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An Equivalent Transmission-Line Model Containing
Dispersion for High-Speed Digital Lines—With an

FDTD Implementation
Alberto Scarlatti and Christopher L. Holloway, Member, IEEE

Abstract—The increase in processor speeds in the last few years
has created a growing need for the accurate characterization of
waveform propagation on lossy printed-circuit-board (PCB) trans-
mission lines. Due to the dispersive nature of pulse propagation
on lossy transmission lines, approximations of the classic trans-
mission-line model can fail in this application (i.e., lossless or dc
losses approximations). This paper will show how an equivalent-
transmission-line model can be used to analyze dispersive trans-
mission lines for high-speed digital applications. The equivalent-
circuit elements of this transmission-line model incorporate the
frequency dependence of the per unit length impedance and admit-
tance caused by the finite conductivity of the conductors as well as
the dielectric losses. We will show that these equivalent circuit el-
ements can be readily implemented into finite-difference time-do-
main (FDTD) transmission-line codes, and we will present such a
FDTD implementation. -parameters and pulsed waveforms for
a circular wire, coplanar waveguides (CPW) and microstrip lines
are shown. Finally, we present approximate expressions for ana-
lytically obtaining the resistance and inductance per length of a
microstrip line.

Index Terms—Equivalent transmission-line model, FDTD, fre-
quency dependent parameters, high-speed digital lines, lossy lines,
signal integrity.

I. INTRODUCTION

T HE increase in processor speeds in the last few years has
resulted in faster pulses on printed-circuit-board (PCB)

transmission-line structures. Faster pulses imply higher fre-
quency content than the electromagnetic compatibility (EMC)
community has been concerned with in the past. Changes
in high-frequency propagation characteristics can have an
adverse effect on signal integrity in high-speed digital lines.
This has spawned a growing need to understand and accurately
characterize the propagation of high-frequency waveforms on
transmission-line structures for signal integrity issues.

There are various techniques used to investigate frequency-
dependent transmission-line parameters [1]–[18]. These include
lumped-element approximations, equivalent-transmission-line
models, the method of characteristics, closed-form approxima-
tions, and time-domain Green’s function. In this paper we will
concentrate on the use of an equivalent-transmission-line model
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where the transmission line parameters are approximated by
Debye rational functions. It is illustrated how this equivalent-
transmission-line model (i.e., the first-order Debye form) is
well suited for easy implementation into finite-difference time-
domain (FDTD) transmission-line codes. Details of the FDTD
implementation are presented here.

The conventional approach to analyzing propagation on
transmission lines is to use the classic transmission-line model,
and the telegrapher’s equations or transmission-line equations
[19]–[22]

(1)

and represent, respectively, the distributed series impe-
dance and shunt admittance p.u.l. of the line and are defined
as

and (2)

where , and represent,
respectively, the per unit length (p.u.l.) series resistance, series
inductance, shunt capacitance and shunt conductance. In gen-
eral, all four of the transmission-line parameters are frequency
dependent [21]. The frequency-dependent nature of ,
and causes time-domain high-speed digital waveforms to alter
their shape when propagating along a dispersive transmission
line.

A multiplication in the frequency-domain corresponds to a
convolution in the time-domain, i.e.,

(3)

where represents a convolution integration; and
are respectively the inverse Fourier transforms of the distributed
p.u.l. series impedance and shunt admittance given in (2).

Because of this convolution and the impulsive nature of
and , an exact time-domain circuit model for dispersion
is difficult; hence, approximations are usually used. One such
approximation that is typically used can be thought of as a low-
frequency model. In this model, and are assumed to be
independent of frequency, where

and (4)
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Fig. 1. Equivalent circuit of thedz-long transmission line: (a) representation
of frequency dependentR andL, (b) representation of frequency dependentG

andC.

where is the dc resistance p.u.l. of the line and is the
dc inductance consisting of the external and internal inductance
p.u.l. of the line. On some occasions the internal part is ne-
glected. With these frequency-independent quantities, the trans-
mission-line equations have the following time-domain form:

(5)

This low-frequency model cannot accurately take into account
the dispersion of high-speed digital signals with significant
high-frequency content.

Due to the smooth behavior of the frequency dependent
, and , a Debye rational approximation can be

easily obtained for the quantities with a small number of
poles. The equivalent-circuit model shown in Fig. 1 has this
type of first-order Debye representation for the distributed
transmission-line parameters. This equivalent transmission
line is obtained by replacing the p.u.l. parameters of a stan-
dard transmission-line model with a series of a parallel
network and a series network. The parallel network
represented in Fig. 1(a) corresponds to a model where only
frequency-dependent p.u.l. resistance and inductance (and

) of the transmission line are considered, while the series
network represented in Fig. 1(b) corresponds to a model where
only frequency-dependent p.u.l. capacitance and conductance
( , i.e., dielectric loss and ) are considered. By combining
these two models we can analyze the frequency-dependence of
all four transmission-line parameters. This first-order Debye
representation for the distributed transmission-line parameters
is analogous to the classical approach of analyzing pulse prop-
agation through lossy materials in which a series of first-order
Debye terms are used for frequency dependent permittivity
and permeability , see [14] and [23]–[27].

This type of first-order Debye representation for p.u.l. se-
ries resistance and inductance was first introduced in [1]. In
this virtually unknown Russian publication, Gumerova, Efimov,
and Kostenko [1] discussed how the parallel network por-
tion of this equivalent-circuit network could be used for ana-
lyzing low-frequency propagation of atmospheric discharge on

a transmission line over a lossy ground which incorporated dis-
persion effects due to the lossy ground. As discussed below, the
work in [1] is connected to the approach presented in [2] and
[3], and is the basis of the work in [4]. Other types of equiv-
alent-circuit models have been used in the past to represent
frequency-dependent parameters [5]–[9] (as discussed below).
While higher-order rational function approximations are pos-
sible, it will be shown that the use of a first-order Debye form
results in only a slight modification to the standard telegrapher’s
equations. Hence, this equivalent-transmission-line model (i.e.,
the first-order Debye form) gives rise to more effective imple-
mentation into FDTD transmission-line codes.

In this paper, we concentrate our efforts on frequency-depen-
dent and resulting from field penetration into the conduc-
tors; hence only the equivalent-circuit model in Fig. 1(a) will
be used for the example presented here. The network ofand

shown in this figure allows for the distributed per unit length
parameters of the line to be expressed as the following:

(6)

(7)

and

(8)

or

(9)

where is defined above and is the external inductance.
Note that the internal inductance is given by

(10)

This formulation can be used to approximate the exact values
for and . In doing so, we must choose the number of poles

and determine the corresponding and . In determining
these parameters, we assumed that bothand of the trans-
mission-line structure are known. These reference values can
be obtained from analytic expression, measurement data, and/or
full-wave numerical modeling. Once and are known, then

and for a given are obtained by an optimization pro-
cedure which matches (9) to the known per unit length line
impedance along the desired frequency range, as discussed in
Section III. If the frequency-dependentand of a transmis-
sion line are desired, the network model shown in Fig. 1(b) re-
sults in a similar set of Debye equations for

(11)

(12)
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and

(13)

or

(14)

The formulation presented in (9) assures that the dc values of
and are captured. On the other hand, the behavior of

and the behavior of are not guaranteed with this Debye
model. However, the high-frequency accuracy of this approxi-
mation improves with increasing number of poles(as shown
below).

The present paper illustrates how this type of model can be
used to determine the-parameters and pulsed waveforms for
different types of planar transmission-line structures used for
PCB’s. Results for circular wire lines, coplanar waveguides
(CPW), and microstrip lines will be presented. We should note
that rational functions for representing transfer functions of
transmission lines (9) have been used in the past [2]–[5]. In
fact, the use of a series of first-order Debye terms that fall out
of this circuit model is the basis of the so-called-element
approach [2] and [3]. This illustrates that the model discussed
in the paper, together with [1], gives a circuit interpretation of
the -element.

Alternative types of equivalent-circuit, skin-effect models
have been used in the past to represent frequency-dependent
parameters [5]–[9], dating back to Wheeler’s work on formulas
for the skin effect in the 40’s [10]. The models presented in [6]
[7]–[9] are referred to as the ladder model. It can be shown that
the ladder model results in rational function approximations for

and as well. The higher-order rational functions that result
from the ladder model can be implemented in FDTD trans-
mission-line codes with convolution integral approaches. The
alternative circuit model presented in this paper (i.e., a series of
first-order Debye terms) allows for an alternative FDTD formu-
lation that is analogous to the magnetic susceptibility term used
in an FDTD model of lossy magnetic ferrite materials [27], as
shown in the next section. This alternative FDTD formulation
results in a series of first-order differential equations, while the
ladder model results in higher-order differential equations (or
even integro-differential equations for some rational functions)
that must be solved. As the number of circuit elements in the
ladder model increase so does the order of the differential
equation, which adds to the complexity. On the other hand, as
the number of circuit elements increase in the Debye model,
we need only to add additional first-order equations. In fact,
below it is shown that the use of first-order Debye terms
results in a set of equations that are equivalent to the standard
telegrapher’s transmission-line equations. While higher-order
rational functions can be implemented into FDTD code, the
resulting equations require higher-order derivatives, and as
a result the simple connection to the standard telegrapher’s
transmission-line equations is not possible. With this said, a
connection exists between the higher-order rational function,
used in the ladder model, and the series of first-order Debye
terms used in this model. Recall that many higher-order rational
function can be re-expressed as a series of first-order Debye

terms. Thus, the model presented here gives an alternative
circuit-model interpretation of dispersion that can be easily
incorporated into FDTD transmission-line models.

Details of the FDTD implementation are presented here.
Once the FDTD procedure is introduced,-parameters and
pulsed waveforms for circular wire lines, CPW, and microstrip
lines will be presented. We also show that the use of three
to four terms in the Debye model is all that is required to
accurately model the frequency-dependent parameters over the
frequency range of interest.

This equivalent-transmission-line model requires the knowl-
edge of the frequency dependent p.u.l. transmission-line param-
eters (for example, and ). These parameters can be obtained
from either measured data, analytic results, and/or full-wave
numerical results. Once the transmission-line parameters are
known and the constant needed for the Debye rational fit are de-
termined, it is then possible to analyze pulse propagation. The
examples shown in this paper are based on transmission-line pa-
rameters obtained from measured data, analytic results, and/or
full-wave numerical results.

II. FINITE-DIFFERENCETIME-DOMAIN (FDTD)
IMPLEMENTATION OF THE EQUIVALENT

TRANSMISSION-LINE MODEL

The procedure for incorporating this circuit-model (i.e., a se-
ries of first-order Debye terms) into a FDTD transmission-lines
code is very similar to the manner in which Debye models for
lossy magnetic ferrite materials have been implemented into
FDTD codes [27]. We will first show the procedure for one first-
order Debye term and then generalize tofirst-order Debye
terms. Start by rewriting the first expression in (1) as

(15)

where

(16)

Rewriting (15) in the time-domain, the following expression re-
lates and

(17)

By using a standard staggered space and time grid, the following
update equation for the discretized is obtained

(18)

where it is assumed and . With this value
of and (16), an update expression for can be
obtained in the discretized time-domain.

Rewrite (16) as

(19)
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where

(20)

(21)

Note that

(22)

where is analogous to the magnetic susceptibility used in lossy
materials [27], and is given by

(23)

Solving (20) for and comparing to (19) yields

(24)

Equation (24) is transformed in the time-domain giving

(25)

An expression for the updating of both and can be
obtained by using standard center-difference schemes

(26)

where

(27)

and represents all the known values of the previous
time-step

(28)

In a similar manner, solving (21) for and comparing to (19)
results in

(29)

which is rewritten in the time-domain as

(30)

By using standard center-difference schemes on the equation,
the needed second expression for the updating of and

is obtained

(31)

where

(32)

and represents the known terms

(33)

Equations (26) and (31) must be solved simultaneously to
give and . Finally, the update expression for

is obtained from (19)

(34)

Once is determined, a standard FDTD staggered
space-time scheme can be applied to the second expression in
(1) to obtain the following update for :

(35)

A set of updating equations for the FDTD scheme can be
defined as

(36)

Thus, we see that the first-order Debye approximation for the
frequency-dependent parameters gives a set of equations that
are very similar to the discretized classical telegrapher’s trans-
mission-line equations. It can also be shown that a similar set of
equations are obtained for the equivalent-circuit model shown
in Fig. 1(b) (i.e., the model for frequency-dependentand ).

Note that (26) and (31) can be rewritten as an unique equation
by defining the new variable

(37)

However, this can only be done at the expense of requiring a
second-order time derivative approximation when solving for

.
The procedure above can be generalized tofirst-order

Debye terms, in which is re-expressed as

(38)

where

for (39)
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These expressions represent a set of equations, resulting
from the term and different terms, all written in terms
of . However, is as yet unknown and a procedure similar to the
above is used to eliminate, i.e., . We are
left with equations that can be solved simultaneously via
matrix inversion to obtain an update expression for and
each of the ’s. Once and the ’s are obtained
the update expression for is

(40)

Like all numerical approaches, in order to get accurate results
with this FDTD implementation, the transmission line must be
divided into at least 10 cells per wavelength of the maximum
frequency of interest.

III. D EBYE APPROXIMATION PROCEDURE

In representing the frequency-dependent behavior of a trans-
mission line by the model shown in Fig. 1(a), the numberof
Debye terms and the unknown parametersand must be
chosen. The number of Debye terms is related to the number
of poles of the rational function expressed by (9) used to ap-
proximate the per unit length impedance of the line. It will be
shown by numerical experimentation that a good matching for
different types of transmission lines of fixed geometry along a
frequency range reaching a few gigahertz is obtained using no
more than three or four Debye terms. The relatively few number
of terms provides an extremely simple model. Moreover, a three
or four Debye terms rational function can be easily optimized
to match the smooth real and imaginary parts of the per unit
length impedance of the line. This can be done using a simple
minimum least squares technique implemented in many com-
mercial mathematical programs.

One needs to use caution and not blindly use optimizing rou-
tines. In particularly, care must be taken in order to obtain pos-
itive values for the Debye parameters and . This is ac-
complished by optimizing for a parameter, where is the
square root of one of the unknowns (for example, ). By
this method the Debye coefficients represent physical quantities.
While nonpositive values of and can results in acceptable
fits to the frequency-dependent parameters, nonpositive values
lead to problems. Finally, if the analysis is focused in the high
frequency range, it could be useful to consider and in
the Debye terms as unknown parameters gaining a better high
frequency match at the expense of the low frequency conver-
gence.

The vector-fitting procedure as presented in [28] can also be
used to determine the unknowns in the Debye approximation
[4]. This vector-fitting procedure is more involved to imple-
ment, but on the other hand, if we were needing several terms
in the rational approximation it would be the preferred choice.
We have compared results from the vector-fitting procedure to
those obtained using the simple least squares approaches and
the results are very similar.

IV. A PPLICATION OF THEEQUIVALENT TRANSMISSION-LINE

MODEL TO DIFFERENTTRANSMISSION-LINE STRUCTURES

In this section, the model is applied to three different trans-
mission-line structures: a circular wire over a perfect conducting
ground plane, a CPW line and a microstrip line. For the circular
wire transmission line, the frequency-dependentand are
known analytically. For the CPW line, and are obtained
from a full-wave numerical solution; for the microstrip,and

are obtained from both measured data and from approximate
closed-form expressions. The time-domain results in this sec-
tion are excited by the following Gaussian pulse

(41)

with ns, and peak value V. These
choices of and ensure that the pulse has a frequency spectra
reaching a few gigahertz.

A. Circular Wire Over a Ground Plane

A circular wire over a perfect conducting ground plane with
radius mm, height mm and characterized by
a conductivity S/m is depicted in the insert of
Fig. 2. and for this geometry are known analytically [22]
and are also shown in Fig. 2. With these known values ofand

, it is possible to determine the unknown constants in (6) and
(7) for different values of . These unknown constants are ob-
tained by the optimization procedure described in the previous
section. Fig. 2 gives values of and as defined from (9), for

equal to 1, 2, and 3. The convergence of the approximation
curve to the exact solution can be improved by increasing the
number of Debye terms, and a good fit over eight decades of
frequency is obtained using the Debye model. Notice
that the approximation for agrees well with the analyt-
ical curve. Fig. 3 shows the error between the absolute values of

and the approximated Debye functions. Again, there is good
agreement.

B. CPW Line

A CPW line with m, m, m,
m, m, and metal conductivity
S/m is depicted in the insert of Fig. 4.and for

this geometry were obtained from a full-wave mode-matching
procedure [17] and are shown as dots in Fig. 4. With these
known values of and it is possible to determine the un-
known constants in (6) and (7), for different values of. Also
shown in Fig. 4 are the approximate data forand , obtained
from (9), for equal to 1, 2, 3, and 4. Notice the good cor-
relation obtained when . Fig. 5 compares the pa-
rameters for a 0.5 m long line, terminated at both ends with a
resistance of 50 , obtained from the dc approximation (and

independent of frequency) and with the Debye models with
different values of . It is interesting to note that the behavior
of the line is achieved by increasing the number of poles of the
approximating function, as clearly shown in Fig. 5.
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Fig. 2. R andL for a circular wire above a ground plane witha = 0.1 mm andh = 25 mm obtained from analytic results and from the Debye model.

Fig. 3. Percent error of the absolute values ofZ with respect to the analytic
results for a circular wire above a ground plane witha = 0.1 mm andh =
25 mm.

Once the transmission-line parameters are obtained, pulse
dispersion for a given length of line is investigated. Pulse
propagation can be obtained by solving in the frequency-do-
main and inverse Fourier transforming the results. This is
the frequency-domain to time-domain transformation method
presented in [21]. The inverse Fourier transform approach was
used to obtain the pulse shape at the far end of a line 0.5 m long

and terminated at both ends with a resistance of 50, using
the dc approximation and the Debye model with three values
of . These results are shown in Fig. 6. Notice that using
three or four Debye terms does not greatly change the shape
of the transmitted pulse confirming that three or four terms
are enough to characterize the line in the interested frequency
range. An alternative approach is to apply the FDTD procedure
discussed in Section II. FDTD results for the transmitted pulse
shape along the same line for two values ofare shown in
Fig. 7. These figures compare the results of the inverse Fourier
transform from a frequency-domain model with the application
of the time-domain FDTD method. Note that both approaches
(the frequency-domain model and the FDTD model) yield
the same results for the same-th order Debye model. This
shows that implementing the FDTD model correctly models
dispersion. Notice how the dc approximation does not correctly
model dispersion.

Figs. 6 and 7 illustrate the effects of dispersion. The pulse is
broadened and exhibits the classic late-time tail, seen in time-
domain response of lossy media. From these figures we also see
that the dc approximation is not adequate for this example. The
pulse obtained from the dc approximation is larger in amplitude
and narrower in width. Notice however, that all three results in
these figures approach the same late-time values. This is due
to the fact that the late-time response corresponds to low-fre-
quency in the frequency-domain, and as seen from Fig. 5, all
three cases (dc, , and ) capture the same low-fre-
quency frequency-dependent behavior. On the other hand, from
Figs. 6 and 7, the early-time response (the front edge of the
pulse) which corresponds to high-frequency in the frequency-
domain is where three of the cases (dc, , and )
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Fig. 4. R andL for a CPW line withw = 73 �m, t = 0:5883 �m,w = 250 �m, b = 49 �m,h = 254 �m,� = 3:37 � 10 S/m and� = 10 obtained from
numerical results and from the Debye model.

Fig. 5. Magnitude ofS for a CPW line withw = 73 �m, t = 0:5883�m,
w = 250�m,b = 49 �m,h = 254�m, l = 0:5 m,� = 3:37 � 10 S/m and
� = 10 obtained from the dc approximation and from the Debye model.

differ. This is due to the fact that the frequency-dependent be-
havior for all three cases began to deviate from one another
around 200 MHz, as seen in Fig. 5.

C. Microstrip Line

Two microstrip line geometries were analyzed. The insert
of Fig. 8 shows a generic transverse cross-section. A microstrip

Fig. 6. The transmitted pulse shape for a CPW line withw = 73 �m, t =
0:5883 �m, w = 250 �m, b = 49 �m, h = 254 �m, l = 0:5 m, � =

3:37 � 10 S/m and� = 10 obtained from Fourier transform approach.

line having m, m, m,
and metal conductivity S/m, is considered

first. Data for and for this structure were obtained from the
measurement procedure presented in [29] and [30]. With these
known values of and we can determine the known constants
in (6) and (7) for different values of . Measured data for plus
approximated data obtained from the optimized Debye models
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Fig. 7. The transmitted pulse shape for a CPW line withw = 73 �m, t =
0:5883 �m, w = 250 �m, b = 49 �m, h = 254 �m, l = 0:5 m, � =

3:37 � 10 S/m and� = 10 obtained from the FDTD approach.

Fig. 8. R for a microstrip line withw = 105�m, t = 1:8 �m,h = 254�m,
� = 3:3 � 10 S/m and� = 10 obtained from the measured results and from
the Debye model.

with and are shown in Fig. 8. Notice that the data
for agrees well with the measured data.

Measured data of and for arbitrary microstrip structures
are not always available. Hence closed-form expressions for
and are desirable. However, expressions forand that are
valid over a large frequency range (i.e., dc to ten’s of GHz) have
not been readily available. Here, we will introduce approximate

closed-form expressions for and that ensure the dc limits
as well as the higher frequency limits.

In previous works [31]–[33], closed-form expressions for the
attenuation constants for various planar structures were derived.
These expressions have been shown to be valid for( is the
strip thickness and is the skin depth) on the order of 1 and
greater. From these works,per unit length, valid for ,
can be obtained from

(42)

where is the characteristic impedance of the line andis the
attenuation constant. From the previous expression and [31],
for a microstrip line is given by

(43)

where

(44)

and is a modified surface impedance that takes into ac-
count coupling between the top and bottom of the strip and is
given in [31]. is a parameter that is a function of edge shape,
strip thickness, and skin depth, and is given in [31]–[33]. Un-
fortunately, due to the inherent assumptions made in the deriva-
tion of this expression, does not reduce to the dc limit.
will vary monotonically from its dc value to the behavior at
higher frequency. Such a variation can be approximated by the
following expression:

(45)

where is given in (43) and . This expres-
sion assures that is obtained for small values of the skin
depth. Expression (45) has been compared to the measured data
in Fig. 8 with differences no larger than 4%. Comparisons to
other structures show similar or better correlation.

An approximate expression for has a similar form

(46)

where is the external inductance given in [34] and is
the dc internal inductance. Since approximate formulas for the
internal inductance of a microstrip line exist only for small
aspect ratios, a numerical code is used for the calculation of its
dc value [35]. The line impedanceand admittance can now
be approximated by the following expressions:

(47)

and

(48)

where is given in [36].
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Fig. 9. R andL for a microstrip line withw = 355:6 �m, t = 35:05 �m, h = 180 �m, � = 5:8 � 10 S/m and� = 4:5 obtained from the closed-form
formulation and from the Debye model.

While the closed-form expressions given in (45) and (46)
accurately predict the frequency-dependent behavior ofand

, they are not causal. Alternative causal closed-form expres-
sions are found in [17], but, the expressions in [17] inaccurately
predict the low-frequency inductance. However, by fitting the
first-order Debye model to the expressions given in (45) and
(46), we are not only insured a causal presentation for, but
we are insured that the low-frequency behavior ofand is
captured.

A microstrip line having m, m,
m, and conductivity of the metal strips

S/m, is considered. The line is m long
and is terminated at both ends with a resistance .
This configuration is characterized by a dc internal inductance

H/m. Fig. 9 shows and obtained by
optimizing the Debye model for various to the closed-form
model given in (45) and (46). Note that the small relative dif-
ference between the imaginary part offor Debye
model and that of (46) still results in a good characterization
of ; below it is shown that the approximation leads to very
good results for the transmitted waveforms. The approximation
of and can be further improved if additional terms in the
Debye model are used. Fig. 10 compares obtained from
the closed-form model to the Debye model for two values of.
The Debye model data agree well with the reference results for

.
FDTD results for transmitted pulse shapes at the far end of

the line for various values of are shown in Fig. 11. This
figure compares the closed-form model, the dc approximation,

Fig. 10. Magnitude ofS for a microstrip line withw = 355:6 �m, t =
35:05 �m,h = 180 �m, l = 1 m,� = 5:8 � 10 S/m and� = 4:5 obtained
from the closed-form formulation and from the Debye model.

and the Debye approximation. As expected, whenincreases,
the FDTD results approach the reference results. Once again,
notice how poorly the dc approximation matches the exact
solution for the pulse, due to its neglect of high-frequency
content.
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Fig. 11. The transmitted pulse shape for a microstrip line withw = 355:6�m,
t = 35:05 �m, h = 180 �m, l = 1 m, � = 5:8 � 10 S/m and� = 4:5
obtained from the closed-form formulation and from the FDTD approach.

V. CONCLUSION

In this paper, we have illustrated how an equivalent-trans-
mission-line model can be used to analyze dispersive transmis-
sion lines for high-speed digital applications. The intent of the
model is that, once and are known, it can be used to char-
acterize signal dispersion on transmission lines. Therefore, to
effectively use this model one needs to know a priori the fre-
quency-dependent transmission-line parametersand . These
transmission-line parameters can be obtained by various means.
We illustrated that this model can be used to accurately approx-
imate the frequency-dependent parameters obtained from mea-
sured data, full-wave numerical data, and analytical models of
and with the use of only three or four first-order Debye terms.
Such a simple model can be used to investigate signal integrity
for lossy transmission lines. Moreover the advantage of the cir-
cuit model presented here (i.e., a series of first-order Debye
terms) is that it can be very easily incorporated into FDTD
transmission-line codes used to solve pulse propagation. Such
a procedure was presented.-parameters and pulsed waveform
outputs for circular wire, CPW, and microstrip lines were pre-
sented and compared to known results. Notice that the proposed
method is suitable for time-domain analysis whenever nonlinear
loads are connected to the line investigated. The simplicity of
the Debye equivalent circuit transmission-line model allows for
easy implementation into commercial circuit simulation solvers,
such as SPICE. Both the FDTD and SPICE implementation re-
quire only a few seconds of run time, resulting in efficiency in
analyzing pulse dispersion and signal integrity on lossy trans-
mission lines.

This FDTD implementation of frequency-dependent trans-
mission-line parameters can be applied to other problems be-

sides PCB applications. Another very important application for
this FDTD model is in electromagnetic coupling onto lossy ca-
bles onboard aircraft. Furthermore, the usefulness and impor-
tance of one-dimensional FDTD transmission-line models is il-
lustrated in [37], where it is shown that simple one-dimensional
FDTD transmission-line models can accurately predict the char-
acteristics of pulse propagation on complicated PCB config-
urations when compared to full three-dimensional numerical
models.

In the paper, we used the circuit model shown in Fig. 1(a)
to investigate dispersion uniquely associated with frequency-
dependent and . The effects of frequency-dependentand

(i.e., dielectric loss) can be incorporated by the equivalent-
circuit model shown in Fig. 1(b). By combining the two models
in Fig. 1, frequency-dependent , and can be analyzed.
This will be the topic of future work as well as the extension
of this equivalent-transmission-line model to multi-conductor
transmission lines.

Obviously, frequency-dependent transmission-line parame-
ters will cause a pulse to distort as it propagates down a line. The
propagating pulse distortion is a function of the frequency con-
tent of the pulse, the length of the line, and the amount of losses
in the line. In some situations a simple dc model or even a loss-
less transmission-line model is adequate for analyzing signal
integrity. But, in general, one cannot say when simple models
can be used and when a more detailed model is required. Future
work is needed in order to lay out some guidelines about when
simple transmission-line models can be used to analyze pulse
propagation on lossy lines.
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