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Properties and mechanisms of perceptual priming 
Cheri L Wiggs and Alex Martin* 

Recent evidence suggests 

decreased 

neural responses 

multiple repetitions, resistant to 

manipulations stimulus attributes (e.g. size and 

location), and occur independently of awareness. These and 

other recent findings (e.g. from functional brain imaging in 

humans) suggest that perceptual priming may be mediated 

by decreased neural responses associated with perceptual 

learning. 
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Abbreviations 

ERP event-related potential 

PET positron emission tomography 

Introduction 
Perceiving and identifying an object or word is improved 

by experience with that object or word. For instance, 

people typically have lower perceptual identification 

thresholds for repeated stimuli, and are faster and more 

accurate at naming or reading repeated stimuli compared 

with new stimuli [l]. This nonconscious form of memory, 

referred to as perceptual priming, has motivated a large 

body of research aimed at revealing the phenomenon’s 

underpinnings. By and large, unique properties have been 

attributed to perceptual priming, suggesting that it may 

reflect a distinct memory system. A particularly important 

finding is that perceptual priming is preserved in amnesia, 

despite patients’ devastating impairments on explicit tests 

of episodic memory (i.e. tests, such as recognition or 

recall, that require conscious recollection of information 

tied to a specific context; see [Z’] for a recent report). 

This dissociation provides key evidence for the existence 

of multiple memory systems [3,4], although this view is 

not without its opponents [.5,6*]. 

In this review, we summarize current data indicating that 

perceptual priming operates according to rules distinct 

from episodic memory. We begin by reviewing recent 

advances in documenting the general behavioral properties 

of perceptual priming, including how these properties are 

affected over the life span. We then turn to neurophy- 

siological research in animals, as well as neuroimaging 

and neurological research in humans, that has examined 

neural mechanisms for priming. The scope of this review 

is limited to visual perceptual priming; we will not 

address issues related to semantic priming, procedural 

tasks (e.g. pursuit rotor task), priming in other modalities 

(e.g. auditory, haptic), or conceptual priming tasks that 

do not involve visual processes (e.g. category exemplar 

production task). We do, however, include reports of tasks 

that are primarily perceptual but may include a conceptual 

component (e.g. stem completion [7”]). 

General properties of perceptual priming 
Although previous reviews have described general prop- 

erties of priming (e.g. [S]), recent findings have expanded 

the boundaries of these properties. For instance, it has long 

been noted that, whereas retention on standard explicit 

memory tests typically declines with the passage of time 

[9], perceptual priming effects are long-lasting in normal 

adults [lO,ll] and amnesic patients [l&13]. Recently, 

Cave [14**] documented that perceptual priming can be 

detected on an object-naming task after as much as a 

48week delay between the first and second exposure of 

an item. Although priming diminished as delays increased, 

it remained significant, even in subjects who performed 

at chance on recognition. Thus, even with chance-level 

performance on explicit tests, priming can still be detected 

in normal subjects. These results imply that performance 

on priming and explicit tasks is independent. 

Recent findings have not only expanded the boundaries of 

perceptual priming, but, in some cases, have also altered 

the previous conception of what these properties are. 

Although perceptual priming has been characterized as ‘all 

or none’ [lo], recent evidence suggests it is incremental 

and can be modulated by the number of repetitions. The 

amount of priming increases with multiple repetitions, 

and this advantage remains over week-long delays [lS]. 

The percent decline over one week (relative to delays 

of several minutes) is less after multiple repetitions than 

for single exposures of stimuli. Moreover, priming is 

sensitive to the actual number of repetitions [16,17*]. That 

is, the magnitude of priming increases significantly with 

each additional exposure to a stimulus. This finding is 

in line with performance on explicit tests of memory, 

as subjects are generally accurate in judging how often 

an event occurred [18]. However, the graded nature of 

priming is reliable, even in patients who are unable to 

remember the stimuli or judge frequency on explicit tests 

[ 17’1. These findings suggest that a mechanism exists that 

automatically monitors how often an item repeats and that 

this mechanism operates outside of conscious awareness. 

Perceptual priming is sensirive to changes in physical 

appearance m some Instances, but not others. In general. 
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alterations made in stimulus attributes (e.g. color, pattern, 

luminance, contrast, location, left-right reflection, and 

size) impair performance on explicit tests [19-Z?], but 

priming tends to be similar whether the stimuli are 

changed or unchanged from one presentation to another 

([19-241; but see [‘ZS]). At the same time, perceptual 

priming can be attenuated when stimuli are changed 

so as to affect the ability to identify stimulus form. 

Specifically, priming is not affected by relatively small 

changes in orientation (i.e. rotations in depth up to 

67”) but is eliminated by large changes in orientation 

(i.e. rotations in depth280”) [26]. Furthermore, priming is 

diminished (but still present) with changes in an object’s 

exemplar (i.e. a different picture of the same-named 

object) [23,24], and with changes in a word’s typography 

[27-291 from study to test. These results suggest that 

physical attributes that are not essential to the formation 

of a shape representation (e.g. color) do not influence 

perceptual priming. In contrast, physical attributes that are 

essential to the representation of object form (e.g. line 

elements of drawings) or written word form (e.g. print 

typography of letters) do influence perceptual priming. 

Perceptual priming is typically unaffected by the same 

interference manipulations that impair episodic memory 

on explicit tests. It is well established that attention 

is beneficial, if not essential, for successfully retrieving 

information on explicit tests of memory (see e.g. [30]). 

Yet, the degree of attention devoted to encoding typically 

does not affect the magnitude of priming. Thus, when 

attention is divided during encoding, priming is no 

different than when attention is focused [31]. Priming 

is as strong following the presentation of irrelevant 

information (i.e. information eliciting little attention) than 

following the presentation of information to which subjects 

attend [32]. 

Perhaps even more striking are reports of perceptual 

priming in the absence of conscious perception. Intact 

priming has been reported for information presented 

auditorily during anesthesia [33]. Bar and Biederman 134.1 

extended such findings to the visual domain. Subjects 

were shown line drawings of objects that were masked 

to produce very low levels of identification accuracy. 

When the same objects were shown a second time, 

identification accuracy increased significantly, even though 

recognition memory for those objects was at chance. This 

phenomenon, however, occurred only for stimuli that were 

physically identical to the stimuli presented previously. 

Counter to the evidence reviewed earlier, changing the 

location of the object reduced (but did not eliminate) 

priming. hloreover, priming was extinguished when the 

object presented at test had the same name as, but a 

diffcrcnt physical form than, the object presented at study. 

‘I‘hesc data suggest that perceptual priming does not 

require the same degree of encoding as do explicit tests 

of memory. Nevertheless, attentional manipulations can 

impair perceptual priming under certain conditions. In 

particular, some minimal level of attention at encoding 

must be attained for priming to occur [35]. Furthermore, 

where attention is directed when an item recurs can affect 

the degree of priming. For instance, MacLeod [36] asked 

subjects to study words and later measured priming on 

two tasks: one required subjects to read words (ignoring 

the print color of the words), whereas the other required 

subjects to name the print color of the words (ignoring the 

words). Priming occurred for the word reading task but not 

the color naming task. Thus, in this case, reading a word at 

study facilitated reading that word again at test, but did not 

affect performance on a test in which reading the word was 

irrelevant (i.e. color naming). Thus, perceptual priming 

reflects an interplay between the processes required when 

first encoding an item and when it repeats. If a previously 

encoded item is not in the focus of attention when it 

reappears, and is unnecessary to accomplish the task 

at hand, the fact that it was recently processed is not 

influential. 

Developmental course of priming 
Given that the properties of perceptual priming are 

distinct from those of episodic memory in young adults, 

do priming and episodic memory also have different 

developmental courses? Infants once were believed to 

have only a single primitive memory system (priming), 

with episodic memory unfolding later in development 

[37]. However, current evidence suggests that many of the 

nonverbal tests used with infants in fact measure rudimen- 

tary forms of episodic memory. This new interpretation is 

attributable to two general findings. First, developmental 

changes (e.g. longer retention spans, increased memory 

capacity) have been found in infant memory paradigms, 

such as conditioning [38”], object search paradigms [39], 

and deferred imitation [40]. Second, amnesic patients are 

impaired on some of these same tasks (37,411. 

What, then, in infants, reflects the perceptual priming 

phenomena found in adults? Researchers have attempted 

to measure an analog of priming in pre-verbal infants 

[38**,42]; however, the paradigms are quite different from 

those used with adults. Hence, interpretation of these data 

is problematic. Although limitations in the experimental 

methods available for infants have made it difficult to 

study perceptual priming in infants, data for older children 

come from paradigms that mirror those used with adults, 

and thus are more comparable to the adult literature. 

Typically, as children grow older, one sees improvement 

on explicit tests of memory, but no changes in priming 

1431. Moreover, the properties of priming appear to remain 

stable across the developmental time line. For instance, 

similar to reports with adults, children show smaller but 

significant priming effects after changes in an object’s 

exemplar compared with same-item primes, and this effect 

does not vary with the children’s age [44*]. 
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The effect of advancing age on performance in priming 

and explicit tasks is that older adults are inferior to younger 

adults on most explicit tasks of episodic memory, but, 

in general, they do not differ from younger adults on 

perceptual priming tasks (for reviews, see [45,46’]; but see 

also [47]). Moreover, many of the properties of perceptual 

priming remain intact. For example, priming in young and 

elderly subjects shows similar incremental changes with 

repetition [16] and similar attenuation with changes in 

typography [29,48]. However, it remains to be determined 

whether all properties are unaffected. For example, is 

priming as long-lasting in the elderly as in the young? 

Taken together, these studies suggest a pattern of memory 

performance over the life span that depicts an inverted 

U-shaped function for explicit tasks of episodic memory 

and a relatively flat function for perceptual priming [49]. 

In other words, performance on explicit tasks initially 

improves with age (in children), and then declines with 

advancing age (in the elderly), but priming remains 

relatively stable from age 3 to 80. These findings suggest 

that the systems subserving perceptual priming and 

episodic memory have distinct developmental trends over 

the life span. Nevertheless, more work is needed to 

establish whether all properties are conserved over the life 

span. 

A neural mechanism for perceptual priming 
The behavioral data reviewed above suggest that percep- 

tual priming and episodic memory depend on different 

memory systems in the brain. What has been lacking, 

however, is evidence that each type of memory system 

is associated with different types of neural mechanisms. 

Recent data from single-cell recordings from monkey cor- 

tex, functional brain imaging and event-related potential 

(ERP) studies of normal human subjects, and behavioral 

studies of brain-damaged humans, provide converging 

evidence about the neural mechanism that mediates 

perceptual priming. These data provide a biological basis 

for distinguishing priming from other forms of memory. 

Repetition suppression 

In 1987, Brown et aL. [SO] and Baylis and Rolls [.51] 

reported that some neurons in the monkey’s ventral tem- 

poral lobe had a reduced response to the re-presentation 

of a stimulus, but not to the presentation of novel items. 

Since then, several studies have appeared that have begun 

to define the properties of this ‘repetition suppression’ 

effect (for recent reviews, see [52**,53’]): 

1. Approximately a quarter [53*] to one-third [54] of infe- 

rior temporal lobe neurons show repetition suppression. 

2. Although repetition suppression has been recorded 

most often from the inferior temporal cortex (including 

area TE, perirhinal, and entorhinal cortex) [55,.56*], the 

phenomenon has also been observed in other regions 

(e.g. prefrontal cortex) [57*]. 

3. Repetition suppression is stimulus specific, occurring 

even when a large number of items (> 150) intervene 

between repeated presentations of an item [58]. 

4. Repetition suppression appears to be long-lasting. 

Neurons show a reduced response to the re-presentation 

of a specific item with delays of up to 24 hours (the longest 

delay tested) [59]. 

5. Repetition suppression is graded. Neurons show a 

continual reduction in firing rate with each presentation, 

up to six to eight repetitions, after which the response 

plateaus to approximately 40% of its initial firing rate [.58]. 

Thus, the response continues to reduce as the stimulus 

becomes more familiar. 

6. Repetition suppression survives object transformations 

of size and location, suggesting that it operates on a 

relatively abstract structural representation [60]. 

7. Repetition suppression can be recorded during passive 

fixation [61], under anesthesia [62], and after cholinergic 

blockade .[63], suggesting that it is an automatic, intrinsic 

response of cortical neurons. 

8. The onset of repetition suppression can be very short, 

occurring approximately 1OOms after the onset of the 

initial neural response for a repeated item, and in as little 

as 10ms after the third repetition of an item [58]. 

9. Repetition suppression occurs when an item is re- 

peated, regardless of its behavioral significance. Miller 

and Desimone [64] studied working memory using a 

delayed matching-to-sample task in which some of the 

distractor items, presented during the interval between 

the first and second presentation of the target item, also 

repeated. Under these conditions, repetition suppression 

was associated with item repetition, regardless of whether 

the repeated item was a distractor or the target. Therefore, 

repetition suppression did not convey information about 

a specific item that was behaviorally significant (i.e. the 

item that the monkey had to respond to in order to 

obtain a reward). In contrast, another population of cells 

showed the opposite response: an enhanced response to 

item repetition. Critically, this enhanced response occurred 

only when the target items, not the distractor items, 

were repeated, suggesting that these neurons conveyed 

information about the behaviorally relevant item. 

These properties of repetition suppression mirror many 

of the salient behavioral characteristics of perceptual 

priming (e.g. it is long-lasting, shows a graded response, 

and is resistant to manipulations of particular stimulus 

attributes and awareness). These parallels suggest that 

repetition suppression is a good candidate for the mech- 

anism mediating perceptual priming. Indeed, supporting 

evidence for this idea has come from human neuroimaging 

studies, which have documented an association between 
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Figure 1 
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Mustration of the changes in a neuronal network representing visual object features as a function of repeated experience. As an object is 

presented repeatedly, neurons coding features that are not essential for recognizing the object decrease their responses (from black to gray 

to white), thereby weakening connections with other neurons in the ensemble (from black, to open lines, to no lines). As a result, the network 

becomes both sparser and more selective, yielding enhanced object identification. 

perceptual priming and decreased neural activity (see 

[7”] for a recent review). Several studies using positron 

emission tomography (PET) have reported reduced cere- 

bral blood flow (and thus a reduced neural response) 

associated with stem-completion priming [65-671. In each 

study, the reduction was observed in posterior ventral 

occipitotemporal cortex (stronger on the right than on 

the left). Reduced activity, however, was not limited to 

this region, but was also reported (in one or more of the 

studies) in insular, parietal, and prefrontal cortices, as well 

as the thalamus and basal ganglia. 

Similarly, using functional magnetic resonance imaging 

(fMRI), Demb et al. [68] found 
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While single-cell recordings from monkey cortex and 

human functional brain imaging studies have shown that 

reduced activity is most common in, though not limited 

to, temporal and occipital cortices, recent studies of brain- 

damaged patients suggest that the occipitotemporal region 

may be the critical site for mediating perceptual priming. 

For example, a patient with a right occipital lobectomy 

studied by Gabrieli and colleagues [71,72] had impaired 

perceptual priming as measured by word identification 

and stem-completion tasks. This finding is consistent 

with the reduced activity in right occipitotemporal regions 

reported in PET studies of stem-completion [65-671 

and with behavioral evidence [73] in normal subjects. 

Importantly, the patient’s recognition memory for the same 

words used in the priming studies was intact. However, 

the patient was not impaired on all perceptual priming 

tasks. For example, he showed normal facilitation on 

an object-naming priming task (JDE Gabrieli et al., Sot 
Neurosci Ah- 1994, 20:413). This suggests that the critical 

brain region(s) mediating perceptual priming may vary 

as a function of the specific priming task employed (for 

additional evidence of impaired priming following damage 

to the occipitotemporal region, see [74,75]). 

Linking repetition suppression and behavioral 

performance 

Behaviorally, visual perceptual priming is defined by 

improved processing of previously seen material, relative 

to novel material (e.g. decreased naming times for an 

object). How might this behavioral effect be linked to 

reduced neuronal activity? A likely possibility, suggested 

by Desimone [52**], is that repeated experience with 

a novel item leads to a sharpening of the stimulus 

representation in the cortex (i.e. a representation of 

the essential features needed to identify the object). 

In this view, it is the neurons that continue to give a 

robust response when items recur that carry the critical 

information about the object. The neurons showing a 

decreased response, on the other hand, are dropping out of 

the responsive pool, perhaps because they encode features 

not needed to identify that specific object (although, 

presumably they would be critical for the identification 

of other objects). Thus, repetition suppression is a 

by-product of this sharpening process occurring in the 

cortex. Experience leads to both a smaller representation 

(with respect to the number of neurons maintaining their 

response rate) and a more selective representation (limited 

to critical stimulus-specific features that these neurons 

encode) (Figure 1). This more selective, or sharpened, 

representation would then result in a faster, more efficient, 

behavioral response. Moreover, this process happens 

automatically in the cortex. Repetition suppression is an 

intrinsic property of cortical neurons, providing a form of 

perceptual learning that allows us to identify previously 

encountered objects quickly and efficiently. 

Squire, Dan Schacter, Kaja Parasuraman. and Leslie 

Ungerleider for rhcir insightful comments on the manuscript. 
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