

Cellular Signalling 13 (2001) 151-158

Review article

Assessing the omnipotence of inositol hexakisphosphate

Stephen B. Shears*

Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA

Received 21 November 2000; accepted 8 January 2001

Abstract

This review assesses the authenticity of inositol hexakisphosphate ($InsP_6$) being a wide-ranging regulator of many important cellular functions. Against a background in which the possible importance of localized $InsP_6$ metabolism is discussed, there is the facile explanation that $InsP_6$ is merely an "inactive" precursor for the diphosphorylated inositol phosphates. Indeed, many of the proposed cellular functions of $InsP_6$ cannot sustain a challenge from the implementation of a rigorous set of criteria, which are designed to avoid experimental artefacts. Published by Elsevier Science Inc.

Keywords: Inositol hexakisphosphate; phytic acid; signal transduction; inositol phosphates; calcium; magnesium

1. Introduction

Two men say they're Jesus/One of them must be wrong — Dire Straits: "Industrial Disease"

Although the first report that inositol hexakisphosphate (InsP₆) (Fig. 1) is present in animal cells [1] turned out to be a case of mistaken identity [2], it eventually transpired that InsP₆ really is widely distributed throughout the animal kingdom [3-5]. After an inauspicious inauguration as a storage molecule [6], InsP₆ has since become affiliated with a seemingly unconnected and wide-ranging array of important physiological activities. These include neurotransmission [4], "priming" of stimulus-dependent respiratory burst in neutrophils [7], activation of protein kinase C [8], inhibition of protein phosphatase activities [9], activation of L-type Ca²⁺ channels [9], a vesicle trafficking "clamp" [10], attenuation of agonist-induced receptor desensitization [11], an iron transporter [12], a cellular antioxidant [12,13], an activator of enzymes conducting DNA repair [14], and a regulator of mRNA export [15]. Increases in dietary InsP₆ have also been advocated as being of therapeutic benefit. For example, $InsP_6$ has been suggested to prevent kidney stone formation [16] and to act as an antineoplastic agent [17]. Even in plants, where $InsP_6$ has long been recognized as a phosphate storage depot [18,19], this polyphosphate's curriculum vitae was recently expanded by evidence which indicated that it modulates a K⁺ channel that regulates stomatal pore closing [20]. Can $InsP_6$ really wield these multitudinous influences upon cell function?

2. The metabolic status of the mammalian InsP₆ pool

Some of the ideas surrounding the roles of $InsP_6$ (Section 1) provide scenarios in which changes in intracellular $InsP_6$ levels might have regulatory significance. For example, hyperosmotic stress rapidly increases $InsP_6$ synthesis in *Schizosaccharomyces pombe* [21]. In the animal kingdom, total cellular $InsP_6$ levels fluctuate at certain points in the cell cycle and during cellular differentiation [22–25]. However, shorter-term manipulations in cellular $InsP_6$ levels are rare in animal cells, and when they have been noted, they are generally of a rather subtle nature. In HL-60 cells, a 10% change in $InsP_6$ mass was observed upon stimulation with chemotactic peptide [26]. $InsP_6$ levels respond to a similarly meager extent in glucose-challenged pancreatic β -cells [9] and dopamineactivated renal epithelial cells [27].

It is possible to envisage that $InsP_6$ may regulate a cellular process independently of it undergoing rapid metabolic fluxes. One suggestion [28] is that target proteins

^{*} Tel.: +1-919-541-0793; fax: +1-919-541-0559.

E-mail address: shears@niehs.nih.gov (S.B. Shears).

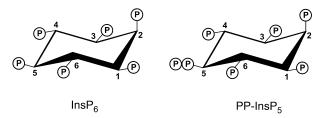


Fig. 1. Structures of InsP₆ and a diphosphorylated inositol phosphate. The structure of *myo*-inositol 1,2,3,4,5,6-hexakisphosphate (InsP₆) is shown on the left. Inositol phosphate nomenclature recognizes both the number of attached phosphate ("P") groups (six in this case), and their positions around the inositol ring. Note that the 2-phosphate is axial to the plane of the inositol ring (the other five are equatorial). An example of a diphosphorylated inositolphosphate (PP-InsP₅ or "InsP₇") is shown on the right. See Ref. [37] for descriptions of other diphosphorylated inositol phosphates.

might be tonically "clamped" into a certain state upon binding of InsP₆. A putative regulatory signal might then be directed at a covalent modification of the protein, which decreases its ligand affinity, thereby releasing the blockade of protein function by InsP₆. Alternately, if InsP₆ turnover is regulated, only highly localized subpools might be involved, which could be missed in global InsP₆ assays. This situation could be analogous to the receptor-dependent, spatiotemporal changes in cytosolic Ca²⁺, which occur without substantial impact upon total cellular [Ca²⁺]. Our current understanding of the significance of inositol lipid metabolism is also very similar: we no longer consider cellular physiology to be solely modulated by fluctuations in bulk cellular turnover of these molecules. Instead, various regions of the cell are believed to possess semiautonomous pools of these lipids, the turnover of which is micromanaged by a highly localized subcellular distribution of lipid kinases and phosphatases [29]. In other words, while the total $InsP_6$ pool size is relatively static, InsP₆ turnover can still be considerable. Evidence supporting this idea comes from the (deliberately) nonequilibrium labeled pool of $[^{3}H]$ InsP₆ in thyrocytes, which declined rapidly following activation of cell-surface receptors [30]. Such rapid alteration in specific radioactivity of [³H]InsP₆ testifies to the metabolically active nature of the polyphosphate. Stimulus-dependent increases in cellular [³H]InsP₆ after only 2 days incorporation of [³H]inositol [31,32], again probably reflects changes in specific radioactivity, as equilibrium radiolabeling of the cellular $InsP_6$ pool may take more than a week to occur [5]. Such observations provide additional evidence of the rapidity of InsP₆ turnover.

InsP₆ turnover in vivo could involve substrate cycling by InsP₆ phosphatases and InsP₅ kinases [33]. However, the only known mammalian InsP₆ phosphatase is closeted inside endoplasmic reticulum with restricted access to its substrates [34,35]. We suspect there are other InsP₆ phosphatases inside cells (Section 9) that remain to be identified. A more direct demonstration of the high rate of InsP₆ metabolism in vivo came from the discovery that it is actively interconverted with the diphosphorylated inositol phosphates [36] (see Fig. 1).

Naturally, the potential significance of local changes in InsP₆ levels depends upon whether it is InsP₆ or its metabolite that is the biological effector. Indeed, there is considerable, albeit indirect evidence [37], that it is the further phosphorylation of InsP₆ to diphosphorylated inositol phosphates that yields physiologically active metabolites. In this situation, InsP₆ need be no more than an "inert" metabolic reservoir. Nevertheless, in principle at least, it is a reasonable hypothesis that InsP₆ might induce conformational changes in a particular protein, thereby altering its inherent activity, or even influencing its interactions with other proteins. Highly polar ligands, such as InsP₆, could also influence the electrostatics that define the nature of protein-protein interactions [38]. For two proteins to bind, long-range delocalized electrostatic attraction is envisaged to initially promote the formation of a transient, low-affinity, complex that subsequently rearranges itself under the auspices of more specific, localized, high-affinity interactions [38,39]. Under conditions where ionic strength is physiologically relevant, inositol polyphosphates are unlikely to modify "screening" of the low-affinity, delocalized electrostatic attraction [39]. However, it is straightforward to envisage how an inositol polyphosphate might influence the subsequent formation of high-affinity complexes. Ligand binding will substantially alter the electrostatic potential in the immediate vicinity of its binding site, through the introduction of new charged moieties, neutralization of others, and alterations in the screening of electrostatic interactions within the protein. There are reports of InsP₆ inhibiting some protein–protein interactions [27,40]. We would expect the target protein to show highly specific recognition of the spatial arrangement of phosphate groups around the inositol ring. Thus, the impact of ligand binding could be modified by the addition or removal of phosphate groups. So, clearly, we can place InsP₆ metabolism in a regulatory context. Can we now justify the claimed proposals for InsP₆ functions?

3. Criteria for testing InsP₆ function in vitro

It would certainly help us to evaluate the role of $InsP_6$ in vivo, if it had an effect in vitro at a concentration that we can appreciate to be physiologically relevant. Unfortunately, the latter is a rather elusive parameter. We do know that *total* cellular $InsP_6$ typically lies within the $15-100 \mu M$ range [22,41,42]. However, much of this $InsP_6$ may not be freely soluble. A number of intracellular proteins can bind $InsP_6$, at least in vitro (see below), and some of these might help buffer the free cellular concentration of this polyphosphate. There is also evidence that the surface of cellular membranes might act as an intracellular adhesive for $InsP_6$ by means of an electrostatically bonded $InsP_6$ –cation–phospholipid sandwich that operates under conditions of phy-

siologically relevant ionic strength [43]. Consistent with this idea, when the cation "glue" is removed by treating isolated membranes with EDTA, $InsP_6$ is released [43,44]. Thus, we currently have little concept concerning what might be the likely concentration of available $InsP_6$ at various subcellular compartments. When $InsP_6$ is unleashed into an in vitro assay, almost any submillimolar dose can be argued as being physiologically significant. So, in this review, there are no opinions on dose–response relationships.

Just in case our limited understanding of the intracellular distribution of $InsP_6$ provided insufficient perplexity, the molecule also has some unusual chemical properties, which can create experimental responses to $InsP_6$ that may have no physiological relevance in vivo. I have therefore assembled from several sources a list of criteria, which should be considered when testing the physiological relevance of $InsP_6$ -dependent phenomena that have been observed in vitro:

(i) The effect of $InsP_6$ should be observed in the presence of naturally occurring concentrations of Ca^{2+} and/or Mg^{2+} at a physiologically relevant ionic strength.

(ii) The effect of $InsP_6$ should not be imitated by ionchelators, such as EDTA/EGTA.

(iii) Other related inositol phosphates, such as $InsP_5$ and the diphosphorylated inositol phosphates, should be shown to be less potent than $InsP_6$. PtdIns(3,4,5)P₃ should also be excluded.

(iv) It is informative if the effect of $InsP_6$ is not imitated by other conformers of $InsP_6$ or by $InsS_6$, although (Section 6) this criterion has a limited application.

(v) The target protein must show an appropriate ligand:protein stochiometry. Ideally, an $InsP_6$ binding domain needs to be characterized.

(vi) The purity of the $InsP_6$ should be verified, or at the very least, similar effects should be observed using material obtained from different sources.

Several examples can be used to justify the use of these criteria.

4. Electrostatic considerations

One approach that has been used to explore the significance of $InsP_6$ has been to screen for proteins that might bind this polyphosphate. However, these assays have frequently been performed under "ideal" ligand-binding conditions that may not extrapolate to the intracellular environment. $InsP_6$ is, of course, a molecule with a particularly high negative charge density, which gives the molecule the propensity to bind to proteins through electrostatic interactions, particularly so when the pH is lower than the isoelectric point, thereby maximizing the protein's positive charge [45]. While electrostatics can be important in contributing to some specific ligand-protein interactions (Section 2), in other cases, they may lead to the nonspecific association of $InsP_6$ with proteins in vitro. The physiologically relevant context for $InsP_6$ is almost certainly one in which at least some of its negative charge is neutralized by association with divalent cations, such as Ca^{2+} [46]. In this situation, nonspecific electrostatic interactions will be minimized, while still giving a potential target protein the opportunity for highly specific recognition of the spatial arrangement of phosphate groups around the inositol ring. Thus, interactions of $InsP_6$ with proteins in vitro have a more promising physiological context, if they can be observed in media in which both ionic strength and concentrations of cations, such as Ca^{2+} and Mg^{2+} , are similar to those of intact cells.

The apparent InsP₆-dependent stimulation of protein kinase C activity in crude cell extracts prepared from insulinoma HIT T15 cells was shown to rely upon Ca²⁺ being absent [8], so, based on the above criterion, the significance of this effect is doubtful. Actually, even in the absence of Ca^{2+} , this was a rather small effect of $InsP_6$ about a 20% change in kinase activity was recorded. Furthermore, the specificity of action of $InsP_6$ (Section 6) was not studied. Divalent cations were also absent from media in which InsP6 was shown to bind with nanomolar affinity to some pleckstrin homology (PH) domains [47]. Therefore, their affinity for InsP6 may be overestimated. A similar criticism can be made of demonstrations of highaffinity InsP₆ binding to (i) vinculin, a cytoskeletal protein regulating cell adhesion, spreading and motility [48]; (ii) myelin proteolipid protein, which participates in myelin deposition [49]; (iii) coatomer, which regulates vesicle traffic between the ER and the Golgi [50,51]; and (iv) phosphotyrosine-binding domains [52]. Besides, there is no evidence that InsP6 alters the recognized physiological function of any of these particular target proteins. Divalent cations were also absent when $\ensuremath{\text{InsP}_6}$ was shown to inhibit three different species of serine/threonine protein phosphatases [9]. In any case, it is difficult to envisage how a specific signalling consequence could result from a global effect of InsP₆ upon the activities of several different types of protein phosphatases.

As well as performing in vitro assays with $InsP_6$ in appropriate assay media, the physiological relevance of $InsP_6$ -binding studies could be highlighted by demonstrations of an appropriate, saturable ligand:protein stoichiometry, and also by identification of a conserved $InsP_6$ -binding domain. However, a more widespread utilization of domain structure should also be considered; structure is typically more conserved than is sequence [53].

5. More cation-binding issues

The negative charge density of $InsP_6$ provides this molecule with considerable prowess as a chelator of divalent and trivalent cations [12,46]. The idea that $InsP_6$

was a neurotransmitter [4] has met a somewhat dilatory demise with its proponents [54], following the recognition that nonspecific ion chelation by $InsP_6$ was responsible [55]. We should be particularly careful to avoid this pitfall again. For example, control experiments should be performed to demonstrate that EGTA and/or EDTA do not mimic the effects of $InsP_6$. It should also be noted that neurotransmission, and other proposed extracellular roles for $InsP_6$ (e.g., neutrophil "priming" [7]), face the challenge that mammalian cells have never been shown to deliver this polyphosphate to the extracellular environment (e.g., Ref. [56]).

Although a potential scourge for in vitro experiments with InsP₆, its ion-binding properties have occasionally been invoked when considering physiological roles. For example, the remarkable affinity of InsP₆ for iron inhibits this metal's ability to catalyze the formation of hydroxyl radicals in vitro [12]. Thus, it has been suggested that $InsP_6$ might transport iron within the cytosol in a form that protects against the potentially lethal consequences of free radical formation [12]. This proposal extends an earlier observation that InsP₆ is a powerful antioxidant in vitro [13]. The apparent affinity constant for Fe^{3+} and $InsP_6$ $(>10^{18}$ [12]) appears to provide ample opportunity for this interaction to occur in vivo. Yet, most of the cell's iron pool is safely bound to proteins, such as ferritin [57]. Admittedly, cells still retain a small, cytosolic pool of free Fe²⁺, about 1 μ M in size, but the fact that this remains redox-active [57] argues InsP₆ has only a limited role in preventing irondependent oxidative processes in vivo.

The chelation of Ca^{2+} by $InsP_6$ has been suggested to be physiologically important in blocking the formation of crystals of calcium oxalate and calcium phosphate [16]. $InsP_6$ was further proposed to be excreted in urine (in amounts that are in direct proportion to its dietary intake), thereby, it was suggested, preventing kidney stone formation [16]. However, the published descriptions of $InsP_6$ being a constituent of urine are indirect, and far from being conclusive. The samples of urine were simply batchchromatographed using ion-exchange resin [58], and the "InsP₆ fraction" could have contained many other phosphorylated compounds.

It remains to be seen if ion chelation can account for the putative antineoplastic effect of $InsP_6$, when it is administered in heroically high (mM) concentrations in a number of isolated cell systems [17,59]. These results largely represent the persistent efforts of a single laboratory, and, moreover, there is no compelling epidemiological evidence that links dietary $InsP_6$ to cancer prevention in humans [60].

6. Judging the specificity of InsP₆ action

The demonstration of specificity of action of $InsP_6$ should be a crucial goal. For example, $InsP_6$, when microinjected into *Xenopus* oocytes, appeared to attenuate the desensitization of heterologously expressed substance P receptors [11]. However, Ins(1,3,4,5,6)P₅, and several other InsP₅ isomers, all closely imitated this effect of InsP₆ [11]. In the latter example, and in several other cases where $Ins(1,3,4,5,6)P_5$ and $InsP_6$ have elicited similar effects in vitro, it has been noted that the total cellular levels of both polyphosphates are very similar, and so the idea that they are functionally redundant has been promulgated [4,11,40, 54]. I will argue here that this is not likely to be correct. Metabolic fluxes through the cellular pools of Ins(1,3,4,5, $(6)P_5$ and InsP₆ are largely independently regulated [56] by sophisticated control processes [10]. This seems both inefficient and nonspecific if the two polyphosphates were to duplicate each other's functions. Thus, when InsP₆ has an experimental action that $Ins(1,3,4,5,6)P_5$ can closely imitate, then we should seriously consider that this is either a consequence of inadequate assay conditions that overemphasize the efficacy of one of the polyphosphates, or worse, that the effect of both compounds has little physiological significance.

The diphosphorylated inositol phosphates are also close metabolic relatives of InsP₆ [36,61]. These diphosphates should be excluded when examining specificity of $InsP_6$, but when doing so, the possibility of differential metabolism should be accounted for. There is widespead, active phosphatase activity towards the diphosphorylated inositol phosphate [62]. To preserve their half-life in cell-free assays, phosphatase inhibitors, such as fluoride [36], should be added. Differential metabolism may also have been an issue in experiments where several minutes exposure to $Ins(1,4,5)P_3$ was shown to be much less effective than $InsP_6$ at inhibiting a plant cell K^+ conductance [20]. In part at least, this lower apparent efficacy of Ins(1,4,5)P3 may reflect it being rapidly depleted by phosphatases [63]. Alternately, since the effects of InsP₅ and InsP₄ isomers were not examined, it is possible that these products of InsP₆ hydrolysis might be the more active modulators of K⁺ conductance.

Another group of compounds that might not immediately be obvious for specificity testing are the inositol lipids, but in fact they can compete effectively for some "InsP₆binding" sites. For example, InsP₆ binds to vinculin [48], but this protein commands more attention as a target for inositol lipids [64]. Other examples include synaptotagmin, arrestin, AP-2, and AP-180 (Section 7). Determination of a protein's affinity for inositol lipid frequently utilizes soluble analogues with short, fatty acyl chains. Unfortunately, this can unnaturally decrease apparent ligand affinity by reducing any direct contacts that the protein may have with the natural and longer fatty acyl chains. Another factor that may contributed to the overall affinity of protein for a phospholipid surface in vivo is partitioning of the protein into the membrane. Ligand avidity [65] is yet another issue. A clustered array of inositol lipids on a membrane surface can act as a multivalent ligand with a collective functional

affinity that is higher than that of individual (and soluble) lipid molecules. Thus, when determining whether a protein might have a preference for binding $InsP_6$ or inositol lipids, there are considerable opportunities to underestimate functional lipid affinity.

Ligand avidity may also be relevant to a curious problem that my laboratory first noted some time ago [34,66]. Although the molecular size of $InsP_6$ is only 660 Da (Fig. 1), the polyphosphate can take on the properties of a much larger molecule, eluting from size exclusion columns with an apparent size of 9 kDa [34]. The polyphosphate is also not readily dialyzable [14,66,67]. An acceptable explanation for this phenomenon is still lacking, but it seems InsP₆ can self-aggregate into a multivalent, macromolecular complex. The latter [65] can have a higher apparent binding affinity to a target protein than will individual InsP₆ molecules. To avoid overestimating a protein's affinity for InsP₆, binding assays should be performed in media with physiologically relevant ionic strength, in which InsP₆ behaves more like a molecule of 660 Da [14,67]. Appropriate levels of divalent cations should also be present (Section 5).

There is another issue relating to specificity that might also threaten the validity of some experiments with $InsP_6$ in vitro. There may be unexpected cross-reactivity between inositol phosphates and other cellular polyphosphates that do not even contain inositol, such as the competitive dephosphorylation of diphosphorylated inositol phosphate and diadenosine polyphosphates by some Nudt hydrolases [62]. Thus, an effect of $InsP_6$ that is observed in vitro may be satisfied by a completely unrelated polyphosphate in vivo. This potential problem, by its very nature, is always difficult to exclude.

It can be informative if an in vitro effect of InsP₆ is only weakly imitated by InsS₆, since the latter is a nonphysiological analogue, which also has high negative charge density. Conformers of InsP₆ may also be useful; in the naturally occurring myo-InsP₆, only the 2-phosphate is axial to the plane of the inositol ring (the other five are equatorial, see Fig. 1). In contrast, scyllo-InsP₆ has no axial phosphates, whereas neo-InsP₆ has two (the 2- and 5-phosphates). It should be noted that these particular negative controls are most useful when they yield just such a result. If an action of, say, InsS₆ in vitro is nearly as equipotent as InsP₆ (e.g., activation of L-type Ca²⁺ channels, Ref. [9]), this may be evident that the effect has no physiological significance, but such a result may instead reflect the particular pharmacology of an InsP₆-binding site. InsS₆, scyllo-InsP₆, and neo-InsP₆ are not present in animal cells, so there has been no evolutionary pressure to exclude these compounds from being effective ligands.

Recently, *neo*-InsP₆ and *scyllo*-InsP₆ were found not to imitate the apparent osmoregulatory ability of *myo*-InsP₆ to inhibit an inwardly rectifying K^+ current in guard cell protoplasts in two plant species [20]. Unfortunately, this otherwise promising result is somewhat tempered by the use of *myo*-InsP₆ from only one source. Some commercial

preparations of $InsP_6$ have repeatedly been shown to be seriously contaminated [68,69]. At the very least, the experimenter should verify that different batches of $InsP_6$, obtained from more than one source, all act in a similar manner; further purification of $InsP_6$ by HPLC [69] is strongly recommended.

7. InsP₆ and the regulation of protein traffic

A fundamental problem in cell biology is to understand the spatial and temporal control of protein traffic in macromolecular, vesicular structures. This complex transport process is necessary for the biogenesis of plasma membranes, lysosomes, and endosomes, the secretion of proteins and other materials from the cell, and the accumulation of molecules from the extracellular environment. The specificity of such processes is also harnessed to generate structurally and functionally polarized apical and basolateral surfaces to many cell types. Some years ago, an increasing number of proteins that regulate vesicle traffic were discovered to bind $InsP_6$, so the polyphosphate has drawn some attention as a potential modulator of these processes (see Ref. [28] for a review). Has this idea withstood the test of time?

Type I synaptotagmin, which is part of the synaptic vesicle complex, promotes exocytosis by "sensing" local changes in [Ca²⁺] and by interacting with several other proteins [70]. Recombinant synaptotagmin binds certain inositol phosphates, with InsP₆ being a particularly potent ligand [71]. Speculation that such ligand binding might affect vesicle traffic has been further fueled by two reports: first, microinjection of (an uncertain quantity of) InsP₆ into the presynaptic terminal of the giant squid synapse inhibits neurotransmitter release from synaptic vesicles [72]. Second, InsP₆ inhibits catecholamine release from permeabilized bovine adrenal chromaffin cells [73]. However, neither of these two responses were specific for $InsP_6$, as Ins(1,3,4,5,6)P₅ and Ins(1,3,4,5)P₄ were also effective [72]. The effect of InsP₆ upon catecholamine release was also attenuated by Ca^{2+} [73] (see Section 5). Also worrying is the finding that, compared to recombinant synaptotagmin, the native protein has a lower affinity for InsP₆, and instead prefers to bind Ins(1,3,4,5)P₄ and Ins(1,3,4,5,6)P₅ [74,75]. In any case, it appears that synaptotagmin - especially the native protein - binds inositol lipids with even higher affinity than inositol phosphates [70,75,76]. Thus, it is the binding of synaptotagmin to $PtdIns(4,5)P_2$ in the plasma membrane that is now more generally envisaged to promote docking and fusion of exocytic vesicles [70,75,76]. It is an exaggeration to assert, as was the case in one recent review [77], that InsP₆ "... is known to modulate the trafficking of synaptic vesicles in mammalian cells through a direct interaction with synaptotagmin" (my emphasis).

InsP₆ binds with nanomolar affinity to the α subunit of the tetrameric AP-2 complex [78,79] and to monomeric AP-180 [80,81]. Both of these "assembly" proteins pro-

mote an early event during endocytosis, namely, the polymerization of clathrin into a lattice that coats the surface of the endocytic vesicle, so as to provide structural integrity. AP-2 is present in many tissues, whereas AP-180 is synaptosomal-specific. One consequence of InsP₆ binding to these assembly proteins, in vitro at least, is inhibition of clathrin lattice formation [78,80,81]. These assembly assays were performed in the presence of divalent cations (see Section 4), and both $Ins(1,3,4,5,6)P_5$ and InsS₆ were considerably much less active than InsP₆. Thus, InsP₆ emerged as a potential inhibitor of endocytosis [78,80,81]. The phosphorylation of InsP₆ to PP-InsP₅ yields an even more potent inhibitor [81]. However, more recent studies with both AP-180 [82] and AP-2 [79] suggest that inositol lipids are more important ligands than InsP₆. Moreover, the postulated role of this inositidebinding domain now points elsewhere, not in a downregulatory context, but as a *positive* membrane-recruitment motif [83]. For example, endocytosis is inhibited when the inositide-binding domain is deleted from the α subunit of AP-2, which then does not get incorporated into clathrincoated vesicles [83].

The binding of InsP₆ to arrestins has also drawn attention in the vesicle trafficking field [84]. Arrestins are recruited to G protein-coupled receptors following their receptor-dependent phosphorylation. One of the consequences of arrestin binding is receptor desensitization. In the case of the socalled "nonvisual" arrestins (e.g., β -arrestin and β -arrestin2), desensitization is in part due to internalization of the receptor. It has been argued that arrestin-dependent receptor trafficking can be inhibited by $InsP_6$ [11]. This proposal emerged after microinjection into Xenopus oocytes of InsP₆ (and InsP₅, see Section 6), appeared to attenuate the desensitization of heterologously expressed substance P receptors [11]. However, other evidence points to inositol lipids being the functional ligand for β -arrestin2, by recruiting the protein to coated pits; this targeting, and the concomitant stimulation of receptor-endocytosis, is strongly impaired upon deletion of the inositide-binding domain from β arrestin2 [84].

8. InsP₆ and DNA repair

Genomic stability relies on an efficient means of repairing radiation- and chemical-induced double-stranded breaks in DNA. Nonhomologous end-joining represents one such mechanism. This end-joining reaction, as catalyzed in vitro by a partly purified protein fraction eluted from a phosphocellulose column (denoted PC-C), was recently found to be activated by $InsP_6$ [14]. This effect of $InsP_6$ tolerates several of the criteria described in Section 3. For example, the authors confirmed by NMR and mass spectroscopy that $InsP_6$ was an endogenous activator of DNA repair, and then they recapitulated the effect using commercial $InsP_6$ obtained from two independent sources [14]. This effect of $InsP_6$ was observed in the presence of 0.5 mM Mg²⁺ (the significance of which is described in Section 4). In specificity tests, $InsS_6$, $Ins(1,3,4,5,6)P_5$, $Ins(1,3,4,5)P_4$, and $Ins(1,4,5)P_3$ were all less effective than $InsP_6$ [14]. The authors do note, however, that diphosphorylated inositol phosphates should also be tested for specificity. Otherwise, these data are quite alluring.

The protein(s) in fraction PC-C through which $InsP_6$ acts were not directly characterized; presumably there are many proteins in PC-C, in addition to the small number already known to promote the end-joining reaction. A DNA-dependent protein kinase (DNA-PK) emerged as a promising candidate for an $InsP_6$ target, since it bound this polyphosphate, even in the presence of divalent cations [14]. However, stoichiometry, specificity, and the affinity of ligand binding are important factors that remain to be determined. The authors of this study [14] propose that $InsP_6$ might influence the interaction of DNA-PK with other proteins in the multimeric end-joining complex. Possible mechanisms by which this may occur were discussed in Section 2.

9. A different approach: genetic studies

Clearly, we face substantial difficulties in interpreting the effects of InsP₆ in cell-free assays. However, alternative strategies, using in vivo models, are beginning to emerge. For example, as we begin to understand the molecular nature of the enzymes that synthesize and metabolize InsP₆, and then manipulate their levels of expression, we will be provided with new opportunities to alter InsP₆ levels in its physiologically relevant milieux. Which are the enzymes that are involved? The de novo pathway of InsP₆ synthesis has been most carefully studied in model systems outside the animal kingdom: in the slime-mould, Dictyostelium [85], in yeasts [15,21], and in the duckweed Spirodela polyrhiza [86]. In all cases, $Ins(1,3,4,5,6)P_5$ was identified as the immediate precursor of $InsP_6$. Deletion of the $Ins(1,3,4,5,6)P_5$ 2-kinase gene from Saccharomyces cerevisiae has yielded new ideas on $InsP_6$ function (Section 10). This new approach preempts many of the difficulties that have plagued in vitro studies with this polyphosphate.

Unfortunately, in animal cells, the molecular identity of an $Ins(1,3,4,5,6)P_5$ 2-kinase currently eludes us. A possible alternative tool has been cloned [87,88], namely, the mammalian multiple inositol polyphosphate phosphatase (MIPP) that hydrolyzes $InsP_6$. This is an intriguing protein that is predominantly located inside the endoplasmic reticulum, where its access to $InsP_6$ is restricted [34,35]. Cells obtained from mice in which the MIPP gene was deleted have only slightly higher levels of $InsP_6$ than wild-type cells, and the "knockout" animals show no obvious phenotypic defects [35]. This result suggests that there are other $InsP_6$ phosphatases that can compensate for the loss of MIPP, but, otherwise, these experiments provide no fresh insight into the cellular roles of $InsP_6$.

We [89] have recently discovered that cellular $InsP_6$ levels can be acutely reduced by the SopB protein from *Salmonella*. However, this approach is not recommended for the specific study of $InsP_6$ action, since SopB has so many other gross effects upon cells. For example, SopB activates Akt [90], dephosphorylates $InsP_5$ [89,91], activates PLC [89], and stimulates the Rho-based GTPase family that promotes cytoskeletal rearrangements and gene transcription [89].

10. InsP₆ and the regulation of nuclear mRNA export

Nuclear export of mRNAs requires a series of events: pre-mRNA processing (splicing, polyadenylation, and capping), ribonucleoprotein targeting to the nuclear pore complex, and energy-dependent translocation through the pore. Three yeast gene mutations have been identified, which share the common phenotypes of impaired mRNA export and near-complete loss of InsP₆ synthesis [15]. One of the defective genes (named *ipk1*) was found to encode $Ins(1,3,4,5,6)P_5$ 2-kinase activity, an enzyme that immunofluorescence microscopy revealed to be concentrated at the nuclear periphery [15]. This localization suggests a strategic targeting of InsP₆ synthesis to a potential site of action — the export machinery of the nuclear pores. Further genetic studies also address the issue of specificity; there is no evidence for participation in this process of the diphosphorylated derivatives of InsP₆ [92,93]. It was proposed that InsP₆ might either regulate the conformation of the nuclear pore complex, or facilitate removal of an export inhibitor [15]. These options could be interesting possibilities to pursue. However, more information is required concerning a mutant form of *ipk1* that lacks its 45 residue carboxy terminus (*ipk1*-5; Ref. [92]): the original synthetic lethal screen that led to the identification of mutant alleles of ipk1 was a temperature-sensitive gle mutant defective for another, essential mRNA export factor [15]. The ipk1-5 mutant is also synthetically lethal, yet, it supports a substantial proportion of the InsP₆ synthesis seen in the wild-type yeast [92]. It will be important to fit this observation into the overall hypothesis.

11. Summary

I have outlined in this review several, rigorous criteria that I believe should be implemented for the analysis of the relevance of the purported effects of $InsP_6$. In fact, many of the published experimental observations do not yet stand up to such close scrutiny. It is my hope that a closer examination of the proposed roles of $InsP_6$ in these cellular events, and the other ideas I have put forward, will now prompt a

more careful consideration of the significance of $InsP_6$ and other higher inositol phosphates.

Acknowledgments

I would like to acknowledge valuable input from a number of colleagues whom I consulted during the writing of this manuscript (Drs. Chris Barker, Charles Brearley, Robin Irvine, Jim Keen, Mark Lemmon, Daniel Rigden, and Steve West). Naturally, I take full responsibility for any lingering errors and misconceived proposals.

References

- [1] Rapoport S, Guest GM. J Biol Chem 1941;138:269-82.
- [2] Johnson LF, Tate ME. Ann N Y Acad Sci USA 1969;165:526-32.
- [3] Heslop JP, Irvine RF, Tashjian AH, Berridge MJ. J Exp Biol 1985;119:395-401.
- [4] Vallejo M, Jackson T, Lightman S, Hanley MR. Nature 1987;330: 656-8.
- [5] Michell RH, King CE, Piper CJ, Stephens LR, Bunce CM, Guy GR, Brown G. J Gen Physiol 1988;43:345–55.
- [6] Irvine RF, Moor RM, Pollock WK, Smith PM, Wreggett KA. Philos Trans R Soc London [Biol] 1988;320:281–98.
- [7] Eggleton P, Penhallow J, Crawford N. Biochim Biophys Acta 1991;1094:309-16.
- [8] Efanov AM, Zaitsev SV, Berggren P-O. Proc Natl Acad Sci U S A 1997;94:4435–9.
- [9] Larsson O, Barker CJ, Sjöholm A, Carlqvist H, Michell RH, Bertorello A, Nilsson T, Honkanen RE, Mayr GW, Zwiler J, Berggren P-O. Science 1997;278:471–4.
- [10] Shears SB. Biochim Biophys Acta 1998;1436:49-67.
- [11] Sasakawa N, Ferguson JE, Sharif M, Hanley MR. Mol Pharmacol 1994;46:380-5.
- [12] Hawkins PT, Poyner DR, Jackson TR, Letcher AJ, Lander DA, Irvine RF. Biochem J 1993;294:929–34.
- [13] Graf E, Empson KL. J Biol Chem 1987;262:11647-50.
- [14] Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC. Cell 2000;102:721–9.
- [15] York JD, Odom AR, Murphy R, Ives EB, Wente SR. Science 1999; 285:96-100.
- [16] Grases F, Garcia-Gonzalez R, Torres Jj, Llobera A. Scand J Urol Nephrol 1998;32:261–5.
- [17] Vucenik I, Shamsuddin AM. J Nutr 1994;124:861-8.
- [18] Gibson DM, Ullah ABJ. In: Morre DJ, Boss WF, Loewus FA, editors. Inositol metabolism in plants. New York: Wiley-Liss, 1990. pp. 77–92.
- [19] Biswas S, Biswas BB. Biochim Biophys Acta 1965;108:713-6.
- [20] Lemtiri-Chlieh F, MacRobbie EAC, Brearley CA. Proc Natl Acad Sci U S A 2000;97:8687–92.
- [21] Ongusaha PP, Hughes PJ, Davey J, Michell RH. Biochem J 1998;335: 671-9.
- [22] French PJ, Bunce CM, Stephens LR, Lord JM, McConnell FM Brown G, Creba JA, Michell RH. Philos Trans R Soc London [Biol] 1991;245:193–201.
- [23] Barker CJ, French PJ, Moore AJ, Nilsson T, Berggren P-O, Bunce CM, Kirk CJ, Michell RH. Biochem J 1995;306:557-64.
- [24] Guse AH, Greiner E, Emmrich F, Brand K. J Biol Chem 1993;268: 7129–33.
- [25] Balla T, Sim SS, Baukal AJ, Rhee SG, Catt KJ. Mol Biol Cell 1994;5:17-28.

- [26] Pittet D, Lew DP, Mayr GW, Monod A, Schlegel W. J Biol Chem 1989;264:7251-61.
- [27] Ogimoto G, Yudowski GA, Barker CJ, Köhler M, Katz AI, Féraille E, Pedemonte CH, Berggren P-O, Bertorello AM. Proc Natl Acad Sci U S A 2000;97:3242–7.
- [28] Shears SB. In: Biswas BB, Biswas S, editors. *myo*-Inositol phosphates, phosphoinositides and signal transduction. New York and London: Plenum, 1996. pp. 187–226.
- [29] Balla T, Bondeva T, Várnai P. Trends Pharmacol Sci 2000;21:238-41.
- [30] Singh J, Hunt P, Eggo MC, Sheppard MC, Kirk CJ, Michell RH. Biochem J 1996;316:175–82.
- [31] Sasakawa N, Nakaki T, Kashima R, Kanba S, Kato R. J Neurochem 1992;58:2116–23.
- [32] Sasakawa N, Nakaki T, Kakinuma E, Kato R. Brain Res 1993;623: 155-60.
- [33] Stephens LR, Hawkins PT, Stanley AF, Moore T, Poyner DR, Morris PJ, Hanley MR, Kay RR, Irvine RF. Biochem J 1991;275:485–99.
- [34] Ali N, Craxton A, Shears SB. J Biol Chem 1993;268:6161-7.
- [35] Chi H, Yang X, Kingsley PD, O'Keefe RJ, Puzas JE, Rosier RN, Shears SB, Reynolds PR. Mol Cell Biol 2000;20:6496–507.
- [36] Menniti FS, Miller RN, Putney JW, Shears SB. J Biol Chem 1993; 268:3850-6.
- [37] Safrany ST, Caffrey JJ, Yang X, Shears SB. Biol Chem 1999;380: 945-51.
- [38] Sheinerman FB, Norel R, Honig B. Curr Biol 2000;10:153-9.
- [39] Schreiber G, Fersht AR. Nat Struct Biol 1996;3:427-31.
- [40] Mizutani A, Fukuda M, Niinobe M, Mikoshiba K. Biochem Biophys Res Commun 1998;240:128–31.
- [41] Szwergold BS, Graham RA, Brown TR. Biochem Biophys Res Commun 1987;149:874–81.
- [42] Bunce CM, French PJ, Allen P, Mountford JC, Moor B, Greaves MF, Michell RH, Brown G. Biochem J 1993;289:667–73.
- [43] Poyner DR, Cooke F, Hanley MR, Reynolds DJM, Hawkins PT. J Biol Chem 1993;268:1032-8.
- [44] Stuart JA, Anderson KL, French PJ, Kirk CJ, Michell RH. Biochem J 1994;303:517–25.
- [45] Okubo K, Myers DV, Iacobucci GA. Cereal Chem 1976;53:513-24.
- [46] Luttrell BM. J Biol Chem 1993;268:1521-4.
- [47] Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J. Proc Natl Acad Sci U S A 1995;92:10472-6.
- [48] O'Rouke F, Matthews E, Feinstein MB. Biochem J 1996;315: 1027-34.
- [49] Yamaguchi Y, Ikenaka K, Niinobe M, Yamada H, Mikoshiba K. J Biol Chem 1996;271:27838–46.
- [50] Fleischer B, Xie J, Mayrleitner M, Shears SB, Palmer DJ, Fleischer S. J Biol Chem 1994;269:17826–32.
- [51] Ali N, Duden R, Bembenek ME, Shears SB. Biochem J 1995;310: 279-84.
- [52] Takeuchi H, Matsuda M, Yamamoto T, Kanematsu T, Kikkawa U, Yagisawa H, Watanabe Y, Hirata M. Biochem J 1998;334:211–8.
- [53] Sánchez R, Sali A. Proc Natl Acad Sci U S A 1998;95:13597–602.[54] Sasakawa N, Sharif M, Hanley MR. Biochem Pharmacol 1995;50:
- [55] Sun M, Wahlestedt C, Reis DJ. Eur J Pharmacol 1992;215:9-16.

137 - 46.

- [56] Menniti FS, Oliver KG, Nogimori K, Obie JF, Shears SB, Putney JW. J Biol Chem 1990;265:11167–76.
- [57] Picard V, Epsztejn S, Santambrogio P, Cabantchik ZI, Beaumont C. J Biol Chem 1998;273:15382–6.
- [58] March JG, Simonet Bm, Grases F, Salvador A. Anal Chim Acta 1996;367:63-8.

- [59] Shamsuddin AM, Yang G-Y. Carcinogen 1995;16:1975-9.
- [60] Zhou JR, Erdman JW. Crit Rev Food Sci Nutr 1995;35:495-508.
- [61] Stephens LR, Radenberg T, Thiel U, Vogel G, Khoo K-H, Dell A, Jackson TR, Hawkins PT, Mayr GW. J Biol Chem 1993;268:4009–15.
- [62] Safrany ST, Caffrey JJ, Yang X, Bembenek ME, Moyer MB, Burkhart WA, Shears SB. EMBO J 1998;17:6599-607.
- [63] Joseph SK, Esch T, Bonner WD. Biochem J 2000;264:851-6.
- [64] Steimle PA, Hoffert JD, Adey NB, Craig SW. J Biol Chem 1999;274: 18414–20.
- [65] Kiessling LL, Gestwicki JE, Strong LE. Curr Opin Chem Biol 2000; 4:696–703.
- [66] Hughes PJ, Shears SB. J Biol Chem 1990;265:9869-75.
- [67] van der Kaay J, van Haastert PJM. Anal Biochem 1995;225:183-5.
- [68] Bartlett GR. Anal Biochem 1982;124:425-31.
- [69] Crimella T, Villa S, Rossi F, Fiorelli G, Zanella A. Adv Exp Med Biol 1992;326:51–4.
- [70] Stenmark H. Curr Biol 2000;10:R57-9.
- [71] Fukuda M, Aruga J, Niinobe M, Aimoto S, Mikoshiba K. J Biol Chem 1994;269:29206-11.
- [72] Llinás R, Sugimori M, Lang EJ, Morita M, Fukuda M, Niinobe M, Mikoshiba K. Proc Natl Acad Sci U S A 1994;91:12990–3.
- [73] Ohara-Imaizumi M, Fukuda M, Niinobe M, Misonou H, Ikeda K, Murakami T, Kawasaki M, Mikoshiba K, Kumakura K. Proc Natl Acad Sci U S A 1997;94:287–91.
- [74] Niinobe M, Yamaguchi Y, Fukuda M, Mikoshiba K. Biochem Biophys Res Commun 1994;205:1036–42.
- [75] Schiavo G, Gu Q-M, Prestwich GD, Söllner TH, Rothman JE. Proc Natl Acad Sci U S A 1996;93:13327–32.
- [76] Mehrotra B, Myszka DG, Prestwich GD. Biochemistry 2000;39: 9679–86.
- [77] Chi TH, Crabtree GR. Science 2000;287:1937-9.
- [78] Beck KA, Keen JH. J Biol Chem 1991;266:4442-7.
- [79] Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH. J Biol Chem 1996;271:20922-9.
- [80] Norris FA, Ungewickell E, Majerus PW. J Biol Chem 1995;270:214-8.
- [81] Ye W, Ali N, Bembenek ME, Shears SB, Lafer EM. J Biol Chem 1995;270:1564–8.
- [82] Hao W, Tan Z, Prasad K, Reddy KK, Chen J, Prestwich GD, Falck JR, Shears SB, Lafer EM. J Biol Chem 1997;272:6393–8.
- [83] Gaidarov I, Keen JH. J Cell Biol 1999;146:755-64.
- [84] Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. EMBO J 1999;18:871-81.
- [85] Stephens LR, Irvine RF. Nature 1990;346:580-3.
- [86] Brearley CA, Hanke DE. Biochem J 1996;314:227-33.
- [87] Chi H, Tiller GE, Dasouki Mj, Romano Pr, Wang J, O'Keefe RJ, Puzas JE, Rosier RN, Reynolds PR. Genomics 1999;56:324–36.
- [88] Craxton A, Caffrey JJ, Burkhart W, Safrany ST, Shears SB. Biochem J 1997;328:75-81.
- [89] Zhou D, Chen L-M, Hernandez L, Shears SB, Galán JE. Mol Microbiol 2001;39:248–259.
- [90] Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Duronio V, Finlay BB. J Biol Chem 2000;275:37718–24.
- [91] Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. Proc Natl Acad Sci U S A 1998;95:14057–9.
- [92] Ives EB, Nichols J, Wente SR, York JD. J Biol Chem 2000;275: 36575-83.
- [93] Saiardi A, Caffrey JJ, Snyder SH, Shears SB. J Biol Chem 2000;275: 24686–92.