domain, i.e.,

characterize the propagation of high-frequency waveforms on v(z,t) .
transmission-line structures for signal integrity issues. o, —Z(t) x i(z,1)
There are various techniques used to investigate frequency- di(z,1)
dependent transmission-line parameters [1]-[18]. These include 5, = V) xu(z1) 3)

lumped-element approximations, equivalent-transmission-line o .
models, the method of characteristics, closed-form approxin¥dbere represents a convolution integratiodi{¢) and J(¢)
tions, and time-domain Green’s function. In this paper we wifir€ respectively the inverse Fourier transforms of the distributed

concentrate on the use of an equivalent-transmission-line moBé{-|- series impedance and shunt admittance given in (2).
Because of this convolution and the impulsive natur ¢f)

. . _ and Y(t), an exact time-domain circuit model for dispersion
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Ridz Rydz a transmission line over a lossy ground which incorporated dis-
_W__w\__m_m_ persion effects due to the lossy ground. As discussed below, the
Rydz work in [1] is connected to the approach presented in [2] and
Lidz  Lpdz Cdz Gdz [3], and is the basis of the work in [4]. Other types of equiv-
alent-circuit models have been used in the past to represent

frequency-dependent parameters [5]-[9] (as discussed below).
Ldz While higher-order rational function approximations are pos-

—W— sible, it will be shown that the use of a first-order Debye form
Rdz Gidz 2Gydz  G,dz _l_ results in only a slight modification to the standard telegrapher’s
Cd=Cd:  Cde C“dz‘l' Gacdz equations. Hence, this equivalent-transmission-line model (i.e.,

T T the first-order Debye form) gives rise to more effective imple-

) mentation into FDTD transmission-line codes.
In this paper, we concentrate our efforts on frequency-depen-

Fig. 1. Equivalent circuit of thez-long transmission line: (a) representationd€nt/2 and L resulting from field penetration into the conduc-
of frequency dependetit andL, (b) representation of frequency dependént tors; hence only the equivalent-circuit model in Fig. 1(a) will
andc. be used for the example presented here. The netwakk ahd

R; shown in this figure allows for the distributed per unit length
where Ry, is the dc resistance p.u.l. of the line ahg is the parameters of the line to be expressed as the following:
dc inductance consisting of the external and internal inductance

p.u.l. of the line. On some occasions the internal part is ne- R_R 9 o L?/R; 6
glected. With these frequency-independent quantities, the trans- I ‘ 2 ©6)
mission-line equations have the following time-domain form: =11+ (_>
WA __piet) — 1,20 L= Lo + Z @)
oie. ) a<at> “”( )
i(z,t) v(z, t
5, = Gulzt) - O—p . (5) and
Z =R+ jwL (8)

This low-frequency model cannot accurately take into account
the dispersion of high-speed digital signals with signiﬁcarﬂr
high-frequency content. L;

Due to the smooth behavior of the frequency dependent Z = Rac + jwlex + MZ 14 jwg ©
R, L,G, and C, a Debye rational approximation can be
easily obtained for the quantities with a small number o¥hereRq is defined above anfl..: is the external inductance.
poles. The equivalent-circuit model shown in Fig. 1 has thiNote that the internal inductandg,,; is given by
type of first-order Debye representation for the distributed
transmission-line parameters. This equivalent transmission ZL (10)
. . . . mt
line is obtained by replacing the p.u.l. parameters of a stan-
dard transmission-line model with a series of?d. parallel
network and aC’G series network. ThekL parallel network This formulation can be used to approximate the exact values
represented in Fig. 1(a) corresponds to a model where off® /2 and L. In doing so, we must choose the number of poles
frequency-dependent p.u.l. resistance and inductaficand /V and determine the correspondifig and ;. In determining
L) of the transmission line are considered, while @@ series these parameters, we assumed that Bodnd L of the trans-
network represented in Fig. 1(b) corresponds to a model whéméssion-line structure are known. These reference values can
only frequency-dependent p.u.l. capacitance and conductaR€edbtained from analytic expression, measurement data, and/or
(G, i.e., dielectric loss and’) are considered. By combiningfull-wave numerical modeling. Oncg and L are known, then
these two models we can analyze the frequency-dependenc&ofnd L; for a givenN are obtained by an optimization pro-
all four transmission-line parameters. This first-order Debygedure which matches (9) to the known per unit length line
representation for the distributed transmission-line parameténpedance along the desired frequency range, as discussed in
is analogous to the classical approach of analyzing pulse pr&gction lIl. If the frequency-depende@itandG of a transmis-
agation through lossy materials in which a series of first-ordéion line are desired, the network model shown in Fig. 1(b) re-
Debye terms are used for frequency dependent permittivitysults in a similar set of Debye equations or

and permeability:, see [14] and [23]-[27]. N

This type of first-order Debye representation for p.u.l. se- G=a Z 02/G (11)
ries resistance and inductance was first introduced in [1]. In de e iE ( )
this virtually unknown Russian publication, Gumerova, Efimov,

and Kostenko [1] discussed how t#&d. parallel network por-
tion of this equivalent-circuit network could be used for ana- C=Cex+ Z ( ) (12)

lyzing low-frequency propagation of atmospheric discharge on i=1 1+
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and terms. Thus, the model presented here gives an alternative
Y = C + jwG (13) circuit-model interpretation of dispersion that can be easily
incorporated into FDTD transmission-line models.

or N Details of the FDTD implementation are presented here.
Y = Gac + jwCoxt +jw Y _G (14) Once the FDTD procedure is introducefkparameters and
' o —1 —|—jw% pulsed waveforms for circular wire lines, CPW, and microstrip

lines will be presented. We also show that the use of three

The formulation presented in (9) assures that the dc valuedoffour terms in the Debye model is all that is required to
R andL are captured. On the other hand, tfi¢ behavior ofR  accurately model the frequency-dependent parameters over the
and thel /+/f behavior ofL, are not guaranteed with this Debyefrequency range of interest.
model. However, the high-frequency accuracy of this approxi- This equivalent-transmission-line model requires the knowl-
mation improves with increasing number of poléqas shown edge of the frequency dependent p.u.l. transmission-line param-
below). eters (for examplek andLL). These parameters can be obtained

The present paper illustrates how this type of model can fiem either measured data, analytic results, and/or full-wave
used to determine thg-parameters and pulsed waveforms fopumerical results. Once the transmission-line parameters are
different types of planar transmission-line structures used fghown and the constant needed for the Debye rational fit are de-
PCB’s. Results for circular wire lines, coplanar waveguiddgsrmined, it is then possible to analyze pulse propagation. The
(CPW), and microstrip lines will be presented. We should nogxamples shown in this paper are based on transmission-line pa-
that rational functions for representing transfer functions s&meters obtained from measured data, analytic results, and/or
transmission lines (9) have been used in the past [2]-[5]. fiull-wave numerical results.
fact, the use of a series of first-order Debye terms that fall out

of this circuit model is the basis of the so-calléd-element [I. FINITE-DIFFERENCE TIME-DOMAIN (FDTD)
approach [2] and [3]. This illustrates that the model discussed IMPLEMENTATION OF THE EQUIVALENT
in the paper, together with [1], gives a circuit interpretation of TRANSMISSION-LINE MODEL

th('aA\II/V—element. ¢ ival ireuit skin-eff del The procedure for incorporating this circuit-model (i.e., a se-
ternative types of equivalent-circuit, skin-effect modelgiag o first_order Debye terms) into a FDTD transmission-lines

have been usedgindthg pabst tE re\pl)vrﬁselnt frequcle(ncy—fdepeT%ate is very similar to the manner in which Debye models for
parameters [S1-[9], dating back to Wheeler’s work on ormulg ssy magnetic ferrite materials have been implemented into

for the skin effect in the 40°s [10]. The models presented in [ DTD codes [27]. We will first show the procedure for one first-
[7]-[9] are referred to as the ladder model. It can be shown t er Debye term and then generalizeNofirst-order Debye

the ladder model results in rational function approximations fTérms Start by rewriting the first expression in (1) as
R andL as well. The higher-order rational functions that result '

from the ladder model can be implemented in FDTD trans- AV (w, z) .
mission-line codes with convolution integral approaches. The T or —jwlexi B (15)
alternative circuit model presented in this paper (i.e., a series of

first-order Debye terms) allows for an alternative FDTD formuwhere

lation that is analogous to the magnetic susceptibility term used

in an FDTD model of lossy magnetic ferrite materials [27], as B =
shown in the next section. This alternative FDTD formulation

results in a series of first-order differential equations, while the

ladder model results in higher-order differential equations (&ewriting (15) in the time-domain, the following expression re-
even integro-differential equations for some rational function®tesV andi:

that must be solved. As the number of circuit elements in the P . Ob(x. t
ladder model increase so does the order of the differential vz ) = —Lextﬂ.
equation, which adds to the complexity. On the other hand, as 9z ot

the number of circuit elements increase in the Debye modgl ysing a standard staggered space and time grid, the following

we need only to add additional first-order equations. In fagipdate equation for the discretizégk)™ is obtained
below it is shown that the use of first-order Debye terms

results in a set of equations that are equivalent to the standard, ..., " At /2 el /2
telegrapher’s transmission-line equations. While higher-orde@gh) = bk~ Lot Az [U(]H_ by - u(k)™ / }
rational functions can be implemented into FDTD code, the (18)
resulting equations require higher-order derivatives, and as

a result the simple connection to the standard telegraphenkere it is assumed = kAz andt = nAt. With this value
transmission-line equations is not possible. With this said,cdb(k)"*! and (16), an update expression f6k)"*! can be
connection exists between the higher-order rational functiashtained in the discretized time-domain.

used in the ladder model, and the series of first-order DebyeRewrite (16) as

terms used in this model. Recall that many higher-order rational

function can be re-expressed as a series of first-order Debye B=I+D+M (19)

Ry n Iy 1
jWLext Lext 1 +Jw%ll

+1| 1. (16)

17
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where
Ryc
= Nﬁ (20)
M= LI;; <ﬁ> I (21)
Note that
D+ M =xI (22)

wherey is analogous to the magnetic susceptibility used in lossy

materials [27], and is given by

Rye 1 Ly 1
= Tewjo | : 23
X Lext jw  Lexs <1 -I-jw%) (23)
Solving (20) forI and comparing to (19) yields
ijextD:B_D_M. (24)

dc
Equation (24) is transformed in the time-domain giving

Lext ad(z, t)
Ry. Ot

+d(z,t) + m(z,t) = b(z,1). (25)

An expression for the updating of bafl)™ andm (k)™ can be

obtained by using standard center-difference schemes

Ad(B)" T + m(k)" Tt = RS1 (26)
where
_ 2Lext
A= [—Rdg ~ T 1} (27)

507

and RS2 represents the known terms

RS2 = b(k)" Tt +b(k)”
2Lext _ Lext

RiAt Ly

— 1| m(k)" —d(k)". (33)
Equations (26) and (31) must be solved simultaneously to
give d(k)"*1 andm(k)"**. Finally, the update expression for
i(k)"*! is obtained from (19)

i(k)" T = b(k)" T — d(k)" T — m(k)" T, (34)
Oncei(k)"*t! is determined, a standard FDTD staggered
space-time scheme can be applied to the second expression in

(1) to obtain the following update far(k)"+3/2:

At

k n+3/2 _ k n+1/2
v(k) v(k) AL

[i(k)" Tt —i(k — 1)t .

(39)

A set of updating equations for the FDTD scheme can be
defined as

At
n+1 _ n _ n+1/2 _ n+1/2
b(k) - b(k) LextAZ |:U(k + 1) U(k) :|
n+l __ 1 _
Ay = 45— [QRS1 ~ RS2
n+l _ _
m(k)" T = A0-1 [ARS2 — RS1]

i) = D)™ — ()" — (k)

oy = (e — S iy ik -

n—+1
CA~ 1 ] )

(36)

and RS1 represents all the known values of the previouEhUSv we see that the first-order Debye approximation for the

time-step

2Lext
Ry At

RS1 =b(k)"™ + (k)" + [ - 1} d(k)"™ — m(k)™.

(28)

frequency-dependent parameters gives a set of equations that
are very similar to the discretized classical telegrapher’s trans-
mission-line equations. It can also be shown that a similar set of
equations are obtained for the equivalent-circuit model shown
in Fig. 1(b) (i.e., the model for frequency-dependérandG).

Note that (26) and (31) can be rewritten as an unique equation

In a similar manner, solving (21) faf and comparing to (19) by defining the new variable

results in

Lext
Ly

{1+jw£}M:B—D—M (29)

R
which is rewritten in the time-domain as

Lext Lext a m(z, t)
L R ot

+ 1} m(z,t) + +d(z,t) = b(z,¢).

(30)

By using standard center-difference schemes on the equation,
the needed second expression for the updating(bj” and

m(k)™ is obtained

d(k)" 4+ Qm(k)"tt = RS2 (31)
where
2Lext Lext
= 1 32
Q RiAt Ly + (32)

M =D+ M. 37)
However, this can only be done at the expense of requiring a
second-order time derivative approximation when solving for
M.

The procedure above can be generalized\idirst-order
Debye terms, in whiclB is re-expressed as

N
B=I1+D+3Y M, (38)
=1
where
o Rdc
B jw Lext
L; 1
Lext 1 +ij_i
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These expressions represent a seéVef 1 equations, resulting V. APPLICATION OF THEEQUIVALENT TRANSMISSION-LINE
from theD term andN differentM; terms, all written interms ~ MODEL TO DIFFERENT TRANSMISSION-LINE STRUCTURES

of I. However/[ is as yet unknown and a procedure similar to the In this section, the model is applied to three different trans-

H H H 1 pR— _— — ]\T . . . . H H i
aboveis usedtoeliminaei.e../ = B—D-5>_,_, M; Weare mission-line structures: a circular wire over a perfect conducting

left V\."th N+ 1 equaugng that car; be solved smu;anious(ij Vt?round plane, a CPW line and a microstrip line. For the circular
matrix inversion to obtain an update expressiondok)™ an wire transmission line, the frequency-depend&nand L are

each of then(k);"’s. Onced(k)" and them(k);""s are obtained o, analytically. For the CPW linegg and L are obtained

: N\l
the update expression fofp) IS from a full-wave numerical solution; for the microstriff,and

L are obtained from both measured data and from approximate
closed-form expressions. The time-domain results in this sec-

N
Synrtl — An+1l An+1l An+1
i)™ = blk) (k) ;m(k)i ’ (40) tion are excited by the following Gaussian pulse

Like all numerical approaches, in order to get accurate results u(t) = Vo exp <_ﬁ(t —2a)2> 1)

with this FDTD implementation, the transmission line must be o

divided into at least 10 cells per wavelength of the maximum

frequency of interest. with « = 0.35 ns,x = 10 and peak valudq, = 1 V. These
choices ofx andx ensure that the pulse has a frequency spectra

1. DEBYE APPROXIMATION PROCEDURE reaching a few gigahertz.

In representing the frequency-dependent behavior of a trans-
mission line by the model shown in Fig. 1(a), the numhyeof ) ) ) )
Debye terms and the unknown parametBfsand L; must be A circular wire over :'_:1 perfect conducting ground pl'ane with
chosen. The numbe¥ of Debye terms is related to the numbefadiusa = 0.1 mm, heighth = 25 mm and characterized by
of poles of the rational function expressed by (9) used to ap-conductivitys = 5.8 - 107 S/m is depicted in the insert of
proximate the per unit length impedance of the line. It will bE9- 2- & and L for this geometry are known analytically [22]
shown by numerical experimentation that a good matching f8Rd are also shown in Fig. 2. With these known valuek ahd
different types of transmission lines of fixed geometry along4 it iS Possible to determine the unknown constants in (6) and
frequency range reaching a few gigahertz is obtained using (@ for different values ofV. These unknown constants are ob-
more than three or four Debye terms. The relatively few numbgtin€d by the optimization procedure described in the previous
of terms provides an extremely simple model. Moreover, a thr€8Ction- Fig. 2 gives values @i and L as defined from (9), for
or four Debye terms rational function can be easily optimizedf €dual t0 1, 2, and 3. The convergence of the approximation
to match the smooth real and imaginary parts of the per uf"ve t0 the exact solution can be |mp_roved b)_/ increasing the
length impedance of the line. This can be done using a simfgmPerV of Debye terms, and a good fit over eight decades of

minimum least squares technique implemented in many cofffduency is obtained using thi€ = 3 Debye model. Notice
mercial mathematical programs. that the approximation foN = 3 agrees well with the analyt-

One needs to use caution and not blindly use optimizing roigal curve. Fig. 3 shows the error between the absolute values of

tines. In particularly, care must be taken in order to obtain poé-and the approximated Debye functions. Again, there is good

itive values for the Debye parameteks and ;. This is ac- adreement.

complished by optimizing for a parameter wherez is the .

square root of one of the unknowns (for exampfe= L;). By B. CPW Line

this method the Debye coefficients represent physical quantitiesA CPW line withw = 73 um, b = 49 pm, w, = 250 pm,

While nonpositive values aR; andL; can results in acceptablet = 0.5883 um, h = 254 um, ¢,, = 10 and metal conductivity

fits to the frequency-dependent parameters, nonpositive valves: 3.37-10” S/m is depicted in the insert of Fig. Z.andL for

lead to problems. Finally, if the analysis is focused in the highis geometry were obtained from a full-wave mode-matching

frequency range, it could be useful to considgr. andL;,; in  procedure [17] and are shown as dots in Fig. 4. With these

the Debye terms as unknown parameters gaining a better higiown values ofR and L it is possible to determine the un-

frequency match at the expense of the low frequency conv&nown constants in (6) and (7), for different valuesof Also

gence. shown in Fig. 4 are the approximate datafoandL, obtained
The vector-fitting procedure as presented in [28] can also frem (9), for N equal to 1, 2, 3, and 4. Notice the good cor-

used to determine the unknowns in the Debye approximaticglation obtained whet¥V > 3. Fig. 5 compares thg5; .| pa-

[4]. This vector-fitting procedure is more involved to impletameters for a 0.5 m long line, terminated at both ends with a

ment, but on the other hand, if we were needing several ternesistance of 52, obtained from the dc approximatio® @nd

in the rational approximation it would be the preferred choicd. independent of frequency) and with the Debye models with

We have compared results from the vector-fitting procedure different values ofV. It is interesting to note that the behavior

those obtained using the simple least squares approachesdrte line is achieved by increasing the number of poles of the

the results are very similar. approximating function, as clearly shown in Fig. 5.

Circular Wire Over a Ground Plane
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Fig. 2.
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R andL for a circular wire above a ground plane with= 0.1 mm andh = 25 mm obtained from analytic results and from the Debye model.
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Fig. 3. Percent error of the absolute valuesZofvith respect to the analytic
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results for a circular wire above a ground plane with= 0.1 mm andh

25 mm.

1E+10

and terminated at both ends with a resistance of5Qising

the dc approximation and the Debye model with three values
of N. These results are shown in Fig. 6. Notice that using
three or four Debye terms does not greatly change the shape
of the transmitted pulse confirming that three or four terms
are enough to characterize the line in the interested frequency
range. An alternative approach is to apply the FDTD procedure
discussed in Section Il. FDTD results for the transmitted pulse
shape along the same line for two valuesféfare shown in

Fig. 7. These figures compare the results of the inverse Fourier
transform from a frequency-domain model with the application
of the time-domain FDTD method. Note that both approaches
(the frequency-domain model and the FDTD model) yield
the same results for the saméth order Debye model. This
shows that implementing the FDTD model correctly models
dispersion. Notice how the dc approximation does not correctly
model dispersion.

Figs. 6 and 7 illustrate the effects of dispersion. The pulse is
broadened and exhibits the classic late-time tail, seen in time-
domain response of lossy media. From these figures we also see
that the dc approximation is not adequate for this example. The
pulse obtained from the dc approximation is larger in amplitude
and narrower in width. Notice however, that all three results in
these figures approach the same late-time values. This is due

Once the transmission-line parameters are obtained, puisehe fact that the late-time response corresponds to low-fre-
dispersion for a given length of line is investigated. Pulsguency in the frequency-domain, and as seen from Fig. 5, all
propagation can be obtained by solving in the frequency-dibwee cases (d¢y = 1, andN = 3) capture the same low-fre-
main and inverse Fourier transforming the results. This @ency frequency-dependent behavior. On the other hand, from
the frequency-domain to time-domain transformation methddgs. 6 and 7, the early-time response (the front edge of the
presented in [21]. The inverse Fourier transform approach waglse) which corresponds to high-frequency in the frequency-
used to obtain the pulse shape at the far end of a line 0.5 m latmmain is where three of the cases (8t,= 1, andN = 3)



510

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 43, NO. 4, NOVEMBER 2001
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Fig. 4. R andL fora CPW line withw = 73 gm,t = 0.5883 um, w, = 250 pm,b = 49 um, h = 254 gm, o = 3.37 - 107 S/m ande,- = 10 obtained from

numerical results and from the Debye model.
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Fig. 5. Magnitude of5;, for a CPW line withw = 73 pm, ¢t = 0.5883 pm,

¢, = 10 obtained from the dc approximation and from the Debye model.

differ. This is due to the fact that the frequency-dependent hgye havingw = 105 yum, t = 1.8 um, A = 254 um, €,

30
Debye: N=4
25 —
—————— Debye: N=3
] —>— Debye: N=1
20 —@— dc model
< -
£
o 15 —
S
k) 4
10 —
5 —
0 —pmman

3.0

Fig. 6. The transmitted pulse shape for a CPW line with= 73 pm, ¢
wy =250 pm,b =49 pm,h = 254 m,l =0.5m,e = 3.37-107" S/mand 0.5883 um, w, = 250 um,b = 49 pm,h = 254 um,l = 0.5m, o

5.0
Time (ns)
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3.37-107 S/m andk,. = 10 obtained from Fourier transform approach.

havior for all three cases began to deviate from one anothgr and metal conductivity = 3.3 - 107 S/m, is considered

first. Data forR and L for this structure were obtained from the

measurement procedure presented in [29] and [30]. With these

known values of2 and L we can determine the known constants
Two microstrip line geometries were analyzed. The insert (6) and (7) for different values d¥ . Measured data faR plus

of Fig. 8 shows a generic transverse cross-section. A microstapproximated data obtained from the optimized Debye models

around 200 MHz, as seen in Fig. 5.

C. Microstrip Line
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closed-form expressions fdt and L that ensure the dc limits
as well as the higher frequency limits.
In previous works [31]-[33], closed-form expressions for the

25 Debye: N=4 attenuation constants for various planar structures were derived.
B I T A Debye: N=3 These expressions have been shown to be valid/foft is the
2o ] —@— dcmodel strip thickness and is the skin depth) on the order of 1 and
greater. From these workg, per unit length, valid fot/6 > 1,

Voltage (mv)

can be obtained from

R =27« (42)
whereZ, is the characteristicimpedance of the line and the
attenuation constant. From the previous expression and f31],
for a microstrip line is given by

R
R= 5"2’ Q (43)
wT
3.0 35 40 45 5.0 5.5 6.0 6.5 7.0 where
Time (ns)
Q=1 (“’ 1) (44)
Fig. 7. The transmitted pulse shape for a CPW line with= 73 pm, ¢ = A

0.5883 pm, w, = 250 pm,b = 49 pm, h = 254 pm,l = 0.5 m, o

3.37 - 107 S/m andk,. = 10 obtained from the FDTD approach.

2.4

microstrip line
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Fig. 8. R for a microstrip line withw = 105 pgm,t = 1.8 um,h = 254 um,

and R,,,, is a modified surface impedance that takes into ac-
count coupling between the top and bottom of the strip and is
given in [31]. A is a parameter that is a function of edge shape,
strip thickness, and skin depth, and is given in [31]-[33]. Un-
fortunately, due to the inherent assumptions made in the deriva-
tion of this expressionfz does not reduce to the dc limif2

will vary monotonically from its dc value to thg'f behavior at
higher frequency. Such a variation can be approximated by the
following expression:

2t

R, =Rt [Rdc - %Q} (45)

where R is given in (43) andRy. = 1/(wto). This expres-

sion assures thak,. is obtained for small values of the skin

depth. Expression (45) has been compared to the measured data

in Fig. 8 with differences no larger than 4%. Comparisons to

other structures show similar or better correlation.
An approximate expression fdr has a similar form

Ln = Lext + Linte%m (46)
whereL.,; is the external inductance given in [34] ahg,; is
the dc internal inductance. Since approximate formulas for the

o =3.3-107 S/mande, = 10 obtained from the measured results and fromnternal inductancé;,,, of a microstrip line exist only for small

the Debye model.

aspect ratios, a numerical code is used for the calculation of its
dc value [35]. The line impedandéand admittanc&” can now
be approximated by the following expressions:

with ¥ = 1 andN = 4 are shown in Fig. 8. Notice that the data
for N = 4 agrees well with the measured data.

. . . Z =R, + jwL, 47
Measured data aR and L for arbitrary microstrip structures
are not always available. Hence closed-form expressiong for2"
andL are desirable. However, expressionsfandL that are Y =G+ jwC (48)

valid over a large frequency range (i.e., dc to ten’s of GHz) have
not been readily available. Here, we will introduce approximatehereCj is given in [36].
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Fig. 9. R andL for a microstrip line withew = 355.6 um, ¢ = 35.05 um, h = 180 um, ¢ = 5.8 - 107 S/m ande,. = 4.5 obtained from the closed-form
formulation and from the Debye model.

While the closed-form expressions given in (45) and (4t 140

accurately predict the frequency-dependent behavidt ahd h
L, they are not causal. Alternative causal closed-form expre  o0.95 —|
sions are found in [17], but, the expressions in [17] inaccurate -
predict the low-frequency inductance. However, by fitting th  0.90 —
first-order Debye model to the expressions given in (45) al 7
(46), we are not only insured a causal presentatiornZiobut 0.85
. . . 4 Closed-form

we are insured that the low-frequency behaviodbénd L is
captured. =77 | Debye: N=3

A microstrip line havingw = 355.6 um, t = 35.05 um, 2 N —>&— Debye: N=1
h = 180 um, ¢, = 4.5 and conductivity of the metal strips | —@— dc model
o = 5.8 -107 S/m, is considered. The line iIs= 1 m long 0.70 —
and is terminated at both ends with a resistakce= 50 (2. 4
This configuration is characterized by a dc internal inductan  0.65 —
Liyy ~ 1.575 - 10~® H/m. Fig. 9 showsRk and L obtained by -
optimizing the Debye model for variou¥ to the closed-form 0.60 —
model given in (45) and (46). Note that the small relative dit 7
ference between the imaginary partﬂffor N =3 Debye 0.55 LB LLL I IR LL B B B IR LLLL B B R ELLL I R
model and that of (46) still results in a good characterizatic 1E+4 1845 1E+6 1E+7 1E+8 1e+9  1E+10

Frequency (Hz)

of Z; below it is shown that the approximation leads to ver,

good results for the transmitted waveforms. The approximati,@_\@ 10. Magnitude o, for a microstrip line withw = 355.6 um, ¢ =

of L and R can be further improved if additional terms in the5.05 ym,h = 180 um,l = 1 m, o = 5.8 - 107 S/m andk,. = 4.5 obtained

Debye model are used. Fig. 10 compalrﬁﬁﬂ obtained from from the closed-form formulation and from the Debye model.

the closed-form model to the Debye model for two valued’of

The Debye model data agree well with the reference results ford the Debye approximation. As expected, whemcreases,

N > 3. the FDTD results approach the reference results. Once again,
FDTD results for transmitted pulse shapes at the far endmdtice how poorly the dc approximation matches the exact

the line for various values olV are shown in Fig. 11. This solution for the pulse, due to its neglect of high-frequency

figure compares the closed-form model, the dc approximatiagntent.
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Fig.11. Thetransmitted pulse shape for a microstrip line wits 355.6 zm,
t = 35.05 um, k. = 180 um,l = 1 m,o = 5.8 - 107 S/m ande,, = 4.5
obtained from the closed-form formulation and from the FDTD approach.

V. CONCLUSION

In this paper, we have illustrated how an equivalent-tra
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sides PCB applications. Another very important application for
this FDTD model is in electromagnetic coupling onto lossy ca-
bles onboard aircraft. Furthermore, the usefulness and impor-
tance of one-dimensional FDTD transmission-line models is il-
lustrated in [37], where it is shown that simple one-dimensional
FDTD transmission-line models can accurately predict the char-
acteristics of pulse propagation on complicated PCB config-
urations when compared to full three-dimensional numerical
models.

In the paper, we used the circuit model shown in Fig. 1(a)
to investigate dispersion uniquely associated with frequency-
dependenkz and L. The effects of frequency-dependénand
@ (i.e., dielectric loss) can be incorporated by the equivalent-
circuit model shown in Fig. 1(b). By combining the two models
in Fig. 1, frequency-dependeRt L, G, andC can be analyzed.
This will be the topic of future work as well as the extension
of this equivalent-transmission-line model to multi-conductor
transmission lines.

Obviously, frequency-dependent transmission-line parame-
ters will cause a pulse to distort as it propagates down aline. The
propagating pulse distortion is a function of the frequency con-
tent of the pulse, the length of the line, and the amount of losses
in the line. In some situations a simple dc model or even a loss-
less transmission-line model is adequate for analyzing signal
integrity. But, in general, one cannot say when simple models
can be used and when a more detailed model is required. Future
work is needed in order to lay out some guidelines about when

mission-line model can be used to analyze dispersive transniélPle transmission-line models can be used to analyze pulse
sion lines for high-speed digital applications. The intent of tH¥©0Pagation on lossy lines.
model is that, oncé? and L are known, it can be used to char-

acterize signal dispersion on transmission lines. Therefore, to
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transmission-line parameters can be obtained by various means.
We illustrated that this model can be used to accurately approx-
imate the frequency-dependent parameters obtained from meem
sured data, full-wave numerical data, and analytical models of
andZ with the use of only three or four first-order Debye terms.
Such a simple model can be used to investigate signal integrit)P]
for lossy transmission lines. Moreover the advantage of the cir-
cuit model presented here (i.e., a series of first-order Debyd3
terms) is that it can be very easily incorporated into FDTD
transmission-line codes used to solve pulse propagation. Such]
a procedure was presentefiparameters and pulsed waveform
outputs for circular wire, CPW, and microstrip lines were pre-
sented and compared to known results. Notice that the proposei!
method is suitable for time-domain analysis whenever nonlinear
loads are connected to the line investigated. The simplicity of(e]
the Debye equivalent circuit transmission-line model allows for
easy implementation into commercial circuit simulation solvers, [7)
such as SPICE. Both the FDTD and SPICE implementation re-
quire only a few seconds of run time, resulting in efficiency in (8]
analyzing pulse dispersion and signal integrity on lossy trans-
mission lines.

This FDTD implementation of frequency-dependent trans-
mission-line parameters can be applied to other problems be-
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