

www.elsevier.com/locate/gene

Double FYVE-containing protein 1 (DFCP1): isolation, cloning and characterization of a novel FYVE finger protein from a human bone marrow cDNA library

Gene 255 (2000) 195-203

A.R. Derubeis^a, M.F. Young^a, L. Jia^b, P.G. Robey^{a,*}, L.W. Fisher^a

^a Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA

^b Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA

Received 26 April 2000; accepted 3 July 2000 Received by D. Schlessinger

Abstract

Double FYVE-containing protein 1 (DFCP1) encodes a 777 amino acid protein that contains: (1) an N-terminal Cys–His cluster with some homology to many zinc finger domains; (2) a consensus sequence consistent with an ATP/GTP binding site; and (3) a C-terminal domain unique because it contains two zinc-binding FYVE domains. The gene, *ZNFN2A1* (GenBank accession no. AF251025) was localized to chromosome 14q22–q24 and shown to be composed of 11 exons. Northern blot analysis revealed the presence of three different mRNA transcripts (4.2, 3 and 1.2 kb). The two longer transcripts appear to be expressed in a variety of different tissues, especially in endocrine tissues, while the shorter messenger is limited to testis. Both of the larger transcripts are unusual due to the presence of a 463 bp long 5' UTR. Furthermore, the 4.2 kb transcript contains a non-standard polyadenylation consensus sequence while the 3 kb transcript contains a standard consensus sequence but within the open reading frame. Following in vitro transfection of a DFCP1-containing expression construct, confocal microscopy studies showed a vesicular distribution of DFCP1 suggesting that this protein, like other FYVE-containing proteins, might be involved in membrane trafficking. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Bone marrow stroma; Expressed sequence tag; Vesicles; Zinc finger

1. Introduction

Bone marrow stromal cells (BMSC) are non-hematopoietic cells residing in the marrow cavity. While they exhibit a number of fibroblastic features, they are distinct from fibroblastic cells found in other connective tissues. Furthermore, they lack characteristics of endothelial cells and macrophages (Castro-Malaspina et al., 1980; Wang et al., 1990). After extensive proliferation in vitro, the BMSC population retains the capacity to differenti-

fax: +1-301-402-0824.

ate into at least four types of connective tissue: bone, cartilage, myelosupportive stroma, and associated adipocytes (Friedenstein et al., 1974; Owen and Friedenstein, 1988).

High throughput sequencing of a human BMSC cDNA library led to the identification of many previously reported genes, as well as a number of unknown expressed sequence tags (ESTs). We report here for the first time the cloning and characterization of a new protein containing two FYVE finger domains that we have designated DFCP1 (double FYVE-containing protein 1).

The function of most FYVE-containing proteins is still unknown, however, FYVE domains have been shown to interact specifically with the membrane lipid, phosphatidyl inositol-3-phosphate (PtdIns-3-P) (Stenmark et al., 1996; Burd and Emr, 1998; Gaullier et al., 1998; Patki et al., 1998). Several of the FYVEcontaining proteins have been shown to be recruited to

Abbreviations: BMSC, bone marrow stromal cells; DFCP1, double FYVE-containing protein 1; EST, expressed sequence tag; FYVE, Fab1p/YOTB/Vac1p/EEA1; PCR, polymerase chain reaction; PTdIns-3-P, phosphatidyl inositol-3-phosphate; STS, sequence tag site; UTR, untranslated region; ZNFN2A1, zinc finger protein, subfamily 2A, protein 1.

^{*} Corresponding author. Tel.: +1-301-496-4563;

E-mail address: probey@dir.nidcr.nih.gov (P.G. Robey)

vesicular structures and to participate in intracellular membrane trafficking (Simonsen et al., 1998; Bean et al., 1997; Weisman and Wickner, 1992; Piper et al., 1995; Yamamoto et al., 1995). We found this novel protein to be widely expressed, particularly in endocrine tissues. Upon in vitro transfection using DFCP1 expression constructs, DFCP1 did in fact localize to vesicular structures within the cytoplasm, similar to what has been reported for other FYVE-containing proteins.

2. Materials and methods

2.1. cDNA library construction

Human bone marrow stromal cells from three different donors [32 year old (yo) black female, 35 yo black male, 43 yo white male] were established according to the method published previously (Kuznetsov et al., 1997). Extracted RNA was oligo dT purified and then submitted to Stratagene (La Jolla, CA) for custom library construction into the Uni-Zap system (Dieudonne et al., 1999).

2.2. Skeletal Genome Anatomy Project (SGAP)

The SGAP is a project under development through the collaboration of the Medical Genetics Branch of the National Human Genome Research Institute (NHGRI), the Center for Information and Technology (CIT) and the Craniofacial and Skeletal Diseases Branch at the National Institute of Dental and Craniofacial Research (NIDCR) (Jia et al., 1998). SGAP's goal is to build a catalogue of genes expressed by normal and abnormal bone, cartilage, tendon, ligament and synovial tissues. To date, two cDNA libraries constructed from BMSCs, which contain osteoprogenitors (Kuznetsov et al., 1997), and more mature trabecular bone cells (TBCs) (Robey and Termine, 1985) have been sequenced.

2.3. DNA sequencing

Individual clones from the BMSC library were chosen and the 3' end was sequenced by the NIH Intramural Sequencing Center (NISC). The 3' ESTs were deposited in the National Center for Biotechnologies (NCBI) dbEST database. To date, approximately 10 000 clones have been sequenced. An EST from the BMSC library (GenBank accession no. AA545744) was selected and sequence verified and the clone was sequenced in full. Sequences were determined at least four times with universal T3, T7 or cDNA specific primers, by ABI 373 and 377XL Automated DNA sequencers. The Basic Logic Alignment Search Tool (BLAST) at the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST/) was used to search the GenBank database for related sequences (Altschul et al., 1990). DNA and protein sequence comparisons were carried out with the GCG software and domain searches were performed through the Prosite database (http://www.isrec.isb-sib.ch/). The genomic sequence was identified from GenBank using the DFCP1 encoding cDNA sequence as query in the High Throughput Genomic Sequences Database (HTGS), and has been assigned the designation *ZNFN2A1*.

2.4. Chromosomal localization

The NCBI dbSTS (Sequence Tag Sites database) (http://www.ncbi.nlm.nih.gov/BLAST/) of GenBank was queried using the genomic sequence, and this led to the identification of one sequence tag site (STS). The chromosomal position of the STS marker had been localized previously by radiation hybrid mapping, and the mapping information was available in the public database.

2.5. Northern blot analysis

Total RNA was extracted using RNA STAT (Tel-Test, Inc., Friendswood, TX) as directed by the manufacturer. Poly A⁺ RNA was prepared from total RNA using a Micro Poly (A) Pure kit (AMBION Inc., Austin, TX). Poly A^+ RNA blots (2 µg/lane) of human tissues were purchased from Clontech, Palo Alto, CA. Northern blots were hybridized with a 209 bp $(\alpha^{-32}P)CTP$ random prime labeled cDNA fragment (derived from PCR amplification of DFCP1 encoding cDNA using 5'-cagtgcgggtctgtgacaact-3' at position 2367 bp as the forward primer and 5'-tggtcaggcacccagtacg-3' at position 2556 bp as the reverse primer). A β -actin cDNA (Clontech, Palo Alto, CA) probe was used as a control. The blots were washed free of non-specifically bound probe, and radioactivity was visualized and quantified using a PhosphoImager and ImageQuant Software from Molecular Dynamics (Eugene, OR).

2.6. Fusion protein

For expression in mammalian cells, the coding sequence (428–2761 bp) was amplified using specific primers with built in restriction sites (BamHI 5'-agaataggatccatgagtgcccagacttccc-3' forward; EcoRI 5'-ttctgtgaattcttaaaggtcaccgggcttttt-3' reverse) and sub-sequently placed in frame behind the 9E10 myc sequence under the CMV promoter of pCMV-tag3b vector (Stratagene, La Jolla, CA). The integrity of the construct was then verified by DNA sequencing.

2.7. Transfections

NIH-3T3 cells were cultured in Dulbecco's modified Eagle's Medium (DMEM) containing 10% fetal bovine serum on cover slips in six well plates. When the cells reached a confluence of 70% they were transfected with the DFCP1–c-myc fusion protein (1 μ g DNA/well) with Lipofectamine Plus Reagent (Life Technologies, MD) and incubated in serum-free medium for 4 h following the manufacturer's directions. After 4 h, the serum-free media was replaced with serum-containing DMEM and the cells were allowed to recover at 37°C for 24 h.

2.8. Immunolocalization and confocal microscopy

Following 24 h of incubation, transfected NIH-3T3 cells were washed thoroughly with phosphate-buffered saline (PBS) and fixed for 20 min at room temperature (RT) in 2% phosphate-buffered formalin freshly prepared from paraformaldehyde. After extensive washing with PBS $1 \times$, cells were incubated in 0.1 M glycine/PBS (pH 7.4) for 15 min at RT. Permeabilization of the cells was achieved by incubating the cells in ice-cold methanol for 5 min at -20° C. Blocking in 0.5% bovine serum albumin in PBS for 15 min at RT was followed by incubation of the cells with a 1:100 dilution of the primary antibody, monoclonal mouse anti-c-myc (Boeheringer Mannheim) for 1 h at RT. After extensive washing, cells were incubated with a 1:40 dilution of the secondary antibody [donkey anti-mouse IgG $F(ab')_2$ fragment FITC-conjugated, Jackson Laboratories, Inc., PA] for 1 h at RT in 0.5% BSA/PBS in the dark. After washing, immunolocalization of DFCP1 fusion protein was detected by confocal microscopy. Images were captured on a Leica TCS-4D confocal laser scanning microscope system (Leica Microsystems, Heidelberg, Germany) equipped with a Kr/Ar laser. Z-series images were acquired using a $100 \times$, 1.4 NA objective with conditions constant for both control and experimental samples.

3. Results and discussion

3.1. Structural characterization and chromosomal localization

At the time when the SGAP was initiated, sequencing of the BMSC cDNA library produced approximately 50 3' ESTs which appeared to be unique to the library based on BLAST search of GenBank. One of these ESTs was selected for further characterization. The cDNA clone (2761 bp) from which this EST was derived was sequenced in full and further analysis revealed that it corresponded to a novel transcript (Fig. 1A). The open reading frame (ORF) encodes a protein of 777 amino acids with a predicted molecular mass of 87 230 Da and pI of 7.46. Plots of hydrophilicity (Kyte and Doolittle, 1982), surface probability (Janin andWodak, 1978; Emini et al., 1985), and antigenic index (Jameson and Wolf, 1988) predict a largely hydrophilic structure, suggesting that the protein is not an integral membrane protein. Submission of the deduced amino acid sequence to the SignaIP database (http://www.cbs.dtu.dk/services/SignalP/) of the Center of Biological Sequence Analysis (CBS) showed that no known nuclear localization signal peptide for transport of the protein into the nuclei, or signal peptide for secretion from the cell, are present, assigning this protein as primarily a cytoplasmic protein.

The deduced amino acid sequence of the cDNA reveals that the protein has many interesting features. It contains a putative zinc finger domain (a Cys- and His-rich region) at the NH₂-terminus (dashed box, Fig. 1A). Comparison of this region with other zinc finger sequences in the database revealed a loose correlation with different types of zinc finger domain (B-box: aa 13–63 and aa 66–121, C_2H_2 : aa 40–69). No perfect matches were found, suggesting that it represents either a novel type of zinc finger domain or is simply a Cys-and His-rich cluster. The protein has a glycine-rich region usually referred to as the P-loop or the 'A' consensus sequence (underlined with a solid line, Fig. 1A) that has been shown to be very conserved in a large number of proteins that bind ATP or GTP.

Further analysis of the deduced amino acid sequence revealed that the protein contains two putative double zinc finger domains, termed the FYVE finger, hence we have named this protein 'double FYVE-containing protein 1' (DFCP1). While zinc finger proteins are usually involved in protein-DNA interactions, a number of studies have shown that certain zinc fingers can be involved in protein-protein interactions (Freemont, 1993; Feuerstein et al., 1994) and even in the binding of lipids (Zhang et al., 1995). The FYVE domain was first characterized by Stenmark et al. (1996), the name being derived from the first letter of the first four proteins discovered to contain it: Fab1p, YOTB, Vac1p, EEA1. The amino acid sequence of the FYVE domain is highly conserved and characterizes a family of proteins with more than 30 members found in species ranging from yeast to mammals (Gaullier et al., 1999).

In DFCP1, both FYVE domains are approximately 70 amino acids long (solid lined box, Fig. 1A) and share 53% amino acid identity and 56% similarity (Fig. 2A, first two rows). The two FYVE domains are approximately 40% identical and 53% similar to FYVE domains of other proteins (Fig. 2A). The two FYVE domains of DFCP1 show the greatest degree of homology to human and yeast FYVE domains. The lack of homology to other mammals may be due to the lack of information on FYVE-containing proteins in rat and mouse. The Α

1	TGA	AAT	ACT	GAC	TTC	AGG	TCG	AAT	TAT	ATT	GAA	AAG	CTC	CTG	ACC	ACT	TTC	TTT	CAT	TAC	CAA	AAC	TTT	GTA	GCT	GAT	GTC	CAA	CCG	ATG	90
91	AAC	CCA	CCA	CCG	TGA	ACC	CAT	CAG	ACC	TCT	CTC	AGA	TAG	CCA	TAA	AAG	ACC	CTT	CCA	AGT	CAA	TTT	TGA	CCA	CAT	CTT	TGC	TTG	CAC	TTT	180
181	ATG	GAG	GAT	GAA	ACC	ATC	AAA	CCA	AAT	CAA	CGT	TGC	TGC	TAA	TAC	AAG	AGT	CTT	AGA	GGC	AGC	AAA	TTA	AAA	ATT	TGA	ACA	TTT	GTT	TGT	270
271	GAA	GAA	TA	TAA	CAG	GAC	AIG	AAA	GGI	- GII	5 mm	111	TAA	AG1	GTI	TOT	MAC .	CCI	GIG LCC	GAA	GTI	1CG	TGC	AGI	car	CAG	ACT	TAA	AIC	COL	1500
361	GTC	TTC	ACC	CCC	666	GCA	AGC	TCA	GTG	ACT	AII	AIA	166	IGG	GIG	IGI	ric	CII	ACC	AGC	GIG	AGI	Met	Ser	Ala	Gln	Thr	Ser	Pro	Ala	450
451	GAG	AAG	GGC	CTG	ААТ	CCG	GGG	CTG	ATG	TGC	CAG	GAA	AGT	TAC	GCT	TGC	AGC	GGG	ACT	GAT	GAA	GCT	*. ATC	TTT	GAG	TGT	GAT	GAG	TGC	TGC	540
9	Glu	Lys	Gly	Leu	Asn	Pro	Gly	Leu	Met	Cys	Gln	Glu	Ser	Tyr	Ala	Cys	Ser	Gly	Thr	Asp	Glu	Ala	Ile	Phe	Glu	Cys	Asp	Glu	Cys	Cys	38
541	AGT	CTG	CAG	TGT	стс	CGC	TGC	GAG	GAG	GAG	CTC	CAT	CGG	CAG	GAG	CGC	CTG	AGA	AAC	CAT	GAG	CGG	ATA	AGA	CTC	AAA	CCT	GGC	CAT	GTC	630
39	Ser	Leu	Gln	Cys	Leu	Arg	<u>Cys</u>	Glu	Glu	Glu	Leu	<u>His</u>	Arg	Gln	Glu	Arg	Leu	Arg	Asn	<u>His</u>	Glu	Arg	Ile	Arg	Leu	Lys	Pro	Gly	<u>His</u>	Val	68
631	CCT	TAC	TGT	GAC	CTC	TGC	AAG	GGT	CTC	AGT	GGG	CAT	TTA	CCA	GGT	GTT	AGG	CAG	AGG	GCA	ATA	GTG	AGG	TGC	CAG	ACC	TGC	AAA	ATT	AAC	720
69	Pro	Tyr	Cys	Asp	Leu	Cys	Lys	GLY	Leu	Ser	GLY	His	Leu	Pro	GIY	vai	Arg	GIN	Arg	ALA	ITe	var	Arg	Cys	GIN	Inr	<u>cys</u>	Lys	11e	Asn	98
721 99	TTG	TGC	CTG	GAG	TGC	CAG	AAG Lvs	AGG Arg	ACT Thr	CAT	TCT Ser	GGG Glv	GGT	AAC Asn	AAA Lvs	AGG Arg	AGA Ara	CAC	CCT	GTT Val	ACT Thr	GTG Val	TAC	AAT Asn	GTC Val	AGT Ser	AAT Asn	CTC	CAG	GAG Glu	810 128
011		<u>- 70</u> .	ChC	CCD	<u></u>					GAC		DAG		DDG		ATG	ACT	GAG	DDG	GTT	GTG	AGT		CTC	стъ	GTA	GAC	CPP	лат	CAA	900
129	Ser	Leu	Glu	Ala	Glu	Glu	Met	Asp	Glu	Glu	Thr	Lys	Arg	Lys	Lys	Met	Thr	Glu	Lys	Val	Val	Ser	Phe	Leu	Leu	Val	Asp	Glu	Asn	Glu	158
901	GAA	ATT	CAG	GTA	ACA	AAT	GAA	GAA	GAC	ттт	ATT	AGA	AAA	TTG	GAC	TGC	ААА	CCT	GAT	CAG	CAT	CTG	AAA	GTG	GTT	тсс	ATT	TTT	GGA	AAT	990
159	Glu	Ile	Gln	Val	Thr	Asn	Glu	Glu	Asp	Phe	Ile	Arg	Lys	Leu	Asp	Cys	Lys	Pro	Asp	Gln	His	Leu	Lys	Val	Val	Ser	Ile	Phe	Gly	Asn	188
991	ACT	GGT	GAT	GGA	AAG	TCT	CAT	ACT	CTC	AAC	CAC	ACT	TTC	TTT	TAT	GGT	CGT	GAA	GTC	TTT	AAA	ACC	TCC	CCG	ACC	CAG	GAG	TCC	TGC	ACT	1080
189	Thr	Gly	Asp	Gly	Lys	Ser	His	Thr	Leu	Asn	His	Thr	Phe	Phe	Tyr	GLY	Arg	Glu	Val	Phe	Lys	Thr	Ser	Pro	Thr	GIN	GIU	Ser	Cys	Thr	218
210	GTG	GGA	GTG	TGG	GCA	GCC	TAT	GAC	CCA	GTT	CAC	AAA	GTA	GCA	GTG	ATC	GAT	ACG Thr	GAA	GGG	CTC	CTG	GGG	GCC	ACC Thr	GTG Val	AAT	CTA	AGC	CAG	248
1171	hCh	DCD	CCC	CTC	CTC	CTT	-1- DDC	CTC	CTC	ccc	ATC	TCA	CDC	CTC	GTC	ATC	TAT	CGA	ACT	CAT	CCA	ChC	000	CTG	CAT	DDC	GAC	CTC	TTC	020	1260
249	Arg	Thr	Arg	Leu	Leu	Leu	Lys	Val	Leu	Ala	Ile	Ser	Asp	Leu	Val	Ile	Tyr	Arg	Thr	His	Ala	Asp	Arg	Leu	His	Asn	Asp	Leu	Phe	Lys	278
1261	TTC	CTT	GGG	GAT	GCC	TCA	GAA	GCT	TAT	CTG	AAG	CAC	TTC	ACC	AAG	GAG	CTC	AAG	GCC	ACC	ACT	GCT	CGC	TGT	GGC	CTG	GAT	GTC	CCT	TTA	1350
279	Phe	Leu	Gly	Asp	Ala	Ser	Glu	Ala	Tyr	Leu	Lys	His	Phe	Thr	Lys	Glu	Leu	Lys	Ala	Thr	Thr	Ala	Arg	Cys	Gly	Leu	Asp	Val	Pro	Leu	308
1351	TCC	ACA	CTG	GGC	CCT	GCA	GTT	ATC	ATC	TTC	CAT	GAG	ACC	GTG	CAC	ACC	CAG	CTA	CTG	GGC	TCT	GAT	CAT	ccc	TCA	GAG	GTG	CCA	GAG	AAG	1440
309	Ser	Thr	Leu	GIY	Pro	Ala	val	ITe	lle	Phe	His	GIU	Inr	vai	HIS	Inr	GIN	Leu	Leu	GΤΫ	ser	Asp	HIS	Pro	Ser	GIU	vai	Pro	GIU	Lys	338
1441 339	CTC	ATC	CAG	GAC	CGG	TTC	CGG	AAG Lvs	CTG	GGC	CGT	TTC Phe	CCT	GAA	GCC Ala	TTT Phe	AGT Ser	TCC Ser	ATT	CAC	TAC Tvr	AAG Lvs	GGA G1 v	ACG Thr	AGG Arg	ACT	TAC	AAC Asn	CCT	CCC Pro	1530 368
1531	ACC	CAC	TTT	тст	ccc	CTT	ccc	CGT	GCT	TTG	GAG	CAG	CTA	CTA	GAG	лат	AAC	ACC	ACC	CGT	тст	222	000	CAC	000	GGA	- - TE	ATC	TTC	AAA	1620
369	Thr	Asp	Phe	Ser	Gly	Leu	Arg	Arg	Ala	Leu	Glu	Gln	Leu	Leu	Glu	Asn	Asn	Thr	Thr	Arg	Ser	Pro	Arg	His	Pro	Gly	Val	Ile	Phe	Lys	398
1621	GCC	CTG	AAG	GCA	CTA	AGT	GAC	CGC	TTC	AGC	GGT	GAG	ATC	CCC	GAT	GAC	CAG	ATG	GCG	CAC	AGC	TCC	TTT	TTT	CCA	GAT	GAG	TAT	TTC	ACC	1710
399	Ala	Leu	Lys	Ala	Leu	Ser	Asp	Arg	Phe	Ser	Gly	Glu	Ile	Pro	Asp	Asp	Gln	Met	Ala	His	Ser	Ser	Phe	Phe	Pro	Asp	Glu	Tyr	Phe	Thr	428
1711	TGC	TCC	TCC	TTG	TGC	CTC	AGC	TGT	GGG	GTT	GGA	TGT	AAG	AAA	AGC	ATG	AAT	CAT	GGG	AAG	GAA	GGA	GTG	CCT	CAT	GAA	GCC	AAG	AGC	CGC	1800
429	Cys	Ser	Ser	Leu	Cys	Leu	ser	Cys	GIΥ	vai	GIΫ	Cys	гүs	гуз	Ser	Met	Asn	HIS	GIΥ	Lys	GLU	GTÀ	var	PIO	HIS	Giù	ALA	гуз	ser	Arg	4.58
1801 459	TGC	AGA	TAC	TCC Ser	CAC	CAG	TAT	GAC	AAC Asn	CGA	GTG Val	TAT	ACC Thr	TGC	AAG Lvs	GCC Ala	TGC	TAT Tvr	GAG Glu	AGA Ara	GGC Glv	GAG Glu	GAA Glu	GTC Val	AGT Ser	GTA Val	GTG Val	CCC Pro	AAA Lvs	ACA Thr	1890 488
1901	тст	COT	- 1 - TCC	ACT	CAC	TCC	-1-	TCC	ATC	COT	CTC	GCA	ممم	тат	acc	TCC	тст		TAT	GTG	ATC	CDD	TGT	CCT	AAC	TGT	ccc	GTG	GTC	TAT	1980
489	Ser	Ala	Ser	Thr	Asp	Ser	Pro	Trp	Met	Gly	Leu	Ala	Lys	Tyr	Ala	Trp	Ser	Gly	Tyr	Val	Ile	Glu	Cys	Pro	Asn	Cys	Gly	Val	Val	Tyr	518
1981	CGT	AGT	CGG	CAG	TAC	TGG	TTT	GGA	AAC	CAA	GAT	CCT	GTG	GAT	ACG	GTG	GTG	CGG	ACA	GAG	ATT	GTG	CAT	GTG	TGG	CCT	GGA	ACT	GAT	GGG	2070
519	Arg	Ser	Arg	Gln	Tyr	Trp	Phe	Gly	Asn	Gln	Asp	Pro	Val	Asp	Thr	Val	Val	Arg	Thr	Glu	Ile	Val	His	Val	Trp	Pro	Gly	Thr	Asp	Gly	548
2071	TTT	CTG	AAG	GAC	AAC	AAC	AAT	GCT	GCC	CAG	CGC	CTG	TTG	GAC	GGG	ATG	AAC	TTC	ATG	GCT	CAG	TCG	GTG	TCC	GAG	CTT	AGC	CTT	GGA	CCC	2160
549	Phe	Leu	Lys	Asp	Asn	Asn	Asn	Ala	Ala	GIn	Arg	Leu	Leu	Asp	GIY	Met	Asn	Phe	Met	AIA	GIN	Ser	vai	Ser		Leu	Ser	Leu	GIY	Pro	578
2161 579	ACC Thr	AAG Lvs	GCT Ala	GTG Val	ACT Thr	TCC Ser	TGG Trp	CTG Leu	ACA Thr	GAC	CAG Gln	ATC Ile	GCC Ala	CCT Pro	GCC Ala	TAC	TGG Trp	AGG Ara	CCC Pro	AAC Asn	TCC Ser	CAG Gln	ATT	CTG Leu	'AGC Ser	TGC Cvs	AAC Asn	AAG Lvs	TGT Cvs	GCG Ala	2250
2251	ACG	TCC	TTT	222	GAT	AAC	GAC	ACT	AAG	CAT	CAC	TGC	CGA	GCC	TGT	GGG	GAG	GGC	TTC	TGT	GAC	AGC	TGT	TCA	TCA	AAG	ACT	CGG	CCA	GTG	2340
609	Thr	Ser	Phe	Lys	Asp	Asn	Asp	Thr	Lys	His	His	Cys	Arg	Ala	Cys	Gly	Glu	Gly	Phe	Cys	Asp	Ser	Cys	Ser	Ser	Lys	Thr	Arg	Pro	Val	638
2341	ССТ	GAG	CGG	GGC	TGG	GGC	CCT	GCG	CCA	GTG	CGG	GTC	TGT	GAC	AAC	TGC	TAC	GAA	GCC	AGG	AAC	GTC	CAG	TTA	GCT	GTT	ACC	GAG	GCA	CAA	2430
639	Pro	Glu	Arg	Gly	Trp	Gly	Pro	Ala	Pro	Val	Arg	Val	Cys	Asp	Asn	Cys	Tyr	Glu	Ala	Arg	Asn	Val	Gln	Leu	Ala	Val	Thr	Glu	Ala	Gln	668
2431	GTG	GAC	GAT	GAA	GGT	GGA	ACA	CTC	ATT	GCT	CGG	AAG	GTG	GGC	GAG	GCC	GTG	CAG	AAC	ACT	CTG	GGA	GCC	GTG	GTG	ACA	GCC	ATT	GAC	ATA	2520
669	Val	Asp	Asp	GIU	GIY	GIY	Thr	Leu	lie	Ala	Arg	гла	vai	GIY	GIU	Ala	vai	GIN	ASN	Inr	Leu	GIY	Ala	vai	vai	Inr	Ala	IIe	Asp	IIe	698
2521 699	CCA Pro	CTA Leu	GGT Glv	CTG Leu	GTA Val	AAG Lvs	GAC	GCG Ala	GCC Ala	AGG Arg	CCT Pro	GCG Ala	TAC Tvr	TGG Trp	GTG Val	CCT Pro	GAC Asp	CAC His	GAA Glu	ATC Ile	CTC Leu	CAC His	TGC Cvs	CAC His	AAC Asn	TGC Cvs	CGG Ara	AAG Lvs	GAG Glu	TTC Phe	2610 728
2611	AGC	ATC	AAG	CTC	TCC	AAG	CAC	CAC	TGC	CGG	GCC	TGC	GGA	CAG	GGC	TTC	TGT	GAT	GAG	TGC	TCC	CAT	GAC	CGC	CGG	- GCT	GTT	CCT	TCT	CGT	2700
729	Ser	Ile	Lys	Leu	Ser	Lys	His	His	Cys	Arg	Ala	Cys	Gly	Gln	Gly	Phe	Cys	Asp	Glu	Cys	Ser	His	Asp	Arg	Arg	Ala	Val	Pro	Ser	Arg	758
2701	GGC	TGG	GAC	CAT	ccc	GTC	CGA	GTC	TGC	TTC	AAC	TGC	AAT	AAA	AAG	CCC	GGT	GAC	CTT	TAA	CCC	Cag	ccc	cct	ctc	cga	gtc	ctt	cac	aat	2790
759	Gly	Trp	Asp	His	Pro	Val	Arg	Val	Cys	Phe	Asn	Cys	Asn	Lys	Lys	Pro	Gly	Asp	Leu	Stop	þ										778
2791	tcc	tta	ggt	tct	cag	ggt	tag	aaa	cag	tct	tgc	gag	gta	ggc	cct	cct	ccc	agt	cac	ctg	ctg	tgg	tgt	gtg	tcc	tct	cct	ctc	cgc	atc	2880
2881	cag	ggc	cac	ttt	ccc	tca	gtg	ggg	gtg	agc	ctg	gcg	gca	ggc	ccg	aag	gtg	tgg	acc	cct	cag	ggc	agg tat	gga	cct	tgc	aac	tta	tcg	caa	2970
3061	agg	act	coo	aac	ota	tca	add	cta	cta	cta	act	ata	aaq	act	tca	cac	agt	ctc	ctc	cac	aca	aaa	tga	aat	aac	agt	aca	age	acg	tct	3150
3151	tcc	tca	tga	gcc	gag	cca	ggt	cca	tgg	cca	cca	cgt	ggc	tgg	ccc	ctt	cct	ctg	ctg	ctc	ttg	gag	cct	tgg	aag	cct	ctc	ctg	tcc	ttg	3240
3241	gct	ctt	ccc	tcc	atg	cct	gtc	agc	tgc	ctg	ggg	agt	gag	cct	ccc	tgg	tcc	ttc	ctg	cct	gaa	aca	gcc	tga	agg	gaa	ttc	tcc	cta	ggt	3330
3331	ctc	ctg	gga	gtc	gag	tcc	caa	ttc	ttg	gct	taa	gcc	tgt	ttt	agt	cag	aga	cca	ccc	aac	tta	gcg	tgc	agg ~-	tca	ccg	gag ~~	tgg	gtg	gag	3420
3421 3511	ggt	cag tto	agg t.cc	tcg	ggt agg	ctt	cgg tcc	ccc	tga	gaa nat	gta gc+	gaa tat	atg	cag tcc	ggg act	ccd	tgc ctt	tgt tcc	ccc	tgg aag	tCC	dCS dCS	agg ccc	gaa age	cag tee	caa tca	gga atc	agg naa	aac	tga tot	3510 3600
3601	gee	tcc	cac	ccc	tca	gee	ccc	tca	age	cca	cca	tct	gct	tct	gag	-99 tgt	cgc	act	agg	att	ttc	att	gct	tat	ttt	aaa	gtg	tct	taa	tee	3690
3691	ttt	gtt	ccc	aga	cac	aca	acc	cct	cta	gct	ctc	gga	ggg	gcg	atc	atg	aga	aac	ctt	cca	ggg	aaa	ctg	agc	aca	gga	tga	act	gtt	agt	3780
3781	tgt	ttt	taa	aag	tct	ata	taa	ata	ttt	caa	cag	atc'	gta	aag	aaa	aaa	ttt	atc	tct	ttg	gtc	ctt	gca	aga	gaa	gtc	aaa	gga	act	ttt	3870
3871	gtt	tct	cct	caa	gag	cct	gga	cat	ctc	tgt	ctg	tca too	tga ctg	ctg	gaa	agg	gcc	cgt	tgt	gct gct	gaa ++>	atc	cta	tca	tca	tgg	cgg	att	tga	tct	3960
· · · · · · · · · · · · · · · · · · ·	tca	ata	acc	222	C2C	een	++>	220	T at					aac	T a a	taa	11 O	aat	10.4	110 1	112	11111	ac		are	111.11	11111	агт	CCT	aar	40.00
4051	tca gcq	gtg cct	gcc atc	aaa ggt	cac gtg	gaa aca	tta tga	aag gcc	tat ctg	gag	tgt	gtc	gtc	aac cct	tgg ctc	tgg agc	cct	ggt gct	cct	cct	gcc	tcc	tgg	ggt	cca	gtg	act	ggg	cct acc	ggt cta	4140

 ${\tt TCAGTGACTATTATATGGTGGGTGTGTTTCCTTACCAGCGTGAGT {\tt ATG}$

Fig. 1. (A) Nucleotide and predicted amino acid sequence of DFCP1 cDNA. A Cys-His cluster at the amino terminus (dashed line box) has similarities, but is not identical to a number of zinc finger proteins. An ATP/GTP 'A' consensus sequence is underlined with a solid line. The two FYVE domains at the carboxy terminus are boxed and the potential zinc-coordinating cysteine residues are in bold. The basic patches of amino acids found to be important for binding to PtIns-3-P within the FYVE domain are underlined with a dotted line. The two Poly A⁺ consensus sequences are shaded. The intron-exon junctions indicated with arrow heads are types 0, I, 0, II, 0, II, 0, 0, I, I, respectively. Capital letters represent the sequence derived from the original cDNA clone. Lower case letters indicate the sequence derived from the genomic sequence in the database. Poly A^+ of the ~3 kb message occurs at the junction of the upper and lower case sequences, just after the stop codon. (B) 5' untranslated region (463 bp), predicted transcription start site and putative partial promoter region. The predicted transcription start is 37 bp upstream of the cDNA clone (shown here in upper case). Also indicated are putative transcription factor binding sequences.

most conserved amino acids within the FYVE domains are eight cysteines (bold in Fig. 1A) which are thought to coordinate Zn^{2+} binding (Stenmark et al., 1996). There is also a motif that is rich in basic residues, Arg/Lys–Arg/Lys–His–His–Cys–Arg, surrounding the third cysteine residue (dashed underline in Fig. 1A) that further characterizes the FYVE domain (Stenmark et al., 1996; Burd and Emr, 1998), and is thought to be a binding pocket for PtdIns-3-P (Misra and Hurley, 1999). It is interesting to note that the two FYVE domains in DFCP1 have a Ser and a Thr where other FYVE domains have an Arg (Fig. 2A).

By using the cDNA sequence of DFCP1 to search the HTGS database (http://www.ncbi.nlm.nih.gov/ BLAST), we were able to identify the complete genomic sequence (Human Genome Project, GenBank accession no. AC006345) (Fig. 2B). The gene locus name and symbol approved by the Human Genome Nomenclature Committee is ZNFN2A1, indicating a 'zinc finger protein, subfamily 2A (FYVE domain-containing), 1'. Comparative analysis of cDNA and genomic sequences revealed that ZNFN2A1 contains 11 exons and 10 introns (Fig. 2B). The Cys/His-rich cluster is entirely encoded by exon 1 and the ATP/GTP binding site is within exon 2. The two FYVE domains are encoded separately in exons 9 and 11. The genomic sequence allowed us not only to verify the 5' untranslated region (UTR) upstream seen in the cDNA clone, but also to identify the polyadenylation consensus sequence that gives rise to the longer transcripts found in many tissues. Furthermore, PCR amplification of our own library cDNAs, as well as GenBank database searches of newly entered cDNA sequences, confirmed the length and sequence of the 3' UTR. (Fig. 1 shows the sequence of the cDNA clone derived from the library in capital letters and the subsequently confirmed sequence first derived from the genomic sequence in lower case letters.)

The putative transcription start site was identified using a eukaryotic promoter prediction program (Neural Network Program, LBNL; http://dot.imgen.bcm.tmc. edu:9331/seq-search/gene-search.html). The predicted transcription start site was located 463 bp upstream of the initiating codon and 37 bp upstream of the sequence of the cDNA clone (Fig. 1B). Analysis of the genomic sequence upstream from the putative start of transcrip-Transcription tion using the Factor Search (TFSEARCH; http://pdap1.trc.rwcp.or.jp/research/db/ TFSEARCH.html) revealed the presence of a number of transcription factor binding sequences including: a reverse TATA box (GGAAATTTTT at position -23); AP-4 (CTCAGCAGTT at -75); Lyf-1 (CTTGG-GAGG at -225); and AP-1 (GGTGACTCACG at -397) (Fig. 1B).

We determined the chromosomal localization of *ZNFN2A1* through a search of the dbSTS database (http://www.ncbi.nlm.nih.gov/BLAST/). The genomic sequence showed 100% nucleotide sequence identity to the STS marker, stSG16028, which has been localized to chromosome 14q22–q24 (NCBI GenMap '99).

3.2. Expression analysis

Because we isolated the then unique DFCP1 encoding cDNA from a cDNA library derived from cultured human bone marrow stromal cells, we wanted to compare the expression level of this mRNA in this cell population with other fibroblastic cell cultures that share various morphologic features with BMSC, but vary with

Fig. 2. The amino acid sequence alignment of the FYVE domain and the genomic structure of *ZNFN2A1*. (A) DFCP1a and 1b represent the two FYVE domains in DFCP1. Sequences shown are derived from yeast: Vps27 (GenBank accession no. U24281), Pib1p (GenBank accession no. U28374), Fab1 (GenBank accession no. U01017); human: EEA1 (human early endosomal antigen, GenBank accession no. L40157), Hrs-2 (GenBank accession no. D84064) and KIAA0647 (unknown protein human, GenBank accession no. AB014547); and rat: Fabrin (GenBank accession no. AF038388). Boxes indicate amino acid identities or conservative amino acid substitutions between the two FYVE domains in DFCP1 and among the FYVE domains of other proteins. (B) The genomic structure is characterized by 11 exons represented by boxes. The putative zinc finger at the NH₂-terminus is encoded by exon 1, and the putative ATP/GTP binding site is within exon 2. The first FYVE domain is encoded by exon 9, the second FYVE domain by exon 11 (*).

Fig. 4. Immunofluorescence staining of the c-myc–DFCP1 fusion protein in NIH-3T3 cells. NIH-3T3 cells were transfected, fixed and incubated with mouse monoclonal anti-c-myc (\mathbf{A} and \mathbf{B}) followed by FITC-conjugated donkey anti-mouse antibody. Staining of the Golgi (arrow), cytoplasmic vesicles (arrowheads) and diffuse staining characteristics of rough endoplasmic reticulum (asterisk) were routinely observed. (\mathbf{C}) Untransfected cells; (\mathbf{D}) cells transfected and incubated in the presence of only the secondary antibody.

respect to their ability to form bone. Specifically, we compared expression levels of DFCP1 in mature osteoblastic cells (TBC) with BMSCs which are osteogenic precursors, and to similar, but non-osteogenic stromal cells derived from spleen, thymus and foreskin fibroblasts (SSF, TSF, FF, respectively). DFCP1 mRNA was expressed in all cell populations examined, with the highest level of expression in FF (Fig. 3A). These results indicate that there is no obvious correlation between DFCP1 mRNA expression levels and osteogenic potential, and that DFCP1 is not unique to bone-forming cells.

Northern blot analysis of mRNA isolated from a variety of human tissues confirmed that DFCP1 is not specific to BMSCs, but is widely expressed (Fig. 3B and C). Quantitative analysis showed relatively higher expression of DFCP1 mRNA in endocrine tissues such as pancreas, adrenal gland and thyroid (Fig. 3B).

Hybridization of the DFCP1 cDNA probe to an endocrine tissue blot (Clontech, Palo Alto, CA) confirmed these findings, and furthermore revealed the presence of three different size transcripts: 4.2, 3 and 1.2 kb (Fig. 3C). The 4.2 and 3 kb appeared to be ubiquitously expressed in all tissues tested, whereas the 1.2 kb transcript was found only in testis. The presence of a 1.4 kb long 3' UTR accounts for the difference in length between the 4.2 and 3 kb mRNAs, however, the possibility of alternative splicing cannot be ruled out at this time. A search of the dbEST database with the mRNA sequences identified a group of recently deposited ESTs derived from other library sources that shared the same 3' end as the 4.2 kb transcript, as well as a separate group that shared the 3' end of the 3 kb transcript.

The 4.2 kb mRNA contains a polyadenylation con-

Fig. 3. Northern blot analysis and tissue distribution of DFCP1 mRNA. (A) Relative expression level of DFCP1 mRNA in cell cultures that differ with respect to their ability to form bone (TBC, trabecular bone cells; BMSC, bone marrow stromal cells; SSF, spleen stromal fibroblasts; TSF, thymus stromal fibroblasts; FF, foreskin fibroblasts). (B) Relative expression levels of DFCP1 mRNA in different tissues. Relative levels were determined by counting the amount of radioactivity (PhosphoImager) and then normalizing the value against β -actin. (C) The expression pattern by Northern blot of DFCP1 transcripts in a variety of tissues, demonstrating the presence of the three different transcripts (4.2, 3 and 1.2 kb).

sensus at the end of the 3' UTR (4172 bp), but with a substitution of the first nucleotide, A, with a C (CATAAA). A substitution of the first nucleotide of the AATAAA consensus sequence appears to be rare among reported mRNAs. Previous in vitro findings suggest that mutations in the AATAAA consensus sequence decrease the rate of cleavage and polyadenylation of the mRNA transcripts (Sheets et al., 1990). However, the 4.2 kb transcript appears in high abundance in several tissues (primarily endocrine tissues). Thus, cleavage and polyadenvlation may not be rate limiting for this gene, or there may be sequences elsewhere in the precursor which compensate for the non-conventional polyadenylation consensus. Interestingly, the 3 kb mRNA does have a canonical AATAAA polyadenylation consensus sequence near the end, but still within the ORF (at 2738 bp), an unusual placement in eukaryotic cells. The fact that other ESTs recently deposited from libraries made from Poly A-containing mRNAs are identical to the 3' ends of both the 4.2 and 3.0 kb mRNAs indicates that both the non-standard sequence in the 4.2 kb form and the sequence within the ORF of the 3.0 kb form are in fact utilized. To date, the 1.2 kb message found only in testis remains unexplained. Whether this transcript is an alternative splice of ZNFN2A1 or represents an independent gene with some homology to ZNFN2A1 is unknown at this time.

3.3. Immunolocalization

Based on previous reports that other FYVE-containing proteins may be involved in intracellular membrane trafficking (Simonsen et al., 1998; Bean et al., 1997; Weisman and Wickner, 1992; Piper et al., 1995; Yamamoto et al., 1995), we wanted to determine where DFCP1 would localize within the cell. NIH-3T3 fibroblasts were therefore transfected with a pCMV-tag3b plasmid containing the DFCP1 ORF preceded by a sequence tag coding for the c-myc epitope (MEQKLISE). The DFCP1 was then localized using the monoclonal anti-c-myc. Confocal microscopy revealed an absence of nuclear accumulation, but a pattern typical of localization in the Golgi apparatus, endoplasmic reticulum and cytoplasmic vesicles. This pattern of localization supports the hypothesis that DFCP1 may indeed be recruited to vesicular structures due to the presence of one or both of the FYVE domains (Fig. 4A and B).

4. Conclusions

In this study we have identified and cloned a novel gene (ZNFN2A1) which encodes for a protein that we have named DFCP1. Double FYVE is expressed in a

wide variety of tissues, but the highest levels were seen clearly in endocrine tissues.

- 1. DFCP1 contains sequences encoding for: (1) a Cysand His-rich cluster in the amino terminal portion of the protein (possibly a new type of zinc finger); (2) an ATP/GTP binding site; and (3) two FYVE domains near the carboxy terminus.
- 2. This is the first time that two FYVE domains have been found in one protein.
- 3. DFCP1 mRNA has a relatively long (463 bp) 5' UTR.
- 4. The polyadenylation consensus sequence for the longer transcript (4.2 kb) is non-standard, while in the shorter transcript (3 kb) it is within the coding sequence, both of which are relatively rare findings.
- Confocal microscopy studies revealed that when transfected into NIH-3T3 cells, the fusion protein appears to localize to membranous structures in the cytoplasm.

Further analysis is required to characterize the role that this protein plays in cells, in particular, on membrane trafficking, as has been suggested for other FYVEcontaining proteins.

Acknowledgements

We thank Dr. Bill Swaim for invaluable help with the confocal microscopy studies and Dr. Lynn King for a critical review of this manuscript.

References

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
- Bean, A.J., Seifert, R., Chen, Y.A., Sacks, R., Scheller, R.H., 1997. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature 385, 826–829.
- Burd, C.G., Emr, S.D., 1998. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162.
- Castro-Malaspina, H., Gay, R.E., Resnick, G., Kapoor, N., Meyers, P., Chiarieri, D., McKenzie, S., Broxmeyer, H.E., Moore, M.A., 1980. Characterization of human bone marrow fibroblast colonyforming cells (CFU-F) and their progeny. Blood 56, 289–301.
- Dieudonne, S.C., Kerr, J.M., Xu, T., Sommer, B., DeRubeis, A.R., Kuznetsov, S.A., Kim, I.S., Gehron Robey, P., Young, M.F., 1999. Differential display of human marrow stromal cells reveals unique mRNA expression patterns in response to dexamethasone. J. Cell Biochem. 76, 231–243.
- Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J., 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836–839.
- Feuerstein, R., Wang, X., Song, D., Cooke, N.E., Liebhaber, S.A., 1994. The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc. Natl. Acad. Sci. USA 91, 10655–10659.
- Freemont, P.S., 1993. The RING finger. A novel protein sequence motif related to the zinc finger. Ann. NY Acad. Sci. 684, 174–192.

- Friedenstein, A.J., Chailakhyan, R.K., Latsinik, N.V., Panasyuk, A.F., Keiliss-Borok, I.V., 1974. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340.
- Gaullier, J.M., Simonsen, A., D'Arrigo, A., Bremnes, B., Stenmark, H., Aasland, R., 1998. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433.
- Gaullier, J.M., Simonsen, A., D'Arrigo, A., Bremnes, B., Stenmark, H., 1999. FYVE finger proteins as effectors of phosphatidylinositol 3-phosphate. Chem. Phys. Lipids 98, 87–94.
- Jameson, B.A., Wolf, H., 1988. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput. Appl. Biosci. 4, 181–186.
- Janin, J., Wodak, S., 1978. Conformation of amino acid side-chains in proteins. J. Mol. Biol. 125, 357–386.
- Jia, L., Wilkin, D.J., King, L.M., Young, M.F., Derubeis, A., Powell, J., Yang, L., Robey, P.G., Francomano, C.A., 1998. Bone marrow stromal cells and trabecular bone cells: comparative functional genomics. Am. J. Hum. Genet. 63 (Suppl.), A250.
- Kuznetsov, S.A., Krebsbach, P.H., Satomura, K., Kerr, J., Riminucci, M., Benayahu, D., Robey, P.G., 1997. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347.
- Kyte, J., Doolittle, R.F., 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.
- Misra, S., Hurley, J.H., 1999. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666.
- Owen, M., Friedenstein, A.J., 1988. Stromal stem cells: marrowderived osteogenic precursors. Ciba Found. Symp. 136, 42–60.

- Patki, V., Lawe, D.C., Corvera, S., Virbasius, J.V., Chawla, A., 1998. A functional PtdIns(3)P-binding motif. Nature 394, 433–434.
- Piper, R.C., Cooper, A.A., Yang, H., Stevens, T.H., 1995. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in *Saccharomyces cerevisiae*. J. Cell Biol. 131, 603–617.
- Robey, P.G., Termine, J.D., 1985. Human bone cells in vitro. Calcif. Tissue Int. 37, 453–460.
- Sheets, M.D., Ogg, S.C., Wickens, M.P., 1990. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18, 5799–5805.
- Simonsen, A., Lippe, R., Christoforidis, S., Gaullier, J.M., Brech, A., Callaghan, J., Toh, B.H., Murphy, C., Zerial, M., Stenmark, H., 1998. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498.
- Stenmark, H., Aasland, R., Toh, B.H., D'Arrigo, A., 1996. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271, 24 048–24 054.
- Wang, Q.R., Yan, Z.J., Wolf, N.S., 1990. Dissecting the hematopoietic microenvironment. VI. The effects of several growth factors on the in vitro growth of murine bone marrow CFU-F. Exp. Hematol. 18, 341–347.
- Weisman, L.S., Wickner, W., 1992. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J. Biol. Chem. 267, 618–623.
- Yamamoto, A., DeWald, D.B., Boronenkov, I.V., Anderson, R.A., Emr, S.D., Koshland, D., 1995. Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6, 525–539.
- Zhang, G., Kazanietz, M.G., Blumberg, P.M., Hurley, J.H., 1995. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell 81, 917–924.