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Abstract

The process of establishing quantitative constitutive relations is illustrated on the example of strain hardening: a phenomeno-
logical analysis in parallel with the derivation of physics-based combinations of variables; both followed by the use a sufficient
set of experimental data to firm up unknown parameters or even unknown functions; and the eventual return to an assessment
of the more detailed physical mechanisms that are suggested by the observed behavior. It is emphasized that a physics-based
algebraic expansion around an accessible standard state is more reliable than a grand overall equation. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In the years leading up to 1975, Ali Argon, Mike
Ashby and myself worked together on the ‘Thermody-
namics and Kinetics of Slip’ [1], one of the most
pleasant and most enlightening cooperative endeavors
of my scientific career. This book dealt with the yield
strength only or, in any case, with the behavior of
materials at constant structure. In the same year, 1975,
Ali Argon published a book he edited on ‘Constitutive
Equations in Plasticity’ [2], to which the author also
contributed [3], but in which many chapters dealt with
changes in structure with straining. A central paper by
Hart et al. [4] dealt with the problem of casting the
effects of metallurgical structure in terms of the phe-
nomenological concept of material state. Constitutive
relations are meant to describe macroscopic material
behavior — based, if possible, on the microscopic
mechanisms underlying this behavior but, in any case,
involving only macroscopically measurable parameters
in the final equations and rules.

The primary state parameter introduced in [1] is the
mechanical threshold �̂, the extrapolated flow stress at
absolute zero temperature, i.e. in the absence of thermal
activation. It marks the limit above which dislocations
cannot find (in the average) any position of mechanical
equilibrium in any slip plane and above which, there-
fore, dynamic effects govern the behavior. Over most of
the regime of practical interest, on the other hand,
thermal activation of dislocations over obstacles gov-
erns the kinetics of plasticity and the flow stress is below
the mechanical threshold. When there is more than one
type of obstacle or mechanism, �̂ may be composed of
multiple terms, each of them a state parameter, but the
total �̂ remains pre-eminent.

When the state changes, for example by work hard-
ening during a strain increment d�, this is reflected in a
change d�̂/d�. It turns out that this strain-hardening
rate is itself strongly dependent on the temperature and
strain rate at which the straining was performed, owing
to the phenomenon of dynamic recovery. We will use
this thermally activated hardening mechanism as a
prime example of constitutive-relations development in
the present paper. The materials to which it will be
applied are fcc polycrystals, for which we have the best
data; but the principles hold for many other cases.

� Dedicated to Ali Argon — to me a mentor, to materials science
a pioneer.
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2. The phenomenology of strain hardening

Fig. 1 shows a subset of stress–strain curves for
copper polycrystals over a wide range of temperatures
and strain rates [5]. A number of properties are immedi-
ately evident in a qualitative way, the variation in the
yield stress with temperature and strain rate is much
less than that of the curves as a whole; the initial
hardening rate is also similar in all curves; and finally,
all curves seem to consist of a single-parameter set. We
shall show that indeed a single stress-scaling parameter
can be found to unify the description adequately, and
that this parameter alone governs the temperature and
rate dependence of strain hardening.

A proper description of hardening [6] is a plot of the
hardening rate, ��d�/d�, versus the stress, � (here the
flow stress in a compression test); this is shown in Fig.
2 for the same set of curves as Fig. 1. Fig. 3 replots the
same data in a scaled form, � is divided by the shear
modulus (at the respective temperatures); � is scaled by
a parameter �v, picked for best fit for each curve. This
parameter could have been chosen in many ways; for
example, the stress value in the mid-range [7], or (as in
Fig. 3) the extrapolation to �=0 of the more-or-less
linearly decaying portion. The latter is called �v be-
cause, if the curves actually decayed as (1−�/�v), the
Voce law would hold [8]. In Section 4 below, we will
describe the dependence of �v on temperature and
strain rate. We will discuss further down what physical

meaning it may have.
Parenthetically we note that strain hardening in poly-

crystals is also influenced by texture changes during
deformation. In the original paper [5], we simulated
these by LApp (the Los Almos polycrystal plasticity
code, see [9]), after postulating a unique grain-level
hardening law �(�) — which was altered until a suffi-
cient subset of the polycrystal data were matched. It is
the Voce stress �v of this local law that was actually
used to derive the thermal activation behavior. In the
following, we will continue to discuss �v (the macro-
scopic value for the compression test) rather than �v,
for convenience. In addition, we are using the value of
the Voce stress at the test temperature, rather than that
determined by subsequent probes to obtain �̂v, the
latter would be more proper since it is the change in
state that strain hardening is supposed to characterize
[10]; but the former, much simpler procedure, is allow-
able because the rate and temperature dependence at
constant state is so slight.

3. Thermal activation in plasticity

The strain rate connected with the thermally acti-
vated overcoming of obstacles can be written as

�� =�� 0 exp−
�G(�/�̂)

kT
(1)

Fig. 1. Stress–strain curves of compressed OFE copper polycrystals (grain size �25 �m). Strain rates 10−1 s−1 (solid lines) and 10−4 s−1

(dashed). Room temperature and 100, 200, 300, 400 C (in sequence) [5].
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Fig. 2. Same data as Fig. 1, plotted as strain-hardening rate � versus stress �.

Fig. 3. Same data as Fig. 2, scaled by the temperature-dependent shear modulus � on the ordinate, and by a heuristic value �v for each curve
on the abscissa. (a) 10−4, (b) 10−1 s−1.

where the ‘activation energy’ (activation free enthalpy)
�G is a function of the (locally) applied stress � and the
‘height’ of the obstacle �̂ (the stress where �G=0). The
preexponential term is determined by the attempt fre-
quency, the number of places per unit volume at which
an attempt is made, and the strain achieved with each
successful thermal activation. A dependence on stress
and temperature of �� 0 is almost always negligible with
respect to the explicit dependencies in the exponent [1].
A sensible order of magnitude for �� 0 can be anywhere
between 105 and 1010 s−1.

A slight but important complication is that the flow
stress at a given temperature, T, is typically propor-
tional to an appropriate shear modulus, �, at this
temperature. In order for the activation work done by
the applied forces during the activation event to be
independent of material properties, it is necessary to
have �G be proportional to �(T) also (which is a
special but reasonable way to incorporate entropy ef-
fects into the free energy of activation [1]). For dimen-
sional reasons, one sets �G��b3. One can then define
a normalized acti�ation energy gas
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g�
�G
�b3=g

��

�

�0

�̂

�
(2)

where �0 is the shear modulus at 0 K. When the
function is inverted, one obtains

�

�
=

�̂

�0

s
� g

g0

�
(3)

where a scaling factor g0 has been introduced which
characterizes the activation energy in the extrapolation
to �=0.

As it enters into Eq. (3), the normalized activation
energy should be expressed in terms of temperature and
strain rate, by inversion of Eq. (1):

g=
kT
�b3 ln

��� 0
��
�

(4)

Eqs. (3) and (4) couple the T- and �� -dependencies of
the flow stress — if the parameter �� 0 is known. A useful
procedure is to attempt to find an �� 0-value empirically,
such that it does unify the T- and �� -dependencies —
and hope that it comes out in a physically reasonable
order of magnitude. This procedure was used in Fig. 4
for the scaling-stress �v from all the data in [5], of
which a subset was used in Figs. 1–3. It is seen that the
very satisfactory value of �� 0=107s−1 did indeed achieve
such a unification, with considerable regions of overlap.
A value 1/3 or 3 times this would not have worked; and
neglecting the T-dependence of � would have given
quite a different value.

4. Constitutive descriptions for dynamic recovery

We have seen that dynamic recovery, the T- and
�� -dependent decay of the strain hardening rate, can be
characterized by the Voce stress �v, as it was plotted in
Fig. 4 (divided by �) against the normalized activation
energy. Let us now discuss how a constitutive relation
for this T- and �� -dependence can be obtained. We will
continue to write the fundamental expressions in terms
of the glide resistance, �, and use �v only for the scaling
parameter in the hardening experiments.

The plot in Fig. 4 was chosen such that it would have
given a straight line if the activation energy �G were
proportional to the logarithm of �vo/� (where �vo is the
stress value at �G=0). This ‘law’ has been widely used
for dynamic recovery (albeit as characterized by a
starting stress �III [11,12], and it was also suggested in
[1] as an approximation that might hold over a rela-
tively large range. It leads directly to a power law
between stress and strain rate. It is obviously not
obeyed over the entire range of experiments shown in
Fig. 4, since the line is not straight. We have argued
[13] that there is no reason to expect that any law for
such a complex process will ever be derived from first
principles; perhaps a nomographic form such as in the
empirical diagram Fig. 4 is the best venue for an
accurate description.

We would like to suggest here that an expansion
around the behavior under a chosen standard set of
conditions may serve well. This has the additional
advantage that the ‘standard’ flow stress can now serve
as a state parameter, rather than that extrapolated to
zero temperature, which is awkward to measure. If we
mark the standard conditions with the subscript 1, we
have, instead of Eq. (3),

�

�
=

�1

�1

s(g/g0)
s1(g1/g0)

(5)

and an expansion according to a logarithmic law would
give the local power law

��
�� 1

=
��

�

�1

�1

�n1

(6)

or the derivative form

� ln �

� ln ��
�
T 1

�
1
n1

=
kT1

A1�1b3 (7)

where A is the slope indicated in Fig. 4, and the stress
exponent n is proportional to 1/T — a direct conse-
quence of any stress-dependent activation energy. In a
similar way, neighboring temperatures can be covered
by the derivative

−
� ln(�/�)
� ln(T/�)

�
�� 1

=
g1

A1

=
ln(�� 0/�� 1)

n1

(8)

Fig. 4. The stress scaling factor �v as determined from plots of the
kind of Fig. 3 for all the data in [5], at 5 strain rates and 5
temperatures, plotted logarithmically versus the normalized activation
energy, using �� 0=107 s−1 in order to make all points fall on a single
curve.



U.F. Kocks / Materials Science and Engineering A317 (2001) 181–187 185

Fig. 5. Same data as Fig. 4, plotted according to Eq. (9).

ment of the state parameter �1, for which the standard
conditions are best chosen as a relatively low tempera-
ture in the regime of interest (so there is least chance
for recovery) and a strain rate of about 10−3 s−1

(because it is slow enough to avoid adiabatic heating
— and to allow real-time observation — and fast
enough to expect little fluctuation in temperature).

We wish to point out one further advantage of this
representation. The coefficient A is the normalized acti-
�ation work which is, like the activation energy, a local
property of the obstacle, not dependent on the obstacle
density (and distribution) as the flow stress and the
‘activation volume’ are (in opposite ways) [1].

The quest for a closed-form description has neverthe-
less continued [14], and we can report here, for the first
time, that the relation

g=g0
�

1−
� �v/�

�vo/�0

�1/2n2

(9)

does in fact fit the data in Fig. 4 quite well; this is
shown in Fig. 5. The small ‘hump’ in the mid-range
could perhaps be due to a small amount of dynamic
strain aging, owing to even a very low concentration of
solutes. Fig. 6a and b show it applied to other tests in
Cu and to some other materials, respectively. It appears
(quite sensibly) that the ‘mechanical’ Voce stress, �vo,
may depend on the specimen or test series, but the
normalized activation energy, g0, is a material property
— which, in Fig. 6b, is seen to be in the correct
sequence for the normalized stacking-fault energy of
these materials.

If Eq. (9) holds, at least locally, then the expansion
coefficients in Eqs. (7) and (8) become

−
� ln(�/�)
� ln(T/�)

�
�� 1

=
ln(�� 0/�� 1)

n1

=
1

�g1/g0−1
(10)

Fig. 6. Similar plot as Fig. 5, (a) for different tests on copper; (b) for
three fcc polycrystalline materials.

Fig. 7. The stress exponent n to be used in an expansion around a
local condition of temperature and strain-rate specified by the combi-
nation in g, as derived from Eq. (9).

Eqs. (7) and (8) may well suffice to describe the range
of strain rates and temperatures encountered in an
engineering body (which may be subject to adiabatic
heating). They must be complemented by a measure-
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Fig. 8. The obstacle profile for the flow stress � as a function of the activation area �a, as derived from Eq. (9). In dynamic recovery processes,
the obstacles inside the cell walls are pre-loaded by the local forward internal stress 0.7 �̂ and the applied stress is added to this.

The resulting function n(g) is plotted in Fig. 7 for
�� 1=10−3 and �� 0=107 s−1.

Eq. (9) is a special form of the phenomenological
equation proposed in [1] and used in the MTS model [10]
(for all processes other than dynamic recovery):

g=g0
�

1−
� �/�

�̂/�0

�pnq

(11)

The exponent q has been fixed to q=2 for dynamic
recovery processes, by the experiments leading to Eq. (9),
and should be general for all dislocation-forest interac-
tions; it corresponds to a peaked obstacle (see below).
The exponent p=1/2 characterizes the tail of the obstacle
and is not as certain; unfortunately, the value of g0 is
sensitive to the choice of p. Actually, g0 does not have
much physical meaning, since it refers to a state that is
never reached (�=0) in longer-range obstacles. The
values of g0 derived here are, correspondingly, quite high.
Of course, it is still true that this parameter, together with
�̂ (or �vo), determines the slope in Figs. 5 and 6.

5. Dislocation forest interaction

It is well established (see, for example, Kocks [15]) that
the flow stress contribution due to dislocation interac-
tions is controlled by forest intersections and that, among
these, the breaking of attractive junctions is likely to be
predominant [16]. There are many of these, characterized
by various intersection angles, etc., so that an average
interaction profile of some generality is not likely to ever
be derived on the basis of first principles. If we, then, treat
these obstacles as having a single phenomenological
profile such as that described by Eq. (11), we would want
to use experiments to determine the four parameters p,
q, �̂, and g0. This requires flow stress measurements over
a wide range of temperatures and strain rates (which then
fix, to sufficient accuracy, the parameter �� 0 in Eq. (4)).

The trouble with this procedure is that the range of
stresses covered would still be only about the top 20%
of the profile-because the obstacles are relatively ‘ather-
mal’. Note that this does not justify the addition of an
athermal plateau stress [16], because the Cottrell–Stokes
law is obeyed for this case [17]. The profile is expected
to have a long tail, meaning a low value of p and a very
large value of g0.

There is no mechanism of dynamic recovery that is
generally accepted (so far). We believe [14] that it, too,
is controlled by the breaking of attractive junctions —
namely those inside tangles and (diffuse) cell walls. They
were not overcome during the slip process (in part
because they were topologically isolated [15]) but, on the
other hand, they are under a strong forward internal
stress (because the tangles and cell walls are polarized).
This internal stress, together with the applied stress, can
lead to overcoming of these obstacles even at absolute
zero temperature (where dynamic recovery is observed);
a combination with thermal activation leads to the strong
temperature and strain-rate dependence of the (extrapo-
lated) saturation stress, at which dynamic recovery and
athermal storage would balance.

The foregoing analysis has led to an experimental
determination of the effective obstacle profile for dy-
namic recovery. If it is indeed controlled by the same
mechanism as the flow stress — the breaking of attrac-
tive junctions, for example — then one should be able
to use this rather well established profile for application
to the instantaneous T- and �� -dependence of the flow
stress, too [18]. The only problem is a reliable determina-
tion of the average forward internal stress in the dynamic
recovery case. A strictly heuristic assumption, �iz. that
the local plastic relaxation inside tangled cell walls leads
to an internal stress that is always about 0.7 times the
mechanical collapse stress, was indeed successful. To-
gether with the applied stress, which is a �v at this point,
this yields the equation
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g=g0
�

1−
�

0.7+0.3
�v/�

�vo/�0

n2

(12)

The exponent q=2 is equivalent to a triangular
obstacle profile near the top; together with p=1/2, it
gives rise to the profile shown in Fig. 8. Note that the
meaning of g0 in this profile is changed, it is twice the
inverse of the initial decay rate. In the limit of zero
stress, the activation energy would be astronomical
(37.5 g0, in excess of 100 eV). From this point of view,
the intersection profile is quite ‘athermal’; but its initial
peak nevertheless leads to a measurable T- and �� -
dependence.

6. Summary

It appears that any one mechanism of dislocation/ob-
stacle interaction (which, incidentally, includes the lat-
tice resistance [1]) can be well described by a
phenomenological relation of the form

�G=kT ln
�� 0
�� =�b3g0

�
1−

� �/�
�̂/�0

�pnq

(13)

where q is typically 3/2 or 2 and p is typically less than
1; once these exponents are picked for a particular
mechanism, they become constants. The value of g0

should be a constant for this mechanism in any mate-
rial ; that of �̂, on the other hand, may depend on the
specific specimen series (including the texture) and on
the tensor character of the test being performed.

An equation like 13 links the temperature and strain-
rate dependencies of the flow stress. The kinetics of
strain hardening, which is very important, can be char-
acterized by a scaling stress (such as �v) which itself is
thermally activated according to Eq. (9) (or Eq. (12));
in this case, it appears that q=2 and p�1/2.

If allowance is made for an arbitrary (but measured)
dependence of the activation energy on stress, a law like
Eq. (1) can describe the kinetics of large-strain plastic-
ity over a very large range of strain rates and tempera-
tures (excepting the range in which lattice diffusion is
undisputed as the governing mechanism, and any range
in which dynamic effects might be important). For a
limited, but often practical range, an expansion around
a standard state is proposed (Eqs. (7) and (8)).

It may be possible to unify the thermal activation law
for the dislocation contribution to the flow stress and
the thermal activation law for dynamic recovery (ac-
cording to Eq. (12)). This approach could be promising;
but it requires further study, also in other materials.

The problems of formulating constitutive relations

exhibit the hallmarks of modeling (rather than making a
theory); use mechanisms that are based on physical
insight (which suggest certain dimensionless variable-
and-parameter combinations), put them in a phe-
nomenologically sound framework (such as using state
parameters only) and, most importantly, fit any open
parameters or unknown functions to appropriate
experiments.
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