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DDT (bis[4-chlorophenyl]-1,1,1-trichloroethane, also
called dichlorodiphenyl trichloroethane) was first
synthesised in 1874, and its insecticidal properties were
described by Paul Müller in the late 1930s.1 It was first
used to protect military areas and personnel against
malaria, typhus, and other vector-borne diseases.
Commercial sales began in 1945, and DDT became
widely used in agriculture to control insects, such as the
pink boll worm on cotton, codling moth on deciduous
fruit, Colorado potato beetle, and European corn borer.
The compound was also used in sylvaculture and, in a
powder form, as a directly applied louse-control
substance in people. In the USA, use of DDT rose until
1959 (35 771 tonnes), after which it declined gradually
(11 316 tonnes in 1970).1–3 The eighth World Health
Assembly in 1955 adopted a Global Malaria Eradication
Campaign based on widespread use of DDT indoor and
outdoor spraying against adult mosquitoes, and by 1967
endemic malaria was eradicated in developed countries
and many subtropical Asian and Latin American
countries. However, few African countries participated
in the campaign. The 22nd World Health Assembly in
1969 ended the campaign after authorities realised that
the infrastructure necessary to support global
eradication did not exist. Additionally, mosquitoes were
becoming resistant to DDT.4

Sweden banned DDT in 1970, the USA in 1972, and
the UK in 1986, largely on the basis of ecological
considerations, including persistence in the
environment and sufficient bioaccumulation and toxic
effects to interfere with reproduction in pelagic birds (ie,
eggshell thinning).1,3,5,6 Toxic effects in human beings did
not have a role in bans enacted during the 1970s. During
the next 30 years, a combination of research findings and
public concern led to bans of many other persistent
chlorinated compounds, such as the cyclodiene
pesticides (ie, dieldrin and mirex) and polychlorinated
biphenyls. Before the Stockholm Convention on
Persistent Organic Pollutants proposed a global ban of
DDT and 11 other persistent organic pollutants in 2001,

some senior malaria experts objected, citing the rising
burden of malaria in sub-Saharan Africa, the historical
effectiveness of DDT against malaria vectors, and the
absence of obvious toxic effects caused by DDT in
human beings.7–9 More than two dozen countries, mostly
in sub-Saharan Africa, requested exemption from the
ban for DDT use in malaria vector control.10 However,
adverse effects of DDT on human health have been
reported, and these will probably affect the decision.
Since the Stockholm Convention was to be effective from
May, 2004,11 a review of the currently available evidence
was appropriate. We discuss some of the advances in
knowledge about the toxic effects of DDT, especially
chronic or delayed toxic effects occurring at low doses,
including neurological, carcinogenic, reproductive, and
developmental effects. Where possible, we review the
potential for such toxic effects to take place at exposures
expected to result from modern insect-control practices.
We also consider the problem of the measurement and
comparison of possible benefits of DDT in the reduction
of malarial mortality, and the possible harm from an
increase in non-malarial infant deaths.

DDT exposure and concentration in human
tissues
Technical-grade DDT contains 65–80% p,p�-DDT,
15–21% o,p�-DDT, and up to 4% p,p�-DDD (bis[4-
chlorophenyl]-1,1,-dichloroethane).2 When sprayed, DDT
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DDT (bis[4-chlorophenyl]-1,1,1-trichloroethane) is a persistent insecticide that was used worldwide from the

mid-1940s until its ban in the USA and other countries in the 1970s. When a global ban on DDT was proposed in

2001, several countries in sub-Saharan Africa claimed that DDT was still needed as a cheap and effective means for

vector control. Although DDT is generally not toxic to human beings and was banned mainly for ecological reasons,

subsequent research has shown that exposure to DDT at amounts that would be needed in malaria control might

cause preterm birth and early weaning, abrogating the benefit of reducing infant mortality from malaria.

Historically, DDT has had mixed success in Africa; only the countries that are able to find and devote substantial

resources towards malaria control have made major advances. DDT might be useful in controlling malaria, but the

evidence of its adverse effects on human health needs appropriate research on whether it achieves a favourable

balance of risk versus benefit. 

Search strategy and selection criteria

We did a search of PubMed from the mid-1960s to February,
2005, for the use, body burden, and toxic and health effects
of DDT. We used the keywords “DDT” and “DDE” and any of
“malaria”, “mosquito”, “drug resistance”, “toxicity”, “health”,
“cancer”, “reproduction”, “oestrogen”, “neurological”, and
“development”. Of 3650 reports published on DDT, we gave
preference to studies in the past 5 years on human health
effects of DDT. 
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can drift, sometimes for long distances. In the soil, the
compound can evaporate or attach to wind-blown dust. In
the environment, DDT breaks down to p,p�-DDE
(bis[4-chlorophenyl]-1,1-dichloroethene),1 an extremely
stable compound that resists further environmental
breakdown or metabolism by organisms. DDE is the
form usually found in human tissue in the highest
concentration, especially in areas where there has been no
recent use of the parent compound. Figure 1 shows the
chemical structures of these DDT isomers. The general
population is exposed to DDT mainly through food,
whereas occupational exposures are mainly through
inhalation and dermal contact. DDT and DDE can also be
transferred from the placenta and breastmilk to fetuses
and infants. Although some ingested DDT is converted to
DDA (bis[4-chlorophenyl]-acetic acid) and excreted, any
non-metabolised DDT and any DDE produced is stored in
fat, as is all absorbed DDE, which cannot be metabolised.
DDT and DDE are highly soluble in lipid; their
concentrations are much higher in human adipose
tissues (about 65% fat) than in breastmilk (2·5–4% fat),
and higher in breastmilk than in blood or serum
(1% fat).12 The half-life of DDE is about 7–11 years.13 DDT
and DDE concentrations increase with age.12

With the use of DDT declining since the 1970s,
concentrations of DDT and its metabolites in human
tissue have fallen greatly worldwide.14,15 Currently,
people in Europe, the USA, Canada, Australia, New
Zealand, and Japan have lower concentrations of DDT
compounds in their tissues than previously. For
example, in Sweden, the total DDT concentration in
breastmilk fat was 2·9 �g/g in 1972 and 0·3 �g/g in
1992. However, in Central and South America, Mexico,
Africa, and some Asian countries, where DDT has been
used for vector control in the past 5–10 years, DDT
concentrations in human tissues remain high. For

example, in Mexico, the total DDT concentration in
breastmilk fat was 5·7 �g/g in 1994–95 and 4·7 �g/g in
1997–98·16 In South Africa, continuous DDT spraying
has resulted in a median DDE concentration range of
5·2–7·7 µg/g in breastmilk fat in the treated area,
compared with a much lower 0·4–0·6 �g/g in the
untreated area.17 In South Africa, the mean
concentration of serum DDE in a DDT-treated area was
103 (SD 85) �g/L whereas in an untreated area the value
was 6 (7) �g/L.18 In countries with DDT use in the past
5–10 years, the DDT-to-DDE concentration ratio, which
can approach 100% in these areas, is much higher than
that in Europe or the USA (2–20%).14

Workers using DDT to control mosquitoes have very
high DDT concentrations. Mexican data revealed that
the geometric mean of total DDT was 104·48 �g/g in
adipose tissue of 40 DDT sprayers in 1996;19 whereas in
Finland, the USA, and Canada, the value was less than
1 �g/g in adipose tissue in the general population.14 In
another Mexican study, the serum concentration of
p,p�-DDE was much higher in DDT sprayers (188 �g/L)
than in children (87 �g/L) and in adults (61 �g/L) who
lived in sprayed houses but were not otherwise exposed
to DDT.20

Toxic effects of DDT
Toxic effects of DDT and its analogues have been
extensively studied in laboratory animals. Acute
exposure to a high dose of DDT can cause death.12

Exposure to DDT or DDE increases liver weight, induces
liver cytochrome P450 (CYP) 2B and 3A and
aromatase,21–23 and causes hepatic-cell hypertrophy and
necrosis.12 DDT is insecticidal because of its neurological
toxic effects. In laboratory animals, DDT causes
hyperactivity, tremor, and seizures. DDT is carcinogenic
in mice and rats, mainly causing liver tumours,12

although negative results are also seen,24 and the
compound is carcinogenic in non-human primates.25

The o,p�-DDT isomer is the most oestrogenic
component of the DDT complex (having a relative
binding affinity to oestrogen receptors of 2·9�10–3

relative to 17-� �estradiol),26 with p,p�-DDT being much
less oestrogenic than its o,p� isomer. The p,p�-DDE
isomer is anti-androgenic by inhibitive binding to
androgen receptors (with a relative binding affinity to
androgen receptors of 3·1�10–3 relative to dihydrotestos-
terone).27,28 Prenatal exposure to DDT in early pregnancy
in rabbits can reduce overall fetal bodyweight and brain
and kidney weight in offspring.29 Immunosuppressive
effects of DDT have been shown in rats and mice.30,31

In people, DDT use is generally safe; large populations
have been exposed to the compound for 60 years with
little acute toxicity apart from a few reports of
poisoning.12 Doses as high as 285 mg/kg taken
accidentally did not cause death, but such large doses did
lead to prompt vomiting. One dose of 10 mg/kg can
result in illness in some people.12 Subclinical and subtle
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functional changes have not been meticulously sought
until the past few decades.

Neurobehaviour
DDT poisoning usually results in paresthesia, dizziness,
headache, tremor, confusion, and fatigue.12 Occupational
exposure to DDT was associated with reduced verbal
attention, visuomotor speed, sequencing, and with
increased neuropsychological and psychiatric symptoms
in a dose-response pattern (ie, per year of DDT
application) in retired workers aged 55–70 years in Costa
Rica.32 Although DDT or DDE concentrations were not
determined in this study, they probably were very high.
People who regularly consumed fish from the American
Great Lakes were reported to have higher serum DDE
concentrations (median 10 �g/L) than those who did not
eat fish (5 �g/L), but they did not show impaired motor
function,33 impaired executive and visuospatial function,
or reduced memory and learning.34

Cancer
Although extensively studied, there is no convincing
evidence that DDT or its metabolite DDE increase
human cancer risk. Mainly on the basis of animal data,
DDT is classified as a possible carcinogen (class 2B) by
the International Agency for Research on Cancer
(IARC)35 and as a reasonably anticipated human
carcinogen by the US National Toxicology Program.36

Breast cancer has been examined most closely for an
association with p,p�-DDE. In a study in 1993,37 breast
cancer patients had higher serum DDE concentrations
(11·8 �g/L) than controls (7·7 �g/L), and results from
several subsequent studies supported such an
association.38–41 However, large epidemiological
studies13,42–49 and subsequent pooled and meta-
analyses50–52 failed to confirm the association. Most of
these studies have been analysed, accounting for several
factors including sample size, exposure, and odds ratios.
Good evidence now indicates that, in white women in
North America or Europe, DDE does not raise breast
cancer risk, irrespective of oestrogen receptor status in
the tumour or polymorphisms in host metabolic
enzymes (glutathione-S-transferase, CYP).53 The role of
o,p�-DDT—the most oestrogenic isomer—in areas of
recent DDT use still needs further investigation.52,53

With detailed work history of chemical manufacturing
workers to estimate DDT exposure, a nested case-control
study54 reported occupational DDT exposure associated
with increased pancreatic cancer risk. A weak
association of self-reported DDT use with pancreatic
cancer was reported in another case-control study.55 A
report indicated a higher standardised mortality ratio for
pancreatic cancer in outdoor workers with a history of
DDT exposure of less than 3 years, but the standardised
mortality ratio of DDT workers with exposure of 3 years
or more was not significantly raised.56 The association of
serum DDE concentrations (median 1·3 �g/g and

1·0 �g/g lipid in cases and controls, respectively) with
pancreatic cancer was not clearly shown in another study
when co-exposure to polychlorinated biphenyls was
taken into account.57 Although one study reported higher
DDT and DDE concentrations in K-ras-mutated
pancreatic cancer patients than in controls,58 this finding
was not reported from another study.59

Previous case-control studies have suggested that a
history of DDT use was associated with a raised risk of
non-Hodgkin’s lymphoma,60,61 but subsequent studies62

using measurements of total DDT concentrations in
serum did not find such increased risk. Two other
studies63,64 using the history of DDT application as the
exposure measure and one65 using adipose DDE
concentration reported a slightly raised risk associated
with DDT or DDE, but the effect disappeared if data
were adjusted for history of use or concentration of other
pesticides. 

Data from an Italian study66 of malaria workers
showed that, although those directly exposed to DDT
had raised risk of liver and biliary tract cancers, workers
who did not have direct occupational contact with DDT
also showed increased risk.66 Another ecological study in
22 US states indicated a correlation between adipose
DDE amounts and age-adjusted liver-cancer mortality
rates in white men in a multivariate analysis, but not in
white women or black men.67 In both studies no
individual measure of DDT exposure was available, thus
making interpretation difficult.

Association of DDT with multiple myeloma,66–68

prostate and testicular cancer,69,70 endometrial cancer,71–73

and colorectal cancer74 was sought but results have been
inconclusive or generally do not support an association. 

Reproductive health 
Various reproductive and hormonal endpoints have
been examined in both men and women, and although
associations have been recorded, causal links have not
been confirmed. In Chiapas, Mexico, where DDT was
sprayed for malaria control, serum p,p�-DDE concen-
trations were inversely correlated with semen volume,
sperm count, and bioavailable-to-total testosterone ratios
in 24 young men not occupationally exposed to DDT.75

However, results from another study of South African
malaria workers did not confirm these findings although
their exposure was nearly as high as that previously
reported.76,77 Studies of populations with a much lower
exposure than that seen in current malaria-endemic
areas have shown only weak, inconsistent associations
between DDE and testosterone amounts, semen quality,
and sperm DNA damage.78–84

An increase of 15 �g/L of DDE in maternal serum was
associated with a 1-year advance of the age at menarche in
daughters.85 One cross-sectional study in Laotian
immigrants to the USA with high DDT (mean 2 �g/L)
and DDE (21 �g/L) concentrations indicated that the
highest quartiles of concentration were associated with a
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reduction of 1·5 days in the mean luteal-phase length of
menstrual cycles.86 Data from the large US Collaborative
Perinatal Project undertaken in 1959–66 did not show any
association between DDE concentration and menstrual-
cycle length.87 Raised DDE concentration was associated
with earlier natural menopause in two studies.88,89

With respect to time to pregnancy, an increase of
10 �g/L of p,p�-DDT in maternal serum was reported to
reduce daughters’ probabilities of pregnancy by 32%,
whereas the same increase in p,p�-DDE concentrations
raised the probability by 16%.90 The discrepancy of DDT
and DDE effect cannot be easily explained by any known
mechanism, and these results need confirmation.
Spouses of DDT users were shown to have a non-
significantly lower probability of pregnancy than those
unexposed.91

Data from the US Collaborative Perinatal Project
indicated that DDE correlated with the risk of sponta-
neous abortion,92 which were consistent with findings
from four small studies.93–96 However, two other studies97,98

did not show these results. A study99 of 45 recurrent
miscarriage cases and 30 controls showed no increased
risk associated with DDE, but the DDE concentrations
were much lower than those in previous studies.

Raised serum concentration of DDE correlated with
risk of preterm delivery in the US Collaborative Perinatal
Project data, with odds ratios of 1·5–3·1 for DDE
amounts of 15 �g/L or more compared with those less
than 15 �g/L,100 in accordance with several small
studies.94,97,101,102 Another US study did not show the same
results,103 although the median DDE concentration was
only 1·4 �g/L in that study (much lower than the
concentration in the Collaborative Perinatal Project100).
DDE has also shown an association with small-for-
gestational-age in data from the US Collaborative
Perinatal Project,100 low birthweight in a study of fish
eaters in the Great Lakes,104 and intrauterine growth
restriction in a small Indian study.105 However, other
studies in North Carolina, USA,106 Greenland,107

Ukraine,108 and Michigan, USA,109 with various DDE or
DDT concentrations, failed to find this association. 

Low incidence of birth defects reduces the power of
studies examining the causal effect of DDT. The US
Collaborative Perinatal Project data have been consistent
with a small increase in risk for cryptorchidism,
hypospadias, and polythelia with very high
concentrations of DDE in maternal serum DDE
(�60 �g/L), but the results are inconclusive,110 similar to
another study.111 Two other studies found no association
between concentrations of DDT and DDE and
hypospadias112 or cryptorchidism.113 In a study of
Mexican anti-malaria workers, high paternal DDE
concentration (�61 �g/g lipid) was associated with a
raised risk of birth defects, but these birth defects were
few and mostly arose in the nervous system.114

High DDE concentration in breastmilk has shown an
association with a shortened duration of lactation.115,116 In

858 women, those with the highest concentration of DDE
in milk (�6 �g/g lipid) weaned at an average of
2·5 months, whereas those with the lowest concentration
(�1 �g/g lipid) weaned at 6·5 months.115 In 229 Mexican
women, rising DDE amounts in breastmilk (from
�2·5 µg/g to �12·5 �g/g lipid) were associated with a
reduction in the mean duration of lactation (from
7·5 months to 3 months).116 The table summarises the
overall findings of reproductive outcomes and DDT
exposure amounts in different populations.

Infant and child development
Although infant and child growth and neuro-
development have been studied, no study has been large
enough to show an effect on infant and child survival. In
a German study,117 girls with the highest quartile of DDE
concentration (�0·44 �g/L whole blood) were an
average of 1·8 cm shorter at age 8 years than girls with
the lowest quartile of DDE; the difference narrowed at
age 9 years and disappeared at age 10 years. However, no
such effect was seen in boys. Another study did not show
any association between maternal serum DDE and
anthropometric and pubertal measures in boys.118

However, follow-up of children in North Carolina
showed that at age 12–14 years, the height of boys (but
not girls) at puberty rose with transplacental exposure to
DDE. Age at pubertal stages, which was mostly assessed
prospectively, was unaffected by any measure of DDE
exposure.119 Serum concentration of p,p�-DDE (�1 �g/L)
was associated with precocious puberty in one
unconfirmed study.120

DDE concentration in the blood serum of the
umbilical cord was negatively associated with mental
and psychomotor development of children assessed at
13 months of age.121 A longitudinal study122–124 showed no
association between transplacental or lactational DDE
exposure and children’s cognitive or motor development
at age 12–60 months or school reports at age 10 years.
The Program for International Student Assessment
study125 showed that high DDT concentration in human
milk could be inversely associated with mental capacities
at age 15 years. 

Immunology and DNA damage
Increased plasma concentrations of DDE were associated
with raised IgA in one study126 and with reduced IgG in
another.127 Plasma p,p�-DDE was inversely associated
with in-vitro secretion of tumour necrosis factor (TNF) 	
by umbilical cord-blood mononuclear cells.128 Do these
effects translate into immunological disorders with
clinical consequences? One study suggested that raised
prenatal exposure of p,p�-DDE increased the risk of otitis
media in Inuit infants,129 but this association was not
seen in another study.115 In Mexican women, blood
concentrations of DDT, DDE, and DDD were associated
with DNA damage in blood cells measured by comet
assays,130 but data from US residents living near a
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pesticide dump site did not indicate any such relation
between plasma DDE and lymphocyte micronuclei,
although DDE was associated with reduced mitogen-
induced lymphoproliferative activity.126

Efficacy and effectiveness of DDT for malaria
control
Convincing historical evidence has shown that indoor
residual house-spraying with DDT was the main method
by which malaria was eradicated or greatly reduced in
many countries worldwide in the 1940s to 1960s.
However, these programmes had not been aimed to
rigorously investigate the efficacy of individual
components nor of local factors that might modify their
effects. In sub-Saharan Africa, early pilot projects
of malaria eradication also showed that the disease is
highly responsive to vector control by DDT and to
aggressive treatment campaigns to eliminate residual
foci of transmission. Despite reductions in anopheline
vectors and malaria cases, transmission could not be
interrupted in the endemic tropical and lowland areas
of sub-Saharan Africa.131 Subsequently, international
interest in malaria and funding for malaria research and
control waned in most countries on the continent. As a
result, residual spraying was not used in sub-Saharan
Africa, apart from southern Africa and some islands
such as the Reunion, Mayotte, Zanzibar, Cape Verde,
and São Tome. In southern Africa, the countries that
have developed national malaria control programmes
have built up human, financial, and organisational
resources for great advances in malaria control.132

However, the effectiveness of DDT can be
compromised by insecticide resistance and social
resistance to DDT indoor spray. Because of the
irritating, excito-repellent nature of the DDT residue,
some mosquitoes tend to leave before they have
absorbed a lethal dose, or tend to avoid entering the
house or resting on the wall at all.131 By the end of Global
Malaria Eradication Campaign, some mosquito species
had developed resistance to DDT, especially in India and
Sri Lanka.1 In 1968, high amounts of resistance to DDT
in Anopheles gambiae was reported in Upper Volta (now
Burkina Faso); shortly thereafter, DDT had no effect on
mosquito mortality, biting frequency, or resting in
houses in trials undertaken in Togo and Senegal.131 In
the 1980s when DDT was judged to control the
resurgence of malaria in Zanzibar after the DDT
spraying programme finished in 1968, resistance was
found in A gambiae ss and A arabiensis.133 In 2002,
2 years after DDT residual spraying was reintroduced in
KwaZulu-Natal to control the increase of malaria cases,
resistance was recorded in A arabiensis, although
A funestus was still susceptible to DDT.134 Social
resistance to DDT indoor sprays occurs because bedbugs
are resistant to DDT, and DDT leaves stains on walls,
which residents then replaster.132 In practice, the efficacy
of DDT spraying for vector control depends on the

coverage of spraying, mosquito species, and resistance
to DDT. Climate—especially rainfall, temperature, and
latitude—could affect the stability of transmission, and
thus also affect DDT efficacy. WHO points out that DDT
spraying is “most effective in reducing the overall
malaria burden in unstable transmission areas, areas
with marked seasonal transmission peaks and disease
outbreaks, and highland areas”.135

A report from Chingola and Chiliabombwe, Zambia,
showed that spray coverage of all houses with DDT
(80%) or pyrethroid (20%) between peak transmission in
2000 resulted in a 35% fall in malaria incidence in the
subsequent 6 months compared with 2 years before
spraying.136 Currently in Africa, indoor residual spraying
(mainly with DDT) has become part of the national Roll
Back Malaria strategic plan in several countries
(figure 2).137 Data for the efficacy of DDT are increasing
and will be used to assess the efficacy of DDT spraying. 

Debate and decision-making
Since evidence now indicates that DDT might have
adverse effects on human health, it is prudent to consider
currently available evidence of benefits and possible risks
of DDT use in the context of modern malaria control.
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Infants are generally known to bear the burden of
mortality from malaria worldwide (figure 3);138 most such
mortality occurs in the first 5 years of life and in areas
south of the Sahara (figure 4).139 The decision to use DDT
would be straightforward if we had data from trials in
sub-Saharan Africa showing larger reductions in infant
mortality in houses treated with DDT than reductions in
houses treated with a different insecticide or where bed
nets are used. However, such data are unavailable, and
thus any such decision will need several assumptions.

Benefits of DDT spraying in sub-Saharan Africa
The success of the Malaria Eradication Campaign in
1955–69 was attributed to DDT.1 However, these
programmes often included other components, such as

provision of basic medical care, and were not designed to
allow investigation of their individual parts. Thus,
Giglioli140 showed large improvements in infant and all-
cause mortality during three decades for employees of
the sugar plantations in South America, but the
quantitative role of DDT is impossible to specify. Without
the appropriate controls, the effects of secular trends also
cannot be disentangled.141 Moreover, effective malaria
prevention programmes can be associated with a fall in
infant mortality that is larger than can be accounted for if
malaria is eliminated entirely as a cause of death. This
problem could be due to malaria’s ability to produce
anaemia and immunodeficiency in both mother and
child (rendering them susceptible to death from other
causes) or due to other interventions.142 Because poverty,
malnutrition, diarrhoea, and respiratory diseases account
for most infant mortality in sub-Saharan Africa, the
benefits of DDT use could be dwarfed by interventions to
improve nutrition, vaccination, sanitation, personal
hygiene, and medication accessibility.

Snow and colleagues143 attempted to estimate malaria
mortality for African children in the subcontinent. They
reported that the median number of deaths from malaria
in children aged 0–4 years in population-based studies
was nine in 1000 per year; on the basis of deaths
occurring in hospital, four in 1000; and in children aged
up to 59 months attributable to malaria from inter-
vention studies, seven in 1000. These numbers might
not have included all infant deaths that could be avoided
by malaria prevention, such as those from preterm
delivery and with low birthweight caused by maternal
malaria during pregnancy. Maternal malaria was
estimated to have caused 3–8% of all infant deaths in
areas of Africa with stable malaria transmission.144 Thus,
residual spraying with DDT might end mortality from
malaria and reduce overall infant mortality if most or all
dwellings are sprayed at least twice a year, if malaria-
transmitting mosquitoes do not become resistant, if few
people clean or replaster the sprayed wall, and if funding
and personnel are always available for residual spraying,
among other actions. However, under the actual
conditions in sub-Saharan Africa, various technical and
logistical barriers hamper the achievement of this goal. 

Risks of DDT spraying in sub-Saharan Africa
For indoor residual spraying to effectively prevent infant
mortality from malaria, women of child-bearing age,
pregnant women, and breastfeeding women will need to
be exposed to DDT. Such spraying might be without the
ecological effects that caused the ban (although more
data are needed), but will unavoidably expose women to
amounts of DDT that are associated with forms of toxic
effects that might increase infant mortality. Of adverse
effects to human health, reproductive outcomes are the
major concern (table). Of these, the association of DDE
with increased risk of preterm birth and earlier weaning
are most relevant to sub-Saharan Africa.100,115,116 Although
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Ref Design and population DDT or DDE concentrations Effects

Semen quality
75 24 men from DDT-sprayed area in Mexico Mean p,p’-DDE 78 �g/g serum lipid DDE amounts inversely associated with semen volume, sperm count, and testosterone

(mean age 21 years) concentration
76,77 47 malaria workers in South Africa (mean age 45 years) Mean p,p’-DDE 52 �g/g serum lipid No consistent association with oestradiol, testosterone, or semen quality
78 137 black farmers in the USA (mean age 62 years) Median p,p’-DDE 1·2 �g/g serum lipid Only top tenth percentile of DDE associated with reduced testosterone

or 7·7 �g/L serum 
79 110 Baltic seafish eaters (age range 23–79 years) Median p,p’-DDE 0·8 �g/g serum lipid Weak, negative (but non-significant) association with testosterone
80 107 previous malaria workers in Italy Median p,p’-DDE 0·4 �g/g serum lipid No association with oestradiol, testosterone, luteinising hormone, follicle-stimulating 

(mean age 78 years) hormone, and sex-hormone-binding globulin
81,82 212 male partners of subfertile couples in the USA Median p,p’-DDE 0·2 �g/g serum lipid Weak association with sperm motility but not with sperm concentration, morphology, and 

(mean age 37 years) DNA damage
83,84 195 Swedish fishermen (median age 51 years) Median p,p’-DDE 0·2 �g/g serum lipid Percentage of sperm DNA fragmentation index rose non-significantly with DDE dose; no

association with other semen indices
Menstrual cycle

89 219 Hispanic women in the USA Mean p,p’-DDE 36 �g/L serum High DDE concentration associated with early age at menopause
87 2314 pregnant women in the USA Mean DDE 30 �g/L Menstrual cycle irregularity slightly increased, no association with cycle length and

bleeding duration
86 50 Laotian immigrants coming to the USA Mean DDE 21 �g/L serum Highest quartile of DDE associated with reduced mean luteal-phase length (by 1·5 days) and

decreased progesterone during luteal phase
85 151 offspring of anglers in the USA Maternal DDE range 0–17 �g/L serum High maternal DDE associated with decreased age at menarche
88 1407 women in a breast cancer case-control study Median DDE 3 �g/L plasma High DDE associated with early age at menopause

in the USA
Time to pregnancy

90 289 women born in the early 1960s in the USA Maternal postpartum median DDE associated with raised probability of pregnancy, and DDT associated with reduced 
p,p’-DDE 48 �g/L serum, probability of pregnancy
p,p’-DDT 13 �g/L serum

91 Spouses of 105 malaria workers in Italy Work history Slightly increased stillbirth rate; reduced male-to-female ratio among offspring and probability
of pregnancy in DDT users

Spontaneous abortion
94 10 cases and 25 controls in India Mean DDE 164 �g/L (cases) and 13 �g/L Raised DDE associated with increased risk of spontaneous abortion

serum (controls)
92 1717 pregnancy women in the USA Median DDE 25 �g/L serum Raised DDE associated with increased fetal loss in previous pregnancies
93 15 cases and 15 controls in China Mean DDE 22 �g/L (cases) and Raised DDE associated with increased risk of spontaneous abortion

12 �g/L serum (controls)
98 120 cases and 120 controls in Italy Mean DDE 5·2 �g/L (cases) and No associations recorded

4·6 �g/L serum (controls)
96 89 women with repeated miscarriages in Germany Mean DDE 1·2 �g/L serum 14% of cases with DDE higher than range of previously investigated reference population
99 45 cases and 30 controls in Japan Mean DDE 0·7 �g/L (cases) No associations recorded

and 0·9 �g/L serum (controls)
Preterm delivery

94 15 preterm cases and 25 full-term controls in India Mean DDE 58 �g/L (cases) and Cases had higher maternal DDE concentrations than did controls
13 �g/L serum (controls)

100 2613 pregnant women in the USA Median DDE 25 �g/L serum Raised maternal DDE associated with increased risk of preterm delivery
103 20 preterm cases and 20 full-term controls in the USA Median DDE 1·3 �g/L (cases) No association recorded

and 1·4 �g/L serum (controls)
102 100 preterm cases and 133 full-term controls Median DDE 0·19 �g/g (cases) Suggestive positive relationship between DDE and preterm delivery

in Mexico and 0·15 �g/g serum lipid (controls)
Birthweight

100 2613 pregnant women in the USA Median DDE 25 �g/L serum Raised maternal DDE associated with increased risk of small-for-gestational-age
106 912 infants in the USA Maternal median DDE at birth Maternal DDE burden not associated with birthweight

13 �g/L serum
105 30 intrauterine growth restriction cases and 24 controls Mean DDE 9 �g/L (cases) and Raised maternal DDE associated with increased risk of intrauterine growth restriction

in India 6 �g/L serum (controls)
107 178 newborn babies in Greenland Maternal mean DDE 5 �g/L plasma No association with birthweight
104 119 frequent fish eaters and 24 infrequent fish eaters Median DDE 2 �g/L (frequent eaters) Natural log of maternal serum DDE inversely associated with birthweight

in the USA and 1 �g/L serum (infrequent eaters)
108 197 singleton infants in Ukraine Median DDE 2·5 �g/g breastmilk fat No association between DDE and birthweight after adjustment for potential confounders

Birth defects
111 75 cryptorchidism, 66 hypospadias Median DDE 43 �g/L (cryptorchidism DDE 
61 �g/L resulted in slightly raised but non-significant risk for both defects

and 283 control babies in the USA and controls) and 41 �g/L (hypospadias)
110 219 cryptorchidism, 199 hypospadias, 167 polythelia, Median DDE 24 �g/L (cryptorchidism, DDE 
60 �g/L resulted in slightly raised risk for investigated birth defects, but results were

and 552 control babies in the USA hypospadias, and controls) and inconclusive
32 �g/L (polythelia)

Duration of lactation
116 229 postpartum women in Mexico Median DDE 6 �g/g breastmilk fat Raised DDE associated with reduced duration of lactation
115 858 postpartum women in the USA Median DDE 2 �g/g breastmilk fat Raised DDE associated with reduced duration of lactation

Rows are in order of decreasing serum DDE dose.

Table: Summarised DDT and DDE effects on reproductive outcomes 
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causality has not been established and the studies were
done in North America, the methods are not so flawed
that the findings can be dismissed by argument.

If we assume that preterm births and early weaning are
caused by DDT exposure, that the strength of the
association is similar to that observed in North American
studies, and that previous weaning or early birth carries a
risk of mortality in Africa similar to the risk elsewhere, we
would estimate that about 20 excess deaths per
1000 livebirths will result from continuous DDT indoor
residual spraying (ie, serum DDE �60 �g/L or breastmilk
DDE �5 �g/g lipid).145 The risk estimate provides a
general framework of risk assessment in sub-Saharan
Africa, although applicability to a specific country or area
depends on the variation in malaria transmission, total
infant mortality, DDT spraying strategy, incidence of
preterm birth, and duration of lactation. 

Balance of benefits and risks from DDT use in
malaria control
Malaria remains a difficult problem in Africa. Indoor
residual spraying of DDT could be effective in some
settings; the procedure is unlikely to lift the entire
malaria mortality burden in infants and children.
Additionally, if continuous DDT spraying does cause
increased preterm births and shortened breastfeeding
duration, infant deaths will occur, perhaps to the same
extent as the deaths spraying would potentially prevent.
Mothers would also carry a body burden of DDT, and
even if they were to leave the malaria-protected house,
they would still have raised risk of preterm birth and
early weaning. Other risks, such as neurological and
reproductive effects in spraying staff, might also apply. 

Whether such problems do or do not occur is still
uncertain, since they cannot be dismissed on grounds of
low doses or flawed studies nor can they be reasonably
assumed to happen. In areas where DDT is to be
introduced, reintroduced, or continuously used for
malaria control, caution based on the accumulation of
evidence of adverse DDT effects in people is appropriate.
Whenever possible, proper controls in the assessment of
DDT efficacy and continued parallel research on its effect
in human beings should be undertaken. Alternative
antimalarial approaches such as use of insecticide-
treated bed nets, intermittent presumptive treatment
during pregnancy, early diagnosis, artemisinin-based
treatment, combination regimen treatment, and health
education are all effective.146–148 Well-coordinated anti-
malarial efforts in combination with efficient health
infrastructure should have improved success in malaria
control than the sole reliance of disease control on
indoor residual spraying of DDT. 

Future perspectives
DDT was originally banned because of ecological effects,
such as eggshell thinning, and accumulation in the
environment and organisms, including human beings.

Although acute toxic effects are scarce, toxicological
evidence shows endocrine-disrupting properties; human
data also indicate possible disruption in semen quality,
menstruation, gestational length, and duration of
lactation. The research focus on human reproduction
and development seems to be appropriate. DDT could be
an effective public-health intervention that is cheap,
longlasting, and effective. However, various toxic-effects
that would be difficult to detect without specific study
might exist and could result in substantial morbidity or
mortality. Responsible use of DDT should include
research programmes that would detect the most
plausible forms of toxic effects as well as the
documentation of benefits attributable specifically to
DDT. Although this viewpoint amounts to a platitude if
applied to malaria research in Africa, the research
question here could be sufficiently focused and
compelling, so that governments and funding agencies
recognise the need to include research on all infant
mortality when DDT is to be used.
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