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Abstract

An iterative solution technique for reactive transport problems is developed, which we call the selective coupling method, that

represents a versatile alternative to traditional uncoupled iterative techniques and the fully coupled global implicit method. The

chemical formulation studied allows a combination of equilibrium and kinetic reactions, and therefore is a more versatile model

formulation than a purely equilibrium-based system. However, this is a very challenging system for obtaining an e�cient numerical

solution. Techniques that sequentially compute the concentrations of aqueous components possibly ignore important derivatives in

the Jacobian matrix of the full system of equations. The selective coupling method developed here allows only the strongly coupled

components to be solved together, and the transport iteration consists of solving groups of components simultaneously. We also

develop a method denoted as coupled normalization to reduce the computational work and memory requirements for particular

types of reactive transport problems. These approaches can result in computational savings relative to the global implicit method by

achieving a similar iteration count while reducing the cpu time per iteration. More importantly, the memory requirements of the

selective coupling technique are controlled by the maximum number of coupled components, rather than by the total number of

components. For complex aqueous chemical systems and grids with a large number of nodes, memory e�ciency is the characteristic

that makes the selective coupling method particularly attractive relative to the global implicit method. A series of example cases

illustrate the e�ciency of the new approach. These test problems are also used to address the implementation issues surrounding

the most e�cient strategy for coupling the aqueous components when carrying out the chemical transport iteration. In-depth

knowledge of the behavior of the chemical system is required to select an appropriate solution strategy. Published by Elsevier

Science Ltd.
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Notation

Variable Description
aij stoichiometric coe�cient representing the

number of moles of component j in complex i
A aqueous concentration of the electron

acceptor (mol/kg water)
�A solute mass storage per unit total volume for

an aqueous component (mol/m3)
As surface area of mineral (m2/m3 rock)
b decay coe�cient (hÿ1)
�B solute mass storage per unit total volume for

a vapor component (mol/m3)

c uncomplexed concentration (mol/kg water)
C total aqueous concentration (mol/kg water)
Ĉ chemical formula for an aqueous component

D hydrodynamic dispersion tensor (m2/s)

Da Damk�ohler number

f array of residuals

fc advective mass ¯ux of solute (mol/m2)

G vapor concentration (mol/kg air)

c activity coe�cient

k� rate constant for precipitation±dissolution
reaction (mol/m2 s)

kf reaction rate in the forward direction for
Example 1 (1/time)

km sorption mass transfer coe�cient (1/h)
kr reaction rate in the reverse direction for

Example 1 (1/time)

K equilibrium constant for a reaction
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1. Introduction

Transport of dissolved chemicals in groundwater is
an important topic in several disciplines of the ®eld of

hydrology, including pollutant migration and hydro-
geochemical characterization of groundwater ¯ow.
Geochemical modeling takes many forms, including: (1)
pure geochemical modeling without consideration of
transport issues; (2) simulations of complex geochemical
processes in one dimension; (3) contaminant plume mi-
gration in complex ¯ow systems without consideration
of the complexities of chemical reactions; and (4) models
that combine complex reactive processes with detailed
descriptions of groundwater ¯ow. The recent trend in
reactive transport modeling has been to include geo-
chemical complexities such as biological reactions [13],
explicit characterization of root zone processes [18],
multiphase reactions such as mineral dissolution/pre-
cipitation reactions and their feedback on the ¯ow sys-
tem [10], and the in¯uence of heterogeneities [21]. As the
chemical aspects of these models become more complex,
there has been considerable focus on numerical formu-
lations that can solve the resulting equations e�ciently.
Steefel and MacQuarrie [17] provide a summary of these
methods and approaches.

In most reactive transport codes, the transport of
species is modeled using the advection±dispersion-reac-
tion equation. The method by which transport codes
incorporate the chemistry varies depending on the par-
ticular code. In general, the chemistry of the system can
be modeled using a kinetic, equilibrium, or mixed ki-
netic-equilibrium formulation. The ®rst codes that
coupled complex chemistry with transport typically as-
sumed that all chemical species in the system were in
local equilibrium [3,4,14,28]. Papers by Yeh and Tri-
pathi [28], Liu and Narasimhan [11] and Lichtner [10]
review many of these models and discuss their ap-
proaches. Due to computational limitations and the
virtually nonexistent database of mineral-water reaction
rates, the local equilibrium assumption was a necessity.
Equilibrium approaches remain popular due to the ac-
cessibility of large geochemical databases and sophisti-
cated software packages. Nevertheless, the current trend
in reactive transport codes is to include kinetic formu-
lations for certain types of chemistry. Experimental ev-
idence of kinetic limitations is shown in [26,2,12,23,6,7].
In addition, there now exists a considerable body of
knowledge of mineral kinetic rate constants [16].
Therefore, kinetic formulations are useful for these
water±rock interactions since both kinetic and equilib-
rium behavior can be modeled with a kinetic formula-
tion [16].

Various approaches have been taken to model com-
bined kinetic and equilibrium transport systems. We will
refer to these approaches as mixed equilibrium-kinetic
formulations. The equations that give rise to these ki-
netic formulations can be cast so that the minimum
number of independent unknowns are solved for while
still incorporating the appropriate kinetic reactions. For
example, Liu and Narasimhan [11] include kinetic

KA Monod half-maximum-rate concentration
for electron acceptor (mol/kg water)

KD sorption distribution coe�cient (cm3/g)
KS Monod half-maximum-rate concentration

for electron donor (mol/kg water)
Ksp solubility product for precipitation/

dissolution reaction [the units are dependent
on the number of aqueous species
participating in the precipitation/dissolution
reaction along with their stoichiometry)

1 subscript denoting liquid phase
L advection±dispersion operator (mol/m3)
mb;init initial biomass concentration (mol/kg rock)
M total immobile concentration (mol/kg rock)
M̂ chemical formula for an immobile

component
lp stoichiometric coe�cients associated with

precipitation/dissolution reactions
Nc number of aqueous components
Ncell number of elements/cells in the ®nite element

grid
Ncon number of connections in the ®nite element

grid
Ndof number of degrees of freedom being solved

for
Nim number of immobile components
Nv number of vapor components
Nx number of aqueous complexes
/ porosity (m3 voids/m3 total)
Q volumetric ¯ow rate in column (arbritrary

units)
Qp reaction quotient [the units of the reaction

quotient are dependent on the number of
aqueous species participating in the
precipitation/dissolution reaction along with
their stoichiometry)

qb bulk rock density (kg/m3)
q1 density of water (kg/m3)
R kinetic reaction source±sink term (mol/m3)
S aqueous concentration of substrate (electron

donor) (mol/kg water)
S1 liquid saturation (m3 water/m3 voids)
t time (s)
s residence time of column (arbitrary units)
u1 Darcy velocity (m/s)
v subscript denoting vapor phase
x complex concentration (mol/kg water)
X̂ chemical formula for aqueous complex
Y microbial yield coe�cient (g cell/mole NTA)
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precipitation±dissolution in their otherwise equilibrium
transport code. Steefel and Lasaga [16] and Tebes-
Stevens et al. [20] assume that aqueous phase reactions
are in local equilibrium but include kinetic models for
rock-water interactions. We will utilize a mixed equi-
librium-kinetic formulation for the work presented in
this paper.

The coupled partial di�erential equations that arise in
a reactive transport formulation are computationally
expensive to solve. There are numerous solution tech-
niques that have been presented in the literature that
deal with the problem of how to couple the reaction and
transport terms. These techniques can be broken down
into three categories: operator splitting, the global im-
plicit method, and sequential iteration approaches. Each
technique has its advantages and disadvantages in both
accuracy and computational e�ciency. Steefel and
MacQuarrie [17] compare these techniques in greater
detail. The reactive transport model presented in this
paper utilizes a solution technique that is a hybridized
version of the global implicit and sequential iteration
methods presented in the literature. We will compare the
performance of our method to the global implicit and
sequential iteration methods. Comparisons between our
method and operator-splitting methods are not discus-
sed in this paper but will be a topic for future work.

The focus of the present study is to demonstrate a
numerical technique that can be used to solve the mixed
equilibrium-kinetic transport problem in large, complex
two- and three-dimensional domains. The goal is to de-
velop a ¯exible technique that has wide applicability to a
range of reactive transport systems, with particular em-
phasis on the solution of transport problems with large
number of numerical grid blocks. Therefore, both cpu
time and memory usage must be handled e�ciently. A
technique is developed in an existing ®nite element heat
and mass transfer code called FEHM [31], which handles
multiphase ¯ow and transport and uses a versatile ®nite-
volume discretization approach capable of handling
unstructured grids. Therefore, the techniques are appli-
cable for use on grids of arbitrary complexity, from
simple orthogonal grids to grids with node points having
variable number of connections to adjacent nodes.

2. Formulation of physical/chemical system

2.1. Primary/secondary variables

The reactive transport equations solved by FEHM
are described in greater detail in Viswanathan et al. [25].
We will provide a brief summary in this section. FEHM
uses aqueous, immobile and vapor components as the
primary dependent variables (PDVs) in the reactive
transport equations. The secondary dependent variables
(SDVs) are uncomplexed aqueous component concen-

trations and aqueous complex concentrations. We make
the local equilibrium assumption for all aqueous phase
speciation reactions, resulting in the following relation-
ship between PDVs and SDVs:

Cj � cj �
XNx

i�1

aijxi; j � 1; . . . ;Nc; �1�

where Cj is the total aqueous concentration of compo-
nent j, cj the uncomplexed concentration of component
j, xi the concentration of complex i, aij the stoichiometric
coe�cient representing the number of moles of compo-
nent j in complex i, Nc the number of aqueous compo-
nents and Nx is the number of aqueous complexes [28].

For transient ¯uid ¯ow, the generalized version of the
reactive transport equation for an aqueous component
is used:

o �Aj

ot
� r � �/S1Djrq1Cj� ÿ r � fc � Rj;

j � 1; . . . ;Nc;

�2�

where �Aj � /CjS1q1 is the solute mass storage per unit
total volume for aqueous component liquid concentra-
tion Cj; fc � q1Cju1 the advective mass ¯ux of solute; D
the hydrodynamic dispersion tensor; S1 the liquid satu-
ration; u1 the Darcy velocity vector; / the porosity; q1

the liquid density; and Rj is the kinetic reaction source±
sink term. To simplify the notation for the remainder of
the paper, we de®ne the advection±dispersion operator

L1�C� � r � fc ÿr � �/S1Djrq1Cj�: �3�
Eq. (2), the reactive advection±dispersion equation, can
then be rewritten as

o �Aj

ot
� L1�Cj� � Rj; j � 1; . . . ;Nc; �4�

The reaction transport equation for a vapor compo-
nent takes on a similar form to Eq. (4) and is given by

o �Bk

ot
� Lv�Gk� � Rk; k � 1; . . . ;Nv; �5�

where �Bk is the solute mass of component k per unit
volume, Gk the vapor concentration of component k, uv

the vapor Darcy velocity vector and Nv is the number of
vapor components. The hydrodynamic dispersion tensor
is assumed to reduce to longitudinal and transverse
components (e.g. [10]).

Immobile components are not transported and are
therefore treated using a simple mass balance given by

oMm

ot
� Rm; m � 1; . . . ;Nim; �6�

where Mm is the immobile concentration of component
m and Nim is the number of immobile components.
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The reaction rate terms in Eqs. (4)±(6) originate from
the kinetic reactions in the system and may be nonlinear
functions of the total concentration of aqueous com-
ponents, uncomplexed aqueous components, aqueous
complexes, immobile components and vapor compo-
nents. FEHM is capable of modeling the following ki-
netic processes: linear adsorption, nonlinear Langmuir
adsorption, ion/surface exchange, precipitation±disso-
lution and liquid±vapor interchange of solute. The
speci®c kinetic models that are available are described in
the kinetic reaction types section. Eqs. (4)±(6) result in a
system of (Nc + Nim + Nv) nonlinear coupled partial
di�erential equations (PDEs). Discretizing these equa-
tions results in a set of (Nc + Nim + Nv)Nn algebraic
equations where Nn is the number of spatial grid points.
FEHM's method for solving this system of coupled
PDEs will be discussed in the solution procedure
section.

2.2. Speciation reactions

Given all of the aqueous component total concen-
trations, the uncomplexed aqueous component concen-
trations and aqueous complex concentrations can be
calculated using chemical equilibrium theory. The
chemical equilibrium calculations performed by FEHM
are similar to the techniques used in batch geochemical
software such as EQ3/6 [27]. A chemical reaction de-
scribing aqueous speciation can be written in the fol-
lowing general formXNc

j�1

aijĈj () X̂i; i � 1; . . . ;Nx; �7�

where Ĉj is the chemical formula for the aqueous com-
ponent j, and X̂i is the chemical formula for the aqueous
complex i. FEHM assumes that all aqueous speciation
reactions are at local equilibrium. The mass-action ex-
pression for an aqueous component is given by [19]

Ki � xi

YNc

j�1

�cjcj�ÿaij ; �8�

where Ki is the equilibrium formation constant for
complex i and cj is the activity coe�cient for aqueous
component j. In the present study, we neglect ionic-
strength corrections. Eqs. (1) and (8) can be combined to
express the total aqueous concentration of component j
as a function of the uncomplexed component concen-
trations:

Cj � cj �
XNx

i�1

aijKi

YNc

z�1

caiz
z ; j � 1; . . . ;Nc; �9�

Eq. (9) results in a set of Nc nonlinear algebraic equa-
tions to be solved given all of the total aqueous con-
centrations.

2.3. Kinetic reaction types

Kinetic reactions modeled by FEHM cannot be
described by a single reaction rate expression. Rate
expressions are available to simulate sorption, precipi-
tation/dissolution, dual Monod biodegradation, and a
general reversible reaction. Additional kinetic rate ex-
pressions are available, however, we will only discuss the
kinetic rate expressions that are used in the test cases
section of this paper. Note that the kinetic rate expres-
sions do not necessarily conserve charge. In all of the
reactive transport systems modeled in this paper, we do
not attempt to model the complete set of chemical re-
actions, but attempt to model the chemical reactions
that are relevant to the current study. Since all reactions
are not included, a charge balance over the entire system
cannot be calculated. However, the reactions that con-
trol the pH in Examples 2 and 3 are known, allowing for
variable pH calculations to be performed.

The sorption models we use in the current study
contain the same parameters that are measured in lab-
oratory and ®eld experiments for the various applica-
tions we have investigated. For this reason, we have
chosen a linear kinetic sorption, and a kinetic ion-ex-
change model. The retardation of contaminants due to
adsorption/desorption can be modeled with a linear ki-
netic sorption/desorption expression. The rate of ad-
sorption/desorption of component j is given by

Rj � ÿkm cj

�
ÿ Mj

KD

�
; �10�

where km is the mass transfer coe�cient, and KD is the
distribution coe�cient. As km !1; this expression re-
duces to the linear equilibrium isotherm.

Biodegradation is an irreversible process in which
bacteria oxidize an organic substrate to produce energy
and biomass. In addition to biomass, the biodegradation
process requires the presence of an electron acceptor
(e.g. oxygen, nitrate, etc.) and nutrients (e.g. nitrogen
and phosphorous). An example of a simpli®ed biodeg-
radation reaction is given by the following reaction [19]:

Substrate � Electron Acceptor � Nutrients

! cells� CO2 �H2O: �11�
FEHM models the rate of biodegradation of a substrate
with a multiplicative Monod model, given by [19]

Rs � ÿqmmb

�S�
KS � �S�

�A�
KA � �A� ; �12�

where [S] is the aqueous concentration of substrate (i.e.,
the electron donor), [A] the aqueous concentration of
the electron acceptor, and mb is the concentration of the
immobile biomass. The parameter qm is the maximum
speci®c rate of substrate utilization, which represents the
maximum amount of substrate that can be consumed
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per unit mass of bacteria per unit time. The parameters
KS and KA are the Monod half-maximum-rate concen-
trations for the electron donor and electron acceptor,
respectively. The rate of microbial growth is given by the
synthesis rate (which is proportional to the rate of
substrate degradation) minus a ®rst-order decay rate

Rcells � ÿYRs ÿ b�mb ÿ mb;init�; �13�
where Y is the microbial yield coe�cient and b is the
®rst-order microbial decay coe�cient. In the above
equation, the assumption is made that the background
conditions are su�cient to sustain a microbial popula-
tion of a given size; therefore, the biomass concentration
is not allowed to fall below its initial background con-
centration, mb;init.

A general reaction describing the precipitation/dis-
solution of a mineral p can be written in the following
form:

M̂p () lp1Ĉ1 � lp2Ĉ2 � � � � � lp2ĈNc
; �14�

where M̂ is the chemical formula for the mineral, and lpj

are stoichiometric coe�cients. The equilibrium constant
for this reaction is known as the solubility product.
Since the activity of a pure solid is equal to one, the
reaction quotient, Qp, is de®ned as

Qp �
YNc

j�1

c
lpj
j : �15�

At equilibrium, Qp is equal to the solubility product.
The surface-controlled rate of precipitation/dissolution
of a mineral is given by:

dRj

dt
� Asljk� 1

�
ÿ Qp

Ksp

�
; �16�

where As is the reactive surface area of the mineral, k�
the rate constant, and Ksp is the solubility product [9].
With this equation, a mineral will precipitate when it is
supersaturated and dissolve when it is undersaturated.

3. Numerical solution techniques

3.1. Newton±Raphson formulation

The reactive transport equations given by Eqs. (4)±(6)
result in a set of nonlinear coupled PDEs. The numerical
implementation of the transport step can be derived by
rewriting Eqs. (4)±(6) in fully implicit time-discretized
form:

Cn�1
j ÿ Cn

j

Dt
� L Cn�1

j

� �
� Rn�1

j ; j � 1; . . . ;Nc; �17�

Gn�1
k ÿ Gn

k

Dt
� L Gn�1

k

ÿ � � Rn�1
k ; k � 1; . . . ;Nv; �18�

Mn�1
m ÿMn

m

Dt
� Rn�1

m ; m � 1; . . . ;Nim; �19�

where n indicates the time step level. Reactive transport
codes in the literature solve Eqs. (17)±(19) using either
the global implicit, operator-splitting, or sequential it-
erative methods [17]. The global implicit method solves
the transport and reaction step simultaneously. On the
other hand, operator-splitting methods solve the trans-
port and reaction steps in sequence without iteration
[22]. Finally, the sequential iterative approaches iterate
between the transport and reaction steps until a fully
implicit solution is achieved. In this paper, we present a
technique which is a hybridized version of the global
implicit and sequential iteration methods. We have
chosen an implicit method since many of the problems
we are interested in take place over long time scales.
Implicit methods are often more e�cient for such
problems because of their ability to take larger time
steps [17]. Problems for modeling advection-dominated
¯ows over shorter timescales would be better suited for
operator-splitting methods [17].

The reaction rate terms in Eqs. (17)±(19) can be es-
timated using a Taylor series expansion to linearize the
reaction rate term

Rn�1;p�1
i � Rn�1;p

i �
XNc

j�1

oRi

oCj

� �n�1;p

Cn�1;p�1
j

ÿ ÿ Cn�1;p
j

�

�
XNv

k�1

oRi

oGk

� �n�1;p

Gn�1;p�1
k

ÿ ÿ Gn�1;p
k

�

�
XNim

m�1

oRi

oMm

� �n�1;p

Mn�1;p�1
m

ÿ ÿMn�1;p
m

�� � � � ;
�20�

where p is the iteration level and i represents either an
aqueous, vapor or immobile component.

The iterative methods in the literature di�er in the
degree to which terms in the summation of Eq. (20) are
included in the linearized expressions approximating
Eqs. (17)±(19). The fully coupled approach, called the
global implicit method [16] uses all derivative terms in
Eq. (20). This method, a full Newton±Raphson ap-
proximation, results in a large system of coupled linear
equations stemming from the derivative terms of Ri with
respect to other aqueous, vapor, or immobile compo-
nents. The approximate iterative approaches in the re-
active transport literature often drop terms in the
summations to decouple the linear equations into
smaller equations sets that are solved sequentially. The
sequential iterative approach described by Engesgaard
and Kipp [4] and Kinzelbach et al. [8] ignore all deriv-
ative terms, using only Rn�1;p

i in Eq. (20). We will refer to
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this method as the SIA-0 method. The SIA-1 method
estimates the reaction term [19] as

Rn�1;p�1
i � Rn�1;p

i � oRi

oCi

� �n�1;p

Cn�1;p�1
i

ÿ ÿ Cn�1;p
i

�
: �21�

The SIA-1 approach seeks to improve the estimate of
Rn�1;p�1

i by using the terms in the summations of Eq. (20)
where j � i; k � i; and m � i. That is, for component i,
the relationships with aqueous, vapor and immobile
components other than i are neglected, and the linear
equations arising from the individual components are
solved separately. We have found that the SIA-1 greatly
improves convergence for large Damk�ohler number
systems, when kinetics are fast compared to the trans-
port time scale [19]. SIA-1 often outperforms SIA-0
because the DtoRi=oCi term is often signi®cant, whereas,
DtoRi=oCj; i 6� j terms are not. However, for certain
reactions, the SIA-1 approach becomes quite ine�cient
because some of the cross-derivative terms
�DtoRi=oCj; i 6� j� that are neglected by SIA-1 are sig-
ni®cant. Physically, this can occur when aqueous, vapor,
or immobile components that are, in fact, coupled to
one another are treated as though they were indepen-
dent.

3.2. Selective coupling and coupled normalization

Selective coupling: In an extension of the SIA meth-
ods, we selectively include additional derivative terms
that couple a subset of the components to one another
to improve convergence. We call this method ``selective
coupling'' to denote the ¯exibility of the implementa-
tion. Since cross-derivative terms, oRi=oCj, are now in-
cluded in the calculation, sets of components must be
solved simultaneously. We note, in passing, that in the
extreme case in which only oRi=oCi are calculated, the
method reduces to the SIA-1 method. At the other ex-
treme, in which all components are coupled, a global
implicit solution scheme [16] is e�ectively obtained. The
algorithm is best illustrated through speci®c examples.
For this, we ®rst consider the following reaction system
of kinetic reactions among aqueous components:

A () B; RA � kf1
CA ÿ kr1

CB; �22�

B () C; RB � kf2
CB ÿ kr2

CC; �23�

C () D; RC � kf3
CC ÿ kr3

CD: �24�

We start with the fully coupled formulation of the
transport problem. The equation set resulting from the
use of Newton's method to solve the nonlinear system of
equations is represented in block matrix form below

�25�

in which each element in the matrix is an Ndof � Ndof

submatrix containing elements of the Jacobian matrix
�ofi=oCj�; dC the vector of change in component con-
centration at node i �dCA; dCB; dCC and dCD�;NN the
number of spatial nodes, and fi are the residual arrays
which contain the advection, dispersion, accumulation,
and reaction terms (length of Ndof , where Ndof is the
number of ``degrees of freedom'', in this case equal to
four, the number of components in the example). The
elements of the Jacobian matrix contain derivatives of
the residual with respect to concentration. In the dia-
gram, a tri-diagonal matrix resulting from a one-di-
mensional transport problem is shown for simplicity,
but is not a restriction of the method. For our example
reactive transport system, the submatrix a and
submatrix t at a node q connected to node q� 1 are
given by

�26�

where the a matrix is written at node q, and q� 1 rep-
resents a node connected to node q. In general, the
structure of submatrix a is de®ned by the reaction sys-
tem. Now suppose that reaction (23) is slow compared
to the other two reactions. In the submatrix a, the terms
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ofB=oCC and ofC=oCB would be small compared to the
other elements of a, and a can be approximately repre-
sented as

�27�

This system can then be solved in two steps, with the A
and B equations solved simultaneously, followed by the
C and D equations solved in a second step. A reactive
transport computer code that employs this method al-
lows the user to ``selectively couple'' the components in
the transport iteration. The decomposition of a four-
degree-of-freedom problem into two-degrees-of-freedom
problems results in memory e�ciencies and computa-
tional savings per iteration, and therefore is a desirable
alternative to a full global implicit solution for some
applications. Note that when all o�-diagonal terms in
the submatrix a are omitted, each of the four compo-
nents can be solved iteratively and sequentially, i.e. the
SIA-1 method is obtained.

When more than one component is solved simulta-
neously, an equation solver that handles block matrices
is required. The linear equation solver in FEHM, de-
veloped primarily for the solution of coupled ¯uid ¯ow
and heat transport, makes use of well-tested numerical
techniques that take advantage of the block structure of
the coupled equations for pressure, temperature, and
¯uid saturation [1,29]. Here, we use the same solver
technologies for the transport solution step. In essence,
for Ndof unknowns per grid point, the same operations
on the overall matrix of a single-unknown solution are
carried out, but multiplications of individual matrix el-
ements now become matrix multiplications involving the
Ndof � Ndof submatrices, and divisions are carried out as
multiplications by the inverse of the submatrix. Since
such operations become memory- and cpu-intensive for
large problems, it is important to employ e�cient nu-
merical techniques. FEHM uses numerical methods
suitable for the nonsymmetric matrices that arise from
the ®nite-element solution of reactive transport equa-
tions on unstructured numerical grids. The solver soft-
ware uses incomplete factorization with variable ®ll-in
level [30] as a preconditioner, and a generalized mini-
mum residual (GMRES) acceleration technique [15] for
the iterative solution. Details of this method as applied
to heat and mass transport problems may be found in
Zyvoloski et al. [31]. In a typical reactive transport so-
lution with FEHM, the heat and mass transfer solution
is also being performed, so the initial book±keeping
associated with the method is already being carried out,

and the memory allocated for the solution is shared
between the heat and mass solution and the transport
solution.

There are de®nite trade-o�s in computational e�-
ciency and memory utilization between the SIA tech-
niques and methods involving coupling of the transport
equations of individual components. Coupling requires
more time per iteration and more memory than typical
SIA methods. However, components strongly coupled
by reaction may not converge using SIA methods
without using small time steps. Since ¯exibility is re-
quired in a general purpose code, the transport iteration
in FEHM was developed with the selective coupling
provision to solve the component concentrations in
groups of one or more at a time, so that only those
components that need to be coupled are solved simul-
taneously. It is necessary to solve a set of equations for
each component present in the system, but the order of
solution and the nature of the coupling are set by the
user at run-time. This allows the user, on the basis of
information of the reactive transport system, to couple
only those components that are required for e�cient
solution of the system of equations. Selective Coupling
of components linked to each other through kinetic
chemical reactions allows a given problem to be solved
in the fastest, yet most memory e�cient, manner pos-
sible [24].

Coupled normalization: When residual equations are
solved simultaneously, it is advisable to normalize them
so that they are solved to the same degree of numerical
precision. We now present a method we call ``coupled
normalization'' for accomplishing this in a manner that
in some cases has the added bene®t of e�ectively re-
ducing the number of degrees of freedom of the solu-
tion. Again, we will make use of an example to illustrate
the method, in this case a kinetic ion exchange reaction
of the form

A� B-X () B�A-X; �28�
RA � kf �A� �B-X� ÿ kr�B��A-X�: �29�
This example consists of two aqueous components (A,
B), which in general can undergo aqueous speciation
reactions (though not in this example) and two immo-
bile components �A-X; B-X�. As in the previous ex-
ample, Ndof is four because we will solve for these four
components simultaneously. Furthermore, the block
matrix equation set in (25) also applies here. The sub-
matrices a and t are given by

a �

ofA

oCA

ofA

oCB

ofA

oMA-X

ofA

oMB-X

ofB

oCA

ofB

oCB

ofB

oMA-X

ofB

oMB-X

ofA-X

oCA

ofA-X

oCB

ofA-X

oMA-X

ofA-X

oMB-X

ofB-X

oCA

ofB-X

oCB

ofB-X

oMA-X

ofB-X

oMB-X

26666664

37777775;

B.A. Robinson et al. / Advances in Water Resources 23 (2000) 307±324 313



�30�

The immobile components are not present in the t

submatrices since there are no transport terms associ-
ated with them. Before solving the linear equation set,
we apply the coupled normalization step, which consists
of multiplying both sides of the equation set at each
node by the inverse of a, which of course transforms
each submatrix a into the identity matrix. This opera-
tion scales the diagonal term of each equation to the
same value (unity), thereby normalizing the equation set
to ensure that when a convergence criterion, such as the
L2 norm, is employed, each equation is solved to the
same level of accuracy on a normalized basis. Coupled
normalization serves another important function for
systems with immobile components, as evidenced by the
structure of the transport submatrix t0�� taÿ1�

t0 �
X X 0 0
X X 0 0
X X 0 0
X X 0 0

2664
3775; �31�

where the X denotes a nonzero term. After coupled
normalization, the mobile component equations no
longer contain terms involving the immobile component
unknowns in either the transformed submatrix a or the t0

submatrix. Thus, the ®rst two equations can now be
solved as a coupled two-by-two equation set for the
concentration changes of the mobile species, after which
the immobile component unknowns are then solved for
individually by simple back-substitution. Coupled nor-
malization in e�ect folds the cross-derivative informa-
tion from the immobile component equations into the
equations for the mobile components, so that only the
two mobile component unknowns need be solved si-
multaneously. This method e�ectively reduces the
number of degrees-of-freedom in the transport solution
by the number of immobile components in the system of
equations (two in this example), thereby reducing the
memory utilization and computational burden of the
solution.

4. Test cases of the selective coupling technique

The three examples in this section test the selective
coupling technique and illustrate its power and ¯exibil-
ity for solving reactive transport problems. Example 1 is
a hypothetical example in which six aqueous compo-
nents transport and participate in kinetic reactions.

Example 1 illustrates the trade-o�s involved in selecting
the level of coupling and the in¯uence that problem size
and the nature of the chemical system will have on the
techniques. We chose a simple ¯ow system and a ®cti-
tious chemical system to gain insight into the controlling
factors of the coupling strategy because other com-
plexities tend to obscure these factors in real applica-
tions. In Example 2, we present a reactive transport
problem in which we model the coupled e�ects of a set
of equilibrium speciation reactions and kinetic biodeg-
radation and adsorption/desorption reactions. There-
fore, this problem builds on the results of Example 1,
testing the methods with a realistic reactive transport
system that includes solute±rock interactions and a
mixed kinetic-equilibrium formulation. Finally, Exam-
ple 3 shows how selective coupling performs for a ®eld
application, namely the potential repository for high-
level radioactive waste at Yucca Mountain, Nevada.
The simulation utilizes an unstructured mesh with a
large number of grid blocks and complex stratigraphy.
This example illustrates the use of coupled normaliza-
tion and selective coupling for signi®cantly reducing the
computational e�ort and memory requirements of the
simulation. Thus, the lessons learned from Examples 1
and 2 provide the foundation for understanding the
performance of the numerical techniques on a real ®eld
application.

Example 1. Kinetic formulation for reaction among
aqueous components.

In this ®rst example we investigate the solution op-
tions for aqueous components coupled through kinetic
reactions. Although many aqueous speciation reactions
can be speci®ed as equilibrium, there are exceptions,
such as microbially facilitated redox reactions [16].
Furthermore, in many applied reactive transport simu-
lations, including those discussed in Examples 2 and 3
below, aqueous components undergo speciation reac-
tions along with kinetic reactions such as competitive
sorption. In these types of reactive systems, aqueous
components often become tightly coupled through these
kinetic reactions. Finally, even if the aqueous reactions
are rapid, species with di�ering transport parameters
such as dispersion or di�usion coe�cients complicate
the formulation of the system in terms of aqueous
components and complexes (e.g. [10]). Alternatively,
specifying aqueous components individually with dif-
ferent transport parameters is a way around this di�-
culty. This test case was developed to demonstrate the
method of selective coupling with a reaction system in
which all reactions are kinetic, even though for some
reaction rates the problem could have been reformulated
as an equilibrium reaction. The reaction system is a
testbed for exploring the solution procedures that apply
to more general reactive transport problems.
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The chemical system chosen for study is the following
system of reactive aqueous components:

Reaction 1 : A� B() C �32�
Reaction 2 : C() D �33�
Reaction 3 : D� E() F �34�
with ¯ow conditions, initial and boundary conditions
illustrated in the schematic diagram of Fig. 1. A one-
dimensional, steady-state ¯ow system is used for this
example, with initial concentrations of 0 (concentration
units are arbitrary units) for all components except E,
which initially is present everywhere in the column at
concentration equal to 100 (or 0.1 for Cases 19±21).
Components A and B are injected at a concentration of
1 for all times, and component E is injected at a con-
centration of 100 (0.1 for Cases 19±21). Rates of for-
ward and reverse reactions are ®rst order in all
concentrations. For each reaction, the Damk�ohler
number Da � krs, where kr is the reverse rate constant
and s is the travel time through the column, is the di-
mensionless group that controls the relative rate of re-
action, whereby Da� 1 implies near-equilibrium
behavior, and Da values of order 1 or less imply kinet-
ically controlled reactions. In this exercise, we vary Da
for the reactions to investigate the characteristics of the
selective coupling method for obtaining convergent so-
lutions with a minimum number of iterations.

In the ®rst comparison (Cases 1±3), we assume
Da � 1 for all three reactions. The selective coupling
method is then applied (groups of components solved
simultaneously are denoted by enclosing them in pa-
rentheses below) with the following options for the
transport iteration:
· Case 1: All six components solved individually (SIA-

1), i.e. (A), (B), (C), (D), (E), and (F);
· Case 2: Coupling of components as (A, B, C) fol-

lowed by (D, E, F);
· Case 3: Coupling of all six components (A, B, C, D,

E, F).
For all cases the convergence criterion is the same, and
the iterative technique at each time step must achieve
overall convergence before proceeding to the next time
step. We treat the convergence criterion as a parameter
whose value is governed by the need for an accurate

solution, and therefore we do not examine the impact
of its value on the performance of the algorithms. The
simulations are run with a maximum Courant number
of 1 (except for the explicit examples that test the in-
¯uence of time step, Cases 10±12 and 13±15) until the
breakthrough of each component at the outlet has
achieved a steady concentration. In Table 1, a sum-
mary of the numerical performance for this compari-
son shows that the computational work associated with
a particular iteration increases as the degree of cou-
pling increases, but that fewer iterations are required to
obtain a converged solution. However, for the case of
Da � 1 for all three reactions, the uncoupled strategy
yields somewhat better overall performance (lower to-
tal cpu time) than either coupling into 2 groups of 3
components or the fully coupled strategy. In fact, for
this case with slow kinetics, operator splitting could be
used with little mass balance error and should be even
faster than the uncoupled strategy [23]. The bene®ts of
the selective coupling method are better illustrated in
Cases 4±6, a comparison assuming Da � 100 for the
®rst and third reactions, and Da � 1 for the second
reaction. Convergence becomes problematic for the
SIA-1 method, and the resulting number of iterations
and the total cpu time increase dramatically. However,
the nature of the reaction system makes the interme-
diate level of coupling su�cient for this problem. The
rapid kinetics of Reaction 1 makes coupling of A, B,
and C necessary (the same is true for D, E, and F due
to Reaction 3), but the breaking into these two groups
is possible because Reaction 2 imparts only a relatively
weak coupling of A, B, and C to D, E and F. When
Da is increased to 1000 for the two reactions (Cases 7±
9), the inadequacy of the uncoupled case becomes even
more apparent.

To examine the in¯uence of time step size on per-
formance, Cases 10±12 and 13±15 were run with iden-
tical kinetic parameters as Cases 7±9, but with a
maximum Courant number of 0.2 (Cases 10±12) or 5
(Cases 13±15). Cases 10±12 show that, as expected,
lowering the time step makes the uncoupled case
somewhat more competitive. However, the usefulness of
coupling the aqueous components is best illustrated in
Cases 13±15, in which convergence cannot even be ob-
tained without coupling. Thus the coupling strategy al-
lows larger time steps to be taken, whereas numerical
stability becomes an issue without coupling.

In Cases 16±18, Da is increased to 1000 for Reaction
2. At this point, the fully coupled strategy begins to
slightly outperform the intermediate coupled strategy, as
the reduction in the number of iterations required is
enough to overcome the greater cpu time per iteration.
Increasing the rate of Reaction 2 imparts a greater de-
gree of coupling between the two sets of components,
thereby causing the performance of the intermediate
coupling strategy to begin to deteriorate.

Fig. 1. Schematic of the one-dimensional model domain used for

Example 1.
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The ®nal comparison (Cases 19±21) illustrates that
performance deteriorates markedly for even the inter-
mediate degree of coupling when the injection and initial
concentrations of E are reduced from 100 to 0.1. Al-
though it is still possible to obtain a solution at the in-
termediate level of coupling, the number of iterations
required and the total cpu time increase markedly for
the uncoupled and intermediate coupling strategies. For
concentration of E of 100, the forward reaction of Re-
action 3 is essentially pseudo-®rst order in D. Reducing
the concentration of F to 0.1 changes the character of
Reaction 3, making the concentrations of A, B and C
much more closely linked to the concentrations of D, E
and F. These results illustrate that the proper strategy
for selective coupling from the standpoint of computa-
tional e�ciency depends on the nature of the chemical
system, including the stoichiometry and kinetics of the
reactions and the concentration values themselves.

For large-scale simulations, the memory required to
obtain a solution, rather than the cpu time, may con-
strain the choice of solution strategy. For the selective
coupling method, memory requirements can be severe
for large simulations if many components need to be
coupled to obtain a solution e�ciently. We use this re-
action system as an example to illustrate this point for a
hypothetical three-dimensional grid consisting of Ncell

cells. The Jacobian matrix requires a storage of N 2
dof Ncell

for the a submatrices in Eq. (26), and approximately
Ndof NconNcell for the t submatrices, or a total of
Ndof�Ndof � Ncon�Ncell, where Ncon is the average number

of neighboring nodes connected to each node. In addi-
tion, incomplete factorization methods require the
storage of a partial inversion of the Jacobian matrix in
which, at a minimum, the t submatrices become ®lled in,
for a total storage of N 2

dof�Ncon � 1�Ncell. The N 2
dof de-

pendence of the storage places a premium on memory
for simulations with a large number of grid points and
high degrees of coupling. Table 2 shows the memory
requirements for a speci®c example of a 100,000 node,
hexahedral grid �Ncell � 100; 000;Ncon � 6�, for the var-
ious degrees of coupling studied in this reaction system.
Furthermore, for more than one level of ®ll-in for the
incomplete factorization, storage requirements are even
more severe for the inversion matrix. Therefore, in large-
scale simulations, memory requirements alone mandate
that selective coupling be applied such that only the
minimum degree of coupling needed for e�cient con-
vergence is used. For smaller problems, the decision of
the degree of coupling hinges only on the cpu time issue,
making the more robust full coupling of the solution an

Table 2

Memory e�ciency for a hypothetical 100,000 node simulation for

di�erent levels of selective coupling

Coupling Maximum

Ndof

Size of

Jacobian

(words)

Minimum size of

partial inversion of

Jacobian (words)

(A) (B) (C) (D) (E) (F) 1 7.0 ´ 105 7.0 ´ 105

(A B C) (D E F) 3 2.7 ´ 106 6.3 ´ 106

(A B C D E F) 6 7.2 ´ 106 2.5 ´ 107

Table 1

Computational e�ciency for di�erent levels of selective coupling: Example 1

Case number Coupling Damk�ohler numbers for the

three reactions (Da1, Da2, Da3)

Total number

of iterations

cpu time per

iteration (s)

Total cpu

time (s)

1 (A) (B) (C) (D) (E) (F) (1, 1, 1) 2915 0.073 212

2 (A B C) (D E F) (1, 1, 1) 2801 0.091 254

3 (A B C D E F) (1, 1, 1) 2206 0.14 312

4 (A) (B) (C) (D) (E) (F) (100, 1, 100) 6876 0.073 501

5 (A B C) (D E F) (100, 1, 100) 2825 0.086 243

6 (A B C D E F) (100, 1, 100) 2681 0.14 379

7 (A) (B) (C) (D) (E) (F) (1000, 1, 1000) 80,982 0.071 5752

8 (A B C) (D E F) (1000, 1, 1000) 2836 0.087 246

9 (A B C D E F) (1000, 1, 1000) 2756 0.14 387

10a (A) (B) (C) (D) (E) (F) (1000, 1, 1000) 36,825 0.078 2868

11a (A B C) (D E F) (1000, 1, 1000) 10,500 0.094 985

12a (A B C D E F) (1000, 1, 1000) 10,488 0.15 1524

13b (A) (B) (C) (D) (E) (F) (1000, 1, 1000) No convergence N/A N/A

14b (A B C) (D E F) (1000, 1, 1000) 861 0.093 80

15b (A B C D E F) (1000, 1, 1000) 744 0.14 104

16 (A) (B) (C) (D) (E) (F) (1000, 1000, 1000) 36,792 0.073 2691

17 (A B C) (D E F) (1000, 1000, 1000) 4064 0.086 350

18 (A B C D E F) (1000, 1000, 1000) 2313 0.14 328

19c (A) (B) (C) (D) (E) (F) (1000, 1000, 1000) 76,863 0.073 5557

20c (A B C) (D E F) (1000, 1000, 1000) 11,058 0.083 915

21c (A B C D E F) (1000, 1000, 1000) 2766 0.14 389
a Same as Cases 7±9, except that the Courant number is 0.2.
b Same as Cases 7±9, except that the Courant number is 5.
c Initial and injection concentrations of E are 0.1 rather than 100 for the previous cases.
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attractive alternative. The optimal use of computer re-
sources is therefore dependent on the size of Ncell, and
the nature of the chemical system, which in turn controls
the e�ciency of the numerical solution. Allowing the
selection of partial levels of coupling allows the user to
tailor the solution technique to the speci®c application.

Example 2. CoNTA Transport Problem.

In the next example, we model the transport of 60Co
in the presence of inorganic and organic chemical waste.
We depart from the theoretical nature of Example 1 to
explore a more realistic reactive transport problem. The
objective of the analysis is to model the coupled e�ects
of a set of equilibrium speciation reactions and kinetic
biodegradation and adsorption/desorption reactions.
This problem was proposed by Valocchi and Tebes-
Stevens as a benchmark problem at the Workshop on
Subsurface Reactive Transport Modeling held at Paci®c
Northwest National Laboratory (October, 1997). The
reactions are described in more detail by Tebes-Stevens
and Valocchi [20]. This reactive transport system has
practical signi®cance since soils and groundwater at
DOE facilities have been contaminated by complex
mixtures of radioactive, inorganic, and organic chemical
wastes. In particular, Cobalt, as 60Co, is a radioactive
contaminant that has been found migrating in the sub-
surface at several DOE facilities [20]. The mobility of
60Co has been greater than anticipated due to com-
plexation with organic ligands such as EDTA and NTA
[20].

A one-dimensional column 10 meters in length was
chosen for this simulation. The porosity, /, is 0.4, the
bulk rock density, qb is 1:5� 103 kg=m

3
, the pore water

velocity is 1 m/h, and the longitudinal dispersivity is 0.05
m. Table 3 lists the components and concentrations of
the background and injected ¯uid, while Table 4 shows
the equilibrium speciation reactions.

The biodegradation of the complex HNTA2ÿ is rep-
resented by the following reaction [20]:

HNTA2ÿ�1:620O2�1:272H2O� 2:424H�

! 0:576C5H7O2N� 3:120H2CO3�0:424NH�4 : �35�

The rate of substrate degradation (RHNTA) is modeled
with multiplicative-Monod kinetics given by Eq. (12).
The parameters used in Eq. (12) are:
KS � 7:64� 10ÿ7 mol=l, KA � 6:25� 10ÿ6 mol=l, and
qm � 1:407� 10ÿ3 mol=NTA=g cells=h [20]. The reac-
tion rates for O2, H�, H2CO3 and NH�4 are proportional
to the rate of substrate degradation. Using the stoichi-
ometry of the above reaction, the appropriate rate ex-
pressions are:

RO2
� 1:602RHNTA2ÿ ; RH� � 2:424RHNTA2ÿ;

RH2CO3
� ÿ3:120RHNTA2ÿ ; RNH�

4
� 1:620RHNTA2ÿ:

�36�

The net rate of microbial growth (Rcells) is given by
the synthesis rate (which is equal to the rate of degra-
dation of the substrate multiplied by a yield coe�cient)
minus a ®rst-order decay rate:

Rcells � ÿYRHNTA2ÿ ÿ bXm; �37�
where Y is the yield coe�cient and b is the decay coef-
®cient. The parameters Y and b are 65.15 g cells/mole
NTA and 0.00208 hÿ1, respectively.

The sorption reactions are represented by a linear
kinetic model given by (10). In this problem, uncom-
plexed cobalt �Co2�� and CoNTAÿ are retarded due to
sorption. The distribution coe�cients, Kd , for Co2� and
CoNTAÿ are assumed to be equal to 5:07� 10ÿ3 m3=g
and 5:33� 10ÿ4 m3=g, respectively. Note that these

Table 3

Components and concentrations of the background and injected ¯uid, CoNTA transport problem

Component Type Pulse concentration Background concentration

H� Aqueous pH� 6 pH� 6

H2CO3 Aqueous 4.9 ´ 10ÿ7 mol/l 4.9 ´ 10ÿ7 mol/l

NH�4 Aqueous 0.0 0.0

O2 Aqueous 3.125 ´ 10ÿ5 mol/l 3.125 ´ 10ÿ5 mol/l

NTA3ÿ Aqueous 5.23 ´ 10ÿ6 mol/l 0.0

Co2� Aqueous 5.23 ´ 10ÿ6 mol/l 0.0

Biomass Immobile ÿ 1.36 ´ 10ÿ4 g/l

CoNTA(ads) Immobile ÿ 0.0

Co(ads) Immobile ÿ 0.0

Table 4

Equilibrium speciation reactions, CoNTA transport problem

Reaction log Keq

H3NTA() NTA3ÿ + 3H� 14.9

H2NTAÿ () NTA3ÿ + 2H� 13.3

HNTA2ÿ () NTA3ÿ + H� 10.3

H2O() OHÿ + H� 14.0

CoNTAÿ () NTA3ÿ + Co2� 11.7

CoNTA4ÿ
2 () 2NTA3ÿ + Co2� 14.5

CoOHNTA2ÿ () NTA3ÿ + Co2� + OHÿ 0.5

CoOH� () Co2� + OHÿ ÿ9.7

Co(OH)2 () Co2� + 2OHÿ ÿ22.9

Co(OH)ÿ3 () Co2� + 2OHÿ ÿ31.5

HCOÿ3 + H� () H2CO�3 ÿ6.35

CO2ÿ
3 + 2H� () H2CO�3 ÿ16.68

NH3 + H� () NH�4 ÿ9.3
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distribution coe�cients were selected to give retardation
coe�cients of 20 and 3 for Co2� and CoNTA, respec-
tively. The Kd values are chosen for demonstration of
the numerical techniques, and do not necessarily repre-
sent realistic sorption behavior.

This test problem was broken up into two parts. In
the ®rst part of this problem, part A, the mass transfer
coe�cients for the sorption reactions, were set to 1 hÿ1.
In part B, the mass transfer coe�cient is increased to
1000 hÿ1. Setting the mass transfer coe�cient to 1000
hÿ1 approximates equilibrium for the sorption reactions,
resulting in sharper concentration fronts. Fig. 2 shows
that the FEHM solution closely matches the solution
presented by Valocchi and Tebes-Stevens [20] for part
A. Note that Cases 1, 2 and 3 all result in accurate so-
lutions to the problem, with the di�erence in the
techniques being computational e�ciency. Similar
agreement is witnessed for part B.

As with the ®rst example problem, the selective cou-
pling method is then applied with the following options
for the transport iteration to solve this problem
· Case 1: All six aqueous components solved individu-

ally (SIA-1), i.e. (H�), (H2CO3), �NH�4 �, (O2),
�NTA3ÿ�, and �Co2��. Biomass, CoNTA(ads) and
Co(ads) solid components are solved individually;

· Case 2: Coupling of aqueous components �Co2�� and
�NTA3ÿ� followed by (H�), (H2CO3), �NH�4 �, and
(O2), which are solved individually. Biomass, CoN-

TA(ads) and Co(ads) solid components are solved in-
dividually;

· Case 3: Coupling of all six aqueous components (H�),
(H2CO3), �NH�4 �, (O2 ), �NTA3ÿ�, and �Co2�� (global
implicit method). Biomass, CoNTA(ads) and Co(ads)
solid components are solved individually.
Recall that the reaction rates for Co and NTA are

coupled to one another due to the competitive sorption
reactions whereas the other aqueous components are not
strongly coupled to one another due to kinetic reactions.
Thus, we chose to couple only cobalt and NTA in Case
2. Table 5 compares the three cases. For part A, Case 1
and Case 2 are comparable in total CPU time, whereas
Case 3 takes longer to run. In part A, the oRi=oCj are
small due to the slow sorption kinetic parameters.
Therefore, Case 1 performs as well as Case 2. Since SIA-
1 (Case 1) and selective coupling of cobalt and NTA
(Case 2) solve smaller equation sets than the global
implicit method (Case 3), these methods are more e�-
cient. For this problem, SIA-1 method solves six Nc � Nc

matrices. Selective coupling solves one 2Nc � 2Nc matrix
(for Co and NTA), and four Nc � Nc matrices for the
remaining aqueous components. The global implicit
method solves one 6Nc � 6Nc matrix solving for all the
aqueous components simultaneously. All three methods
solve for the solids individually. In part B, the coupling
between Co and NTA is more important due to the
faster kinetic rates. SIA-1 requires, on average, 7.5 it-
erations per time step whereas selective coupling and the
global implicit methods require only 3.5 iterations per
time step. Although the time for each iteration is still
faster for SIA-1 than for the other two methods, more
iterations per time step are required for convergence for
SIA-1 resulting in larger run times. The SIA-1 method
requires a large number of iterations per time step to
converge since the cross derivative terms �DtoRi=oCj�
neglected by SIA-1 are now signi®cant in part B. Se-
lective coupling outperforms the global implicit method
since it includes the necessary cross-derivative terms, but
still neglects most of the other insigni®cant cross-deriv-
ative terms computed by the global implicit solution.

Example 3. 237Np Reactive Transport at Yucca Moun-
tain.

In this example, we simulate the unsaturated zone
transport of 237Np from the potential high-level waste
repository at Yucca Mountain, Nevada. For a detailed
description of the hydrologic and geochemical processes
a�ecting the migration of 237Np, see Viswanathan et al.
[25]. This problem demonstrates the selective coupling
method for a complex, unstructured grid and a reactive
transport system with speciation and competitive ion
exchange. By choosing a model with a relatively large
and complex grid, and mixed equilibrium-kinetic
chemical formulation, we examine the numerical per-

Fig. 2. Comparison of FEHM (full circles) and the Tebes-Stevens and

Valocchi20 (lines) solution for part A.
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formance on a system for which the model was devel-
oped, namely large ®eld applications. The ion exchange
reactions require that solid components be coupled with
aqueous components. Therefore, this problem also
demonstrates the e�ciency of coupled normalization.
For the purposes of the current study we will brie¯y
summarize the problem and then demonstrate the per-
formance of the method.

The domain selected for the transport calculations is
a two-dimensional, East-West cross section through
Yucca Mountain at the location of the potential repos-
itory. Fig. 3(a) shows the East-dipping stratigraphy at
this cross section, including the zeolitic horizons im-
portant to the transport of neptunium. The ®nite ele-
ment grid for the entire cross section is shown in Fig.
3(b) and (c). The unstructured grid captures the complex
stratigraphy at the site scale, while also allowing trans-
port near the potential repository to be captured at a

grid spacing of about 3 m, resulting in a mesh with 7070
spatial nodes. For details on the hydrologic models,
parameters, and in®ltration ¯uxes used to investigate
237Np transport, see Viswanathan et al. [25]. In the
present study, the nonisothermal e�ects examined in
that paper are ignored in favor of an isothermal model,
so that the chemical transport processes and numerical
schemes can be examined more directly.

The geochemical processes that strongly a�ect 237Np
migration include: solubility-limited release of 237Np
from the repository, aqueous speciation of neptunium
into non-sorbing carbonate/hydroxy complexes and the
sorbing NpO�2 cation, sorption of 237Np onto the zeolitic
tu�s via an ion exchange mechanism, and radioactive
decay. Solubilities for groundwater representative of
Yucca Mountain were obtained from Efurd et al. [5].
We model the precipitation±dissolution of neptunium at
the repository using Eq. (16), with the kinetic parameter

Fig. 3. Stratigraphy and numerical grid for the Neptunium reactive transport problem (Example 3). (a) Dipping stratigraphy, including the location

of zeolitic horizons. (b) Numerical grid of full model domain. (c) Close-up of grid at the edge of the potential repository.

Table 5

Computational e�ciency, CoNTA transport problem

Problem set Case 1 ± SIA-1 Case 2 ± Selective coupling:

Co2� and NTA3ÿ
Case 3 ± Global implicit method

Average no. of

iterations per

time step

Total CPU

time (s)

Average no. of

iterations per

time step

Total CPU

time (s)

Average no. of

iterations per

time step

Total CPU

time (s)

Part A 3.0 339 2.8 320 2.8 436

Part B 7.5 888 3.5 417 3.5 525
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value chosen to ensure that the reaction proceeds to
equilibrium. The aqueous speciation reactions for
Neptunium are given in Table 6. The three total aqueous
components chosen to model these reactions are
NpO�2 ; HCOÿ3 ; and H�.

To simulate the sorption of NpO�2 cation, we couple
the speciation results presented in Table 6 with an ion
exchange model for NpO�2 . The following set of ion
exchange reactions are assumed in the present study

NpO�2 � tA1-Na� () tA1-NpO�2 �Na�;

log10 K � ÿ1:58; �38�

Ca2� � 2tAl-Na� () �2tA1� ÿ Ca2� � 2Na�;

log10 K � 1:5; �39�

where tA1 represents a tetrahedral aluminum sorption
site [25]. We model these reactions with kinetic rate laws.
However, since appropriate values of the rate constant
are uncertain, we examine two kinetic regimes di�ering
by an order of magnitude in the rate constant. The main
chemical in¯uences on the extent of sorption onto the
zeolitic tu�s according to this model are pH (controlled
by the speciation reactions) and the concentrations of
the competing cations in the sorption reactions, Na�

and Ca2�. This problem consists of ®ve total aqueous
components: NpO�2 ;HCOÿ3 ; H�;Na�; and Ca2�, and
four immobile components: Np(s), tA1-NpO�2 ;
�2tA1�-Ca

2�
; tA1-Na�.

Fig. 4 shows the mass ¯ux breakthrough at the water
table of Neptunium for a solution of pH� 8,
�Na�� � 5:43� 10ÿ3 M; and �Ca2�� � 2:91� 10ÿ4 M
assuming equilibrium sorption (Curve a). For reference,
the breakthrough of a solute with the same release
concentration but no sorption on the zeolites is also
shown (Curve d). Retardation in the zeolitic tu�s is an
important process for predicting the migration of Nep-
tunium through the unsaturated zone. With regard to
the solution technique, this example illustrates the use of
the coupled normalization step for properly linking the
aqueous and immobile species in the numerical solution.

To demonstrate this, we performed a series of simu-
lations with di�erent coupling strategies, examining the
relative performance for two di�erent reaction rates
· Case 1a: The components HCOÿ3 , Np(s) and H� were

solved for individually. The components
NpO�2 ; Ca2�; Na�; tA1-NpO�2 ; �2tA1�-Ca

2�
, and

tA1-Na� were run with selective coupling and cou-
pled normalization.

· Case 1b: Same as Case 1a, but without coupled nor-
malization.

· Case 1c: All components solved individually (SIA-1),
without coupled normalization.

· Cases 2a±c: These runs employ identical solution
strategies as Cases 1a±c, but the rate constants are
an order of magnitude larger than those of Case 1.
The ion-exchange reactions in this example approach

equilibrium behavior for Case 2 (Curve c in Fig. 4), but
show signi®cant deviations from equilibrium behavior
for the slower kinetics of Case 1 (Curve b). Table 7
shows that the numerical performance of the coupled
normalization and selective coupling method (Case 1a)
was superior to either the selective coupling method
without coupled normalization (Case 1b) or the SIA-1
method (Case 1c). In addition, if the kinetics are faster
(Case 2), the performance degrades further for the cases
without coupled normalization. Although it is di�cult
to compute a global value of Da for a complex system
with varying velocities, the comparison between Cases 1
and 2 can be viewed in terms of the closeness to equi-
librium reaction behavior. The more rapid the kinetics,
the greater is the need to employ selective coupling and,
in this example, especially coupled normalization. The b
and c cases only become competitive with the preferred
coupling strategy (a) when the kinetics are slow enough

Fig. 4. Neptunium breakthrough mass ¯ux at the water table. Curve

(a) equilibrium sorption reactions. (b) Slow reaction kinetics for

sorption reactions (Case 1). (c) Rapid reaction kinetics for sorption

reactions (Case 2). (d) Conservative tracer with the same repository

release rate as (a)±(c).

Table 6

Equilibrium speciation reactions, Neptunium transport problem

Reaction log Keq

H2CO3(aq)() HCOÿ3 + H� ÿ6.34

HCOÿ3 () CO2ÿ
3 + H� 10.33

H2O() OHÿ + H� ÿ14.17

NpO�2 + H2O() NpO2(OH)0(aq) + H� 8.9

NpO�2 + 2H2O() NpO2(OH)ÿ2 + 2H� 20.2

NpO�2 + HCOÿ3 () NpO2(CO3)ÿ + H� 5.73

NpO�2 + 2(HCO3)ÿ () NpO2(CO3)3ÿ
2 + 2H� 13.66

NpO�2 + 3(HCOÿ3 )() NpO2(CO3)5ÿ
3 + 3H� 22.49
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to result in signi®cant deviations from equilibrium be-
havior. In Case 2, the b and c strategies can be made to
produce results that are not signi®cantly di�erent from
the coupled normalization case, but at great computa-
tional expense. Therefore, as in the previous examples,
the numerical techniques developed in the present study
are needed for the e�cient solution of systems of
chemical species coupled through kinetic reactions, es-
pecially for cases in which the reaction rates are rapid.

5. Discussion and conclusions

In this paper, we developed an iterative solution
technique for reactive transport problems that repre-
sents a versatile alternative to traditional SIA techniques
and the global implicit method. We note ®rst that the
term ``coupling'' refers to the strategy for solving the
transport step of the iterative procedure, rather than the
inherent coupled nature of the component concentra-
tions. Regardless of the solution procedure, if conver-
gence of the system of equations is achieved, subject to a
prescribed tolerance criterion, the result is a valid solu-
tion to the coupled chemical transport system.

The SIA technique attempts to solve the lineariz-
ed algebraic equations for transport of the aqueous
components one at a time. This approach, though sim-
ple to implement, is not always an e�cient solution
technique because it ignores the coupling between
aqueous components linked through kinetic reactions. If
the reactions that link the aqueous components are
rapid, the SIA technique ignores important derivatives
�Dt oRi=oCj; i 6� j� in the Jacobian matrix of the full
system of equations.

The global implicit approach includes all derivatives,
making no approximations in the formulation of the
Jacobian matrix. Its performance is therefore controlled
by the ability of the Newton±Raphson formulation to
solve the system of nonlinear transport equations. This
approach is likely to attain convergence e�ciently for
most cases. However, the global implicit method is very
memory intensive for large problems with numerous
aqueous components. The selective coupling method
developed in the present study allows only the strongly

coupled components to be solved together, and the
transport iteration consists of solving groups of com-
ponents simultaneously. This approach can result in
computational savings relative to the global implicit
method by achieving a similar total SIA iteration count
while reducing the cpu time per iteration. More impor-
tantly, the memory requirements of the selective cou-
pling technique are controlled by the maximum number
of coupled components, rather than by the total number
of components. For complex aqueous chemical systems
and grids with a large number of nodes, the memory
e�ciency is the characteristic that makes the selective
coupling method particularly attractive relative to the
global implicit method.

There are many considerations to be made when de-
veloping a numerical technique for solving reactive
transport problems. In our case, a ¯exible solution
technique was desirable because the code was being
developed for an existing, general-purpose ®nite element
heat and mass transport code (FEHM). In the selective
coupling method as implemented, the user selects the
groups of solutes and the order in which the groups are
solved. All possible coupling strategies, from the SIA-1
method to the global implicit technique, are available at
run time. With respect to the solution of the coupled
equations, the block matrix solver technology already
used in the FEHM code is ideally suited for this appli-
cation. Equation solvers of this type are fairly common,
and hence availability should not be a roadblock to
implementing these techniques in other codes.

Coupled normalization is another concept introduced
in this paper for formulating the solution of the linear-
ized equations resulting from the Newton±Raphson
technique. Coupled normalization scales the equations
in preparation for an iteration of the linear equations.
Furthermore, we demonstrated how coupled normal-
ization allows for the e�cient coupling of aqueous and
immobile components such that the computational and
memory resources are dependent only on the number of
coupled aqueous components; the immobile compo-
nents are included with very low additional computa-
tional burden.

The choice of a chemical formulation with a combi-
nation of equilibrium and kinetic reactions results in a

Table 7

Computational e�ciency, Neptunium transport problem

Case Description Total number

of time steps

Total number

of iterations

Total cpu

time (h)

1a Selective coupling and coupled normalization, slow kinetics 125 385 1.01

1b Selective coupling only, slow kinetics 486 2192 2.8

1c SIA-1, slow kinetics 515 2433 2.39

2a Selective coupling and coupled normalization, rapid kinetics 125 386 1.06

2b Selective coupling only, rapid kinetics 5379 20,103 25

2c SIA-1, rapid kinetics 6463 24,005 23.3
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challenging system for obtaining an e�cient numerical
solution, but at the same time is a more versatile model
formulation than a purely equilibrium-based system.
Although it could be argued that the most computa-
tionally challenging problems for the SIA technique ±
systems with rapid kinetic reactions ± could be recast
more e�ciently as equilibrium reactions, there are sev-
eral reasons that the more ¯exible system and the se-
lective coupling solution procedure are desirable. First,
geochemical rock±water reactions span an extremely
large range of reaction rates, as do ¯uid velocities in
porous media. Therefore, in practical applications a
kinetic treatment is useful in many cases. Next, in many
chemical systems there is scant knowledge on the kinetic
parameters of the reactions. While no substitute for
data, a sensitivity analysis in which kinetic parameters
are varied over a wide range can provide insight into
whether the lack of data is critical to understanding the
system, or merely an uncertainty that is relatively un-
important to resolve. For this situation, the reactions in
question are most conveniently cast as kinetic reactions;
when large rate constants are selected the system be-
haves as an equilibrium system. This is preferable to
having to recast the problem to handle the rapid-kinetics
extreme. A ®nal advantage of the ¯exibility of selective
coupling method is that in more complex ¯ow and
transport systems, a reaction can be e�ectively at equi-
librium in one part of the system and kinetically con-
trolled in another part of the domain. This situation can
occur in systems with large temperature or concentra-
tion gradients, or contrasting ¯ow velocities or solid
surface areas. A kinetic formulation and the selective
coupling method is a versatile solution procedure for
such systems. All of these reasons relate to the ``ro-
bustness'' of the numerical solution, which we de®ne as
the ability to obtain convergence for a wide range of
input parameters in a reasonable time, without the
need for intervention by the user once the problem is set
up. Robustness is a particularly important attribute for
a general purpose chemical transport model: if a solu-
tion cannot be obtained practically for some sets of
parameters, then issues of cpu and memory e�ciency are
moot.

Examination of the example problems presented here
allows us to formulate general guidelines for the selec-
tion of a coupling strategy for practical problems. The
following guidelines are supported by the example
problems.

(1) The most important aspect of the chemical system is
the nature of the linking of aqueous component concen-
trations. Example 1 illustrated this concept by dealing
only with aqueous components coupled through kinetic
reactions. This example was actually a surrogate for
more complex chemical systems with aqueous compo-
nents linked indirectly through interphase kinetic reac-
tions. The Damk�ohler numbers of the reactions strongly

in¯uenced which coupling strategy was the most ap-
propriate.

(2) Linking of aqueous components can also occur in-
directly through competitive sorption reactions or disso-
lution/precipitation reactions, and must be considered in
selecting the coupling strategy. Example 2 illustrated
both the concept of the in¯uence of kinetics and the
indirect linking of aqueous components through com-
petitive reactions. Speci®cally, we showed that selec-
tively coupling Co2� and NTA3ÿ greatly improved
convergence. Although Co2� and NTA3ÿ do not react
with one another in a kinetic reaction, they were indi-
rectly linked to one another due to the equilibrium
speciation reactions. For this reason, coupling of the
two components improved convergence.

(3) The aqueous component concentrations themselves
affect the nature of the chemical system and the optimal
solution strategy. In Example 1, lowering the concen-
tration of an aqueous component from a value at which
it was in excess relative to the other concentrations to a
value that was of the same order as the others made the
solution more di�cult to obtain without using a fully
coupled strategy. The detailed knowledge required to
optimally con®gure the solution strategy can perhaps be
viewed as a limitation. However, it is just such an
analysis that provides fundamental insight into the
controlling factors of the behavior of the chemical sys-
tem. Thus, we view the ``burden'' of gaining this insight
as an advisable preliminary step in the analysis of a
complex chemical transport system. In practice, this
preliminary work can be carried out in simpli®ed, stea-
dy-state, uniform ¯ow and transport ®elds before pro-
gressing to more realistic scenarios.

(4) Coupled normalization results in a guaranteed
memory savings when coupling immobile and mobile
components, and hence should be employed whenever
possible. In Example 3, the competitive ion exchange
reaction presented a computationally demanding prob-
lem, especially for the more rapid kinetics. As rate
constants increase, the most e�cient strategy is to cou-
ple the three aqueous components and three immobile
components. The coupled normalization approach
couples the immobile components to the aqueous com-
ponents in a way that e�ectively reduces the coupled
solution from six to three degrees of freedom. The three
aqueous components, with Jacobian derivative infor-
mation from the three immobile components folded into
the residual equations, were then solved as a system. The
other components in this problem, H� and HCOÿ3 , were
solved individually before the coupled solution step,
thereby optimizing the computational and memory ef-
®ciency of the overall solution.

(5) The user should employ the minimum amount of
coupling needed to solve a given problem efficiently. The
global implicit method is the most computationally de-
manding option on a per-iteration basis, and thus will
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underperform a strategy using an intermediate coupling,
as long as the latter solves the equations in a similar
number of iterations. Furthermore, for large systems,
the memory demands associated with high degrees of
coupling are potentially prohibitive. The memory re-
quirement of the transport solution is governed by the
maximum number of components coupled in the itera-
tive scheme.

The ¯exibility of the techniques developed in the
present study provides a great advantage in that the
solution strategy can be tailored to the problem at hand.
As reactive transport simulations begin to become more
commonly performed for complex, multi-dimensional
¯ow and transport systems, we believe that the numer-
ical techniques developed in the present study should
®nd widespread applicability in general purpose reactive
transport codes.
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