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Abstract

Estimates of proportion and rate-based performance measures may involve discrete distributions, small
sample sizes, and extreme outcomes. Common methods for uncertainty characterization have limited accuracy
in these circumstances. Accurate con�dence interval estimators for proportions, rates, and their di�erences
are described and MATLAB programs are made available. The resulting con�dence intervals are validated
and compared to common methods. The programs search for con�dence intervals using an integration of the
Bayesian posterior with di�use priors to measure the con�dence level. The con�dence interval estimators can
�nd one or two-sided intervals. For two-sided intervals, either minimal-length, balanced-tail probabilities, or
balanced-width can be selected.
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1. Introduction

Classi�cation system assessments typically involve performance measures in the form of propor-
tions and rates. Commonly used measures include proportions or probabilities, such as probability of
detection, probability of identi�cation, and false alarm rates [1]. Similar measures are of interest in
many other disciplines. Performance assessment provides the basis for a variety of decisions related
to programmatic planning, technical design, and transition of classi�cation technology. This assess-
ment invariably requires estimating the measures of interest. Proper use of these estimates depends on
an accurate characterization of the estimates’ uncertainties. There are several sources of uncertainty,
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but this paper is concerned solely with statistical uncertainty. We de�ne “statistical uncertainty” as
that which is appropriate when we have a random sample from a representative population that
is well separated from training data. In practice, we rarely meet any of these conditions, much
less all three. However, proper treatment of “statistical uncertainty” is still of interest. It provides
a foundation upon which to build more general concepts and will have direct application in some
instances. There are a variety of ways in which an estimate’s uncertainty may be characterized, but
this paper is concerned only with characterizations based on con�dence intervals and signi�cance
of di�erences. After some brief background, Section 3 develops expressions for con�dence interval
estimators for proportions and rates. Section 4 explains their computer implementation and Section
5 reports on the validation process. Section 6 develops the con�dence intervals for di�erences of
proportions and rates.

2. Background

Con�dence intervals (CIs) have an intuitive meaning, that is, the interval within which you can
be con�dent that the true value lies, but this intuitive concept is surprisingly di�cult to formalize.
Particularly for a non-statistician, it is di�cult to �nd an accessible explanation of con�dence intervals
that is appropriate to the distributions and conditions of their application along with algorithms for
computing them. The ideal CI estimator (CIE) would be accurate across the conditions of interest,
easily coded, and validated. The conditions of interest for classi�er performance assessment include
proportions near zero and one, rates near zero, and small numbers of samples. Proportion estimates
may involve a small number of samples, often less than 100 and occasionally only a half-dozen or
so. These proportions are also often close to 1.0. A handful of, or even zero, events are also an
important basis for rate estimation, which may occur when the area of the available test data is on
the order of one over the true false alarm rate. CI accuracy is important since signi�cant resources
go towards test execution and consequential decisions are made based on the results’ uncertainties;
therefore, a signi�cant e�ort is warranted towards accurate con�dence intervals.
There are two main perspectives on con�dence intervals, “classical” and “Bayesian.” Although

these two perspectives are fundamentally di�erent and generate some controversy within the statistics
community, that di�erence is of little consequence under an assumption of limited prior information.
From the “classical” or sampling theory perspective [2], there is some unknown, but “true” �xed
value of the estimated parameter. The con�dence interval is then a pair of random variables L and
U (some function of the sampling random variable), not the computed limits themselves. These
random variables cover the true value of a parameter � being estimated with a certain probability,
i.e., Pr(Lr:v: ¡ ��xed¡Ur:v:) = 1 − �. When we compute particular con�dence limits, we only have
the realizations l and u of the random variables L and U . These either do or do not enclose �.
It is not correct to say that they probably enclose �. Another statement of classical con�dence
intervals is that 100 × (1 − �)% of all samples will result in con�dence limits which enclose the
true parameter value. From the “Bayesian” perspective [3], the con�dence interval is the computed
limits and it is the parameter that is a random variable. From this perspective, it is correct to say,
Pr(l�xed¡�r:v: ¡ u�xed) = 1 − �. We use the Bayesian perspective here because we can compute
precise con�dence intervals for the full range of conditions of interest. If the prior probabilities
are “di�use” (i.e., do not contribute signi�cantly to the resulting posterior probabilities, which is
assumed throughout this paper) then the two perspectives result in the same interval values.
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When estimating a parameter � from measurement x, the Bayesian formulation [3] is that the
posterior distribution f�|x(� | x) is the product of the likelihood fx|�(x | �), which is often determined
by standard models, and the prior distribution f�(�) with an appropriate constant to ensure that the
posterior is a true distribution (i.e., integrates to 1.0). That is,

f�|x(� | x) =
fx|�(x | �)f�(�)∫
fx|�(x | �)f�(�) d�

:

For proportion and rate estimation, the standard likelihood models are the binomial (fx|p(x | n; p)=( n
x

)
px(1 − p)(n−x); x = 0; 1; 2; : : : ; n) and Poission (fx|�(x) = �xe−�=x!; x = 0; 1; 2; : : :) distributions

respectively, where x is the measurement and p, n and � are distribution parameters.
We are assuming here that there is no signi�cant prior information, so the prior distribution is

taken to be essentially uniform across all possible values. Bayesian theorists favor a particular form
of prior distribution, even when they are di�use, known as conjugate priors. These are distributions,
from a family of distributions, which result in posterior distributions that are also from that same
family. We are numerically integrating the posterior, so priors of conjugate form are not essential, but
beta and gamma distributions are conjugate priors for binomial and Poisson likelihoods, respectively.
The beta distribution has the form

fp(p) =



p�−1(1− p)�−1

B(�; �)
0¡p¡ 1;

0 otherwise;

where B(�; �) is the beta function, which for � and � positive integers may be expressed

B(�; �) =
(�− 1)!(� − 1)!
(�+ � − 1)! :

A di�use beta distribution may be de�ned with �= �= 1, which is exactly the uniform distribution
on the interval (0,1). The gamma distribution has the form

f�(�) =



��−1e−�=�

���(�)
; x¿ 0;

0; x6 0;

where �(�) is the gamma function, which for � a positive integer may be expressed �(�)=(�−1)!.
A di�use gamma distribution may be de�ned with �=1 and �=K�, for K� some very large value.
With these parameters, the prior distribution for rates becomes

f�(�) =



e−�=K�

K�
x¿ 0

0 x6 0

which is now of the form of an exponential distribution.
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The posterior for the proportion estimate

fp|x(p | x) = fx|p(x |p)fp(p)∫
fx|p(x |p)fp(p) dp

0¡p¡ 1; x = 0; 1; 2; : : : ; n

for the binomial likelihood and uniform prior is then

fp | x(p | x) =

(
n

x

)
px(1− p)(n−x)

∫
fx |p(x |p)fp(p) dp

= (n+ 1)

(
n

x

)
px(1− p)(n−x); 0¡p¡ 1:

The value of the normalizing integral is apparent from the properties of the beta function with
integer parameters. The proportion posterior is of beta distribution form with parameters � = x + 1
and � = n− x + 1.
The posterior for rate estimate

f�|x(� | x) =
fx|�(x | �)f�(�)∫
fx|�(x | �)f�(�) d�

0¡�; x = 0; 1; 2; : : : ; n

for the Poission likelihood and exponential prior is then

f�|x(� | x) =
(�xe−�=x!)(e−�=K� =K�)∫
fx|�(x | �)f�(�) d�

=
(�xe−(1+1=K�)�=K�x!)∫
fx|�(x | �)f�(�) d�

≈ �xe−�

x!
0¡�;

x = 0; 1; 2; : : : ; n:

That �nal approximation is better and better for larger and larger K�. The value of the normalizing
integral (i.e., 1=K�) is apparent from the posterior being of gamma distribution form, particularly
gamma distributed with parameters �= x + 1 and � = 1.

3. Con�dence interval development

This section develops expressions for the con�dence interval estimators, �rst for proportion esti-
mates and then for rate estimates. The development is from a Bayesian perspective; but as noted
above, for the assumptions made, the classical con�dence intervals have the same numerical values.
The di�erence CIEs will be developed in Section 6.

3.1. Con�dence intervals for proportion estimates

Many common performance measures are simple proportions, sometimes referred to as probabil-
ities. The positive outcome of a binary event occurs with some probability p. Let x represent the
number of positive outcomes in n independent identically distributed “Bernoulli” trials. The number
of positive outcomes (x) has a binomial distribution with parameters p and n. The standard problem
then is: when given x and n, what is the best estimate of p and how con�dent are we in that esti-
mate? The estimation of p by p̂= x=n has most of the desired properties of an estimator (unbiased,
e�cient, maximum likelihood and maximum a posteriori probability) for reasonable assumptions.
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Fig. 1. Joint distribution.

The more interesting issue is the characterization of the estimate’s uncertainty. A complete charac-
terization of this uncertainty is represented by the distribution of the true values conditioned on the
estimate, i.e., fp|p̂(p | p̂), which is equivalent to fp|x(p | x) for p̂ = x=n and n �xed. Fig. 1 is an
example joint distribution of x and p, given n= 5.
Our likelihood, as the familiar binomial distribution fx|p(x | n; p)=

(n
x

)
px(1−p)(n−x), x=0; 1; 2; : : : ; n,

is the cross-section of this plot at a �xed p. Similarly, the cross-section of this plot for a �xed x is
proportional to the posterior distribution

fp|x(p | x) =



(n+ 1)

(
n

x

)
px(1− p)n−x; p∈ [0; 1]

0 otherwise:

Suppose n=5 and we happen to realize an x of 2 (as in Fig. 2). In this case, p̂=2=5. Given x, we
are after the con�dence intervals (CIs) such that � is the probability that the p that produced this
x was from outside the CI. That is, we want to �nd the interval [a; b] such that Pr{p∈ [a; b] | x}=∫ b
a fp|x(p | x) dp = 1 − �. For the assumed di�use prior, fp|x(p | x) is the beta distribution with
parameters (x + 1; n − x + 1) [3]. The problem of �nding a con�dence interval is one of �nding a
and b such that the integral above equals 1− �.
3.2. Con�dence intervals for rate estimation

Another principal measure in classi�er performance assessment is a rate, especially the false alarm
(FA) rate (FAR). The FAR might be in FAs per unit area, unit time, or some other dimension,
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Fig. 2. Posterior distribution.

depending on the application. The following discussion will be in terms of area, however other bases
for the rate would result in the same arguments. Our basic likelihood model for FAs is the Poisson
distribution, i.e., fx|�(x) = (�xe−�=x!); x=0; 1; 2; : : : where x is now the number of FAs observed in
a test area of size A. The parameter � may be thought of as the number of FAs expected to occur
in an area of size A. The natural estimator of rate R = �=A is simply R̂ = x=A. For a di�use prior,
we found the posterior distribution to be

f�|x(� | x) =



�xe−�

x!
; �∈ [0;∞]

0 otherwise

which is a gamma distribution with parameters (x + 1; 1). An � con�dence interval in terms of �
is an interval [a; b] such that Pr{�∈ [a; b] | x}= 1=x! ∫ ba �xe−� d�= 1− �, assuming 06 a6 b. The
con�dence interval on the rate R̂ is then [a=A; b=A].

4. Con�dence interval estimators

We now consider the computation of CIs. CIs were of interest long before modern comput-
ers, so practical computation options drove the approach to CIEs. The availability of standard
normal distribution tables and their appropriateness for large samples and non-extreme
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measurements lead to that well known approach. An alternative Clopper–Pearson method [4] is
also well known. This method was initially implemented by an iterative approach and various au-
thors have made code available [5–7]. Although this second method only provides for a bound
on � for parameters of discrete distributions, it was such an improvement over the normal ap-
proximation that it is known as an “exact” method. Finally, Bayesian concepts [3] for CIs have
also become easier to implement with higher order languages. Brenner and Quan [8] reported
Bayesian posterior proportion CIs and their comparison with Clopper–Pearson CIs. We assume
that such “integration of the Bayesian posterior” (IBP) approaches have also been implemented
for rate CIs, but we are not aware of the CIEs for either having been made generally
available.
The CIEs made available here are two scriptable functions, prop ci for proportions and rate ci for

rates. They have similar input and output functionality. There are up to �ve inputs: x-number of
positive outcomes or events, n or A-number of trials or test area, desired �, method, and whether to
be verbose. The acceptable range of inputs are n: any integer from 1 to 105, x: any integer from 0
to n (or 105 for rates), �: between 10−4 and 1, method: 1 through 6, and verbose: 0 or 1. The inputs
x, n, A, � have the same meanings as previously introduced. The six methods are those described
below. If there are only four input parameters, they are assumed to be x, n or A, � and method.
Three input parameters are assumed to be x, n or A, and �. If verbose is not speci�ed, the default
value of 0 is used. If method is not speci�ed, the default is 2. The output depends on the verbose
setting. If verbose is 1 then there are thirteen outputs: estimated value (either x=n or x=A), lower
con�dence limit, upper con�dence limit, input x value, input n or A value, desired �, method, CI
length, lower tail probability, upper tail probability, actual �, � error, and run time in seconds. If
verbose is 0 then only the �rst three of those values are output. When method 1 is speci�ed, both
the lower one-sided limit and the upper one-sided limit are returned, even though the user will only
be interested in one or the other. The CIEs were implemented in MATLAB (? The Mathworks,
Inc.) code, Release 13, utilizing the Statistics Toolbox. The MATLAB code for the CIEs is available
at [9].
The remainder of this section develops some of the particulars of the six methods. There are

four versions of the IBP CIE: one-sided, minimal-length [10], balanced-width [5], and balanced-tail
two-sided. These four IBP versions are methods 1–4. The IBP methods are implemented by a binary
search for a and b that produce the desired �. The IBP CIEs were designed to yield an actual �
within 0.00005 of the desired �. The other two methods (5 and 6) are implementations of the normal
approximation and Clopper–Pearson approaches.
Method 1, one-sided IBP CIs: One-sided CIs are of interest when we are only concerned about

whether the true value is on one side of a limit, e.g., greater than some lower limit. Using the
proportion CIs as an example, the one-sided lower limit is a � Pr{p¿ a | x}=1− �. The one-sided
IBP method �rst searches with respect to the one-sided lower limit then separately with respect
to the one-sided upper limit. Method 1 returns both the one-sided lower and the one-sided upper
limits.
Two-sided CIs are not uniquely determined by �, so three additional criteria are considered

here.
Method 2, minimal-length IBP CIs: The “minimal length” criteria is that the CI be as short as

possible for the given �. That is, for minimal-length CI [aml; bml] and � the quantity of interest,
∀[a; b] � Pr{�∈ [a; b] | x} = 1 − �; (bml − aml)6 (b − a). Let f� be the posterior distribution. If
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x �= 0 and x �= n (proportions) then CI [aml; bml] is of minimal-length, for a given �, if and only if
f�(aml) = f�(bml). That is, the posterior distribution value is the same at both limits, except when
a limit is zero or one. The two-sided minimal-length CIE searches with respect to the posterior
distribution value. For each hypothesized value of the posterior distribution, a search is conducted
for a corresponding limit on either side of the posterior’s mode.
Method 3, balanced-width IBP CIs: The “balanced-width” criterion is that the CI be centered

on the point estimate. That is, for CI [a; b] and estimated value �̂; �̂ − a = b − �̂. The two-sided
balanced-width method searches with respect to interval width. For extreme values of x, this criterion
could result in CIs that extend beyond the possible values of the parameter, e.g., negative lower
limits on p. Method 3 sacri�ces balance when the CI would extend below zero or above one (for
proportions), in which case the appropriate limit is set to zero or one and the other limit is set for
the desired �.
Method 4, balanced-tail IBP CIs: The “balanced-tail” criterion is that half of � should be below

the lower limit and half above the upper limit. That is, for CI [a; b], measurement x, and quantity
of interest �, Pr{�6 a | x} = �=2 and Pr{�¿ b | x} = �=2. When x = 0 or x = n (for proportions),
the balanced-tail criteria will result in limits that do not enclose the point estimate; however, they
are still meaningful and are provided as such. The two-sided balanced-tail CIE is implemented by
calling the one-sided CIE (method 1) with �=2.
Method 5, Clopper–Pearson CIs: Method 5 is based on Clopper and Pearson [11]. Wilks [12], has

a more recent expression of the key result, that for our discrete distributions, Pr(�∈ [a; b])¿ 1− �,
rather than with equality. We use the MATLAB implementation, which is based on Daly’92 [7] using
Eqs. (4) and (5) for bino�t.m and Eqs. (8) and (9) for poiss�t.m, except the normal approximation
is used in poiss�t for x¿ 100. Our method 5 is exactly the MATLAB functions, except we correct
the NaN returned by poiss�t.m when x = 0 for earlier MATLAB releases. In principle, the tail
probabilities may be set independently for this method. The intent of the MATLAB implementation
is for the CIs to have balanced-tails; however the errors are asymmetric, so the resulting CIs may
not have balanced-tails.
Method 6, normal approximation CIs: A proportion estimate’s con�dence interval width with this

CIE is ±Zc√p̂(1− p̂)=n, where Zc is the value along a standard normal distribution with cdf equal
to �=2, p̂ is the estimate, and n the number of samples. Some sources suggest that the approximation
is adequate if n¿ 30, np¿ 5 and n(1 − p)¿ 5. The con�dence interval for a FAR estimate may
be approximated as ±ZC

√
x=A. This is thought to be adequate for n¿ 30. The appropriateness of

these conditions is considered in Section 5.2.2.
As examples, the following calls within MATLAB produce the indicated output. In the �rst

example, the default values of method=2 and verbose=0 are used.

�prop ci(90,100,0.05)
ans=0.9000 0.8313 0.9485
�rate ci(10,50,0.05,4,1)
r hat, Lower Cl Bound, Upper Cl Bound, x, A, Desired alpha, Method, Length, Lower Tail,
Upper, Tail, Actual alpha, Delta alpha, Run Time
ans=0.2000 0.1098 0.3678 10.0000 50.0000 0.0500 4 0.2579 0.0250 0.0250 0.0500 −0.0000
0.8600
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5. CIE validation and performance comparison

5.1. Introduction

We claim improved accuracy for the prop ci and rate ci CIEs. This section attempts to support
that claim and validate the theory and software coding by empirical tests. In addition to accuracy,
there are performance issues involving CI length and runtime. These issues are addressed in this
section as well.

5.2. Accuracy

Attempting to complement previous results [8], we will consider the accuracy of the CIEs with
respect to �. Is the chance that the CI does not enclose the true p equal to the desired � or
not? This is investigated by �rst establishing that “the chance that the Cl does not enclose the
true p” may be computed by integrating the posterior distribution. That is, we �rst claim that the
actual � associated with a given CI may be computed by integrating the posterior distribution, i.e.,
�=
∫ a
0 f�|x(�) d�+

∫ 1
b f�|x(�) d�, where a is the lower CI limit, b the upper, and f�|x(�) the posterior

distribution. Although this is true by de�nition, the IBP CIEs and this test method have similar
dependencies on the conceptual framework, the mathematical derivations, and the implementation of
the distribution integrations. Therefore, we �rst do a Monte Carlo test of IBP that is free of many of
these dependencies. Separate tests are conducted for proportion and rate CIEs. Once we are satis�ed
with the legitimacy of our implementation of the posterior integration, we use that implementation
to directly compare the � realized by a given method with the desired �. The di�erence between
these two is �error.

5.2.1. Validation of the �error estimation method
As a �rst step to testing the CIEs, we validate the approach used to estimate �error. The following

notation will be used for the various “�’s”. The desired �, as would be input to a CIE, is �desired.
The true � that results from a given CIE i over some range of conditions is �i. The estimation of
�i by integrating the posterior is �i-IBP. The �i estimated from a Monte Carlo test is �i-MC. Since
�i-MC is a statistically estimated proportion, we are also interested in con�dence intervals about that
estimate. Whenever such con�dence intervals are reported for �i-MC they are computed by method
2 using a con�dence level of 0.95.
Our accuracy assessment is in terms of �error = �desired − �i. The question is, “Can we use �i-IBP

for �i?” Not having direct access to �i we must estimate it by �i-MC and then answer the question
by comparing actual �i-MC’s with �i-IBP’s. If the �i-IBP’s are the same as the �i-MC’s then �i-IBP
can be used for �i because we are satis�ed that �i-MC is a good sampling theoretic estimate of �i,
“good” especially in the sense that it is independent of IBP CIE assumptions and implementations.
In summary, �error = �desired − �i is a measure of a CIE’s accuracy. The �i approximated by �i-IBP
is easily computed, but not immediately trustworthy. The �i approximated by �i-MC is trustworthy,
but awkward to compute. We will show that �i-IBP and �i-MC are practically the same. We can then
con�dently use, in Section 5.2.2, the simple �i-IBP in place of the awkward �i-MC as �i in the error
measurement.
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Fig. 3. Monte Carlo results for proportion CIs.

Fig. 4. Monte Carlo test results for proportion (left) and rate (right) CIs.

The question for proportion CIs is, “If for a given n, a randomly chosen p, and a randomly
chosen x, will the computed CIs enclose the chosen p with a probability of 1 − �?” So, for a
given n, we repeatedly chose p from a uniform distribution on [0,1], randomly chose x from a
binomial distribution with parameters (n; p), computed CIs (using method 2) with inputs (x; n; �),
and then checked to see if the resulting CI enclosed p. The fraction of the time that the CI did
not enclose p is the “Monte Carlo �” (�2-MC). Results were accumulated overall, by n, and by x.
The values of n tested were those indicated in the table in Fig. 3. We attempted to get about 300
trials per x by running 300(n+ 1) trials for each n. There were a total of 567,900 trials. Of these,
28,142 did not include the true p value within the computed con�dence interval. Therefore, overall
�2-MC = 0:049555, compared to �2-IBP = 0:05. The 95% CI about �2-MC is (0.0490, 0.0501), which
contains �2-IBP as would be expected for an accurate �2-IBP. The table in Fig. 3 contains the �2-MC’s
for each n. It happens that in all cases the CIs enclose the desired �. This might be expected since
there are 8 cases and there is only a 1-in-20 chance of a CI missing. Fig. 3 also plots the �2-MC for
each x at n=100. There are four x’s where the CIs do not enclose �2-IBP (26, 43, 60, and 99). With
101 cases, that four CIs miss is also consistent with the con�dence level. Therefore, overall and as
a function of n, �2-IBP may be trusted as an estimate of �2 in assessing the accuracy of CIEs.
Monte Carlo tests were performed at other values of n and on other methods with similar results.

For example, the Monte Carlo results for method 3 at n = 50 are shown in the left plot of Fig. 4.



T.D. Ross / Computers in Biology and Medicine 33 (2003) 509–531 519

With the 0.95 con�dence level CIs and 51x’s, we would expect, on average, that 2.55 of the CIs
would not include �. There are actually 4 such cases, one where the fraction outside is too high (at
x=45) and three that are too low (at x=2, 11, and 29). This is consistent with an accurate �3-IBP.
We therefore trust the �i-IBP values for proportions.
The Monte Carlo test for rate estimation is as follows. We �x A = 1:0 km2 (although A and

its units are immaterial here) and �desired = 0:05. We then generate a random � from the uniform
distribution on [0,458]. The upper limit for � was chosen to make the maximum x that we would
likely see around 500. We then generated a random x from the Poisson distribution with parameter
�. For each x we computed an IBP CI and recorded whether the CI covered the true �. This process
was repeated 50,000 times. The x values were then grouped into 51 bins, that is 0 to 9, 10 to 19, 20
to 29; : : : ; 490 to 499, and 500 or larger. For each bin, the fraction of times that � was outside the CI
was computed along with the 0.95 con�dence level CI and plotted on the right in Fig. 4. Note that
the “fraction outside CI” diverges from the desired 0.05 with bin 42 and larger (i.e., for x’s greater
than about 410). This is an artifact of the Monte Carlo test methodology, particularly our arbitrarily
choosing a maximum �. To explain the dip down, consider bin 44. Bin 44 includes x values around
435. The maximum � is 458. One standard deviation at x= 435 is around 21, so the CI cannot fail
to cover � because � is too large. It can only fail on the other side, which it apparently does at a
rate about half that of the 0.05 value. To explain the large “fraction outside CI” for the last few
bins, consider bin 51. Bin 51 only has x values greater than 500, but the maximum � is 458, so
the CIs necessarily fail to cover the true � (the actual fraction is 1.0). Therefore, we dismiss the
Monte Carlo results for the last dozen or so bins. If we really wanted to see the performance for
the x values in those bins, we would simply need to repeat the experiment with a larger maximum
�. With the 0.95 con�dence level CIs and 40 meaningful bins, we would expect that about two of
the CIs to miss �. There is actually one such case (bin 6); we therefore trust the �i-IBP values for
rates.
In summary, our implementation of IBP yields � values (�i-IBP) that are consistent with the Monte

Carlo � values (�i-MC). Although assessing accuracy in terms of �i-MC has attractions (particularly
an independence from non-trivial assumptions and implementation details), �i-IBP is more easily
computed and we do not have to worry with the sampling error inherent in Monte Carlo methods.
Therefore, we will use the foregoing Monte Carlo validation of �i-IBP as justi�cation for using �i-IBP
in our accuracy assessment below.

5.2.2. Application of the �error measure in assessing CIE accuracy
Our accuracy assessment is in terms of �error. In principle, we could have used the Monte Carlo

method for all of our testing, i.e., �error = �desired-�i-MC, but it is more e�cient and, as argued in
the previous section, as e�ective to use direct integration, i.e., �error = �desired − �i-IBP. Figs. 5–7 plot
�error = �desired − �i-IBP for proportion CIs. All of the plots on the left use the same z-axis scale. The
plots on the right use varying z-axis scales. The n axis uses a log scale and runs from 1 to 10,000.
The x=n axis runs from 0 to 1. The errors are computed on an array of 21 by 21 (n; x=n) pairs. The
lines simply connect the points for visualization and do not represent actual data. Since �desired is
0.05, the maximum possible positive error is 0.05.
Fig. 5 is the plot for method 3, which is used as representative of all IBP methods (i.e., methods

1–4). The error is generally less than 10−5 and is roughly as likely to be positive as negative. There
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Fig. 5. Proportions method 3 �error ;−0:05–0.05 scale (left) −2× 10−5–3× 10−5 (right).

Fig. 6. Proportions method 5 �error ;−0:05–0.05 scale (left) 0–0.05 (right).

is no apparent pattern to the errors. The results for the other IBP methods (1, 2, and 4) were all
similar to method 3’s (same scale and largely random distribution of errors). This demonstrates that
the IBP methods, as coded here, produce su�ciently accurate CIEs that the corresponding �’s are
generally within 10−5 of the desired value.
Fig. 6 is the error plot for method 5 (Clopper–Pearson). Method 5 is sometimes considered to be

“exact” [5,7] and has been used when accurate CIs were important. The error is generally on the
order of 0.01 (20%) or greater and is greater than 0.03 (60%) for some cases of interest in classi�er
performance assessment. The error is greatest at small n (less than 100) or x close to zero or n. As
expected, the error is never negative, so the method 5 CIs are always conservative.
Fig. 7 is the error plot for method 6 (Gaussian Approximation). Method 6 is perhaps the most

commonly applied CIE in classi�er testing. On the left plot, error values less than −0:05 are truncated
to that value. Method 6 produces zero width CIs at x = 0 or n, which makes �6 = 1:0. The error
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Fig. 7. Proportions method 6 �error ;−0:05–0.05 scale (left) −1:0–0.5 (right).

may be several times larger than the desired �. The error is greatest for small n, particularly when
x is close to zero or n. The error tends to be negative for small or large x’s, meaning the CIs are
understated, so con�dence may be assumed when it is not appropriate. This is the worst form of
error for many applications.
In summary, one can see by scanning the left hand plots that the IBP CIEs are signi�cantly

more accurate than conventional approaches. Importantly, they are accurate without conditioning on
a vague “large n” or “x not too small or too large.” Method 6, which is commonly used in classi�er
performance assessment, has substantial errors in the CI for small n or, at any n, when x=n is far
from 0.5. The common rules of thumb for the applicability of a normal approximation, i.e., n¿ 30,
np¿ 5 and n(1 − p)¿ 5 are not adequate constraints for comparable accuracy, e.g., at � = 0:05,
we only recommend using method 6 for n¿ 600 and 0:26 x=n6 0:8. For � = 0:01, the minimum
x is 2000. Method 5 avoids understating the uncertainty, but it appreciably overstates it for small n
or large or small x.
We now consider the accuracy of the various CIE methods for rates. The measures reported here

and in the CI length section do not depend on the area (A), since the CI limits in terms of � are
simply divided by A. The runs below were all made with A = 1. Fig. 8 plots �error for methods 2,
5, and 6 for �desired = 0:05 on the left. The MATLAB implementation of method 5 switches to the
normal approximation at x¿ 100, as can be seen in the error plots. Method 6 returns zero as the
lower and upper limits when x = 0. Method 2’s accuracy is representative of that of the other IBP
methods (1, 3 and 4). Although not evident from the plot, the errors for the rate IBP methods are
comparable to that of the proportion IBP methods, i.e., on the order of 10−5 and with no particular
pattern. The maximum error for both method 5 and 6 is at the smallest x. Method 6’s error is larger
and of the worst kind (re�ecting an understatement of uncertainty). Method 5’s error is about 50%
of the desired � for x=1. While n’s in the single digits are rarely the basis for proportion estimates,
x’s in the single digits may well be of interest in rate estimation.
We have generally reported on CIE performance at �desired = 0:05. The above testing was also

performed at �desired = 0:1 and �desired = 0:01 (Fig. 8 right); for all three values, the percentage �error
is about the same.
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Fig. 8. �error for rate estimation.

Fig. 9. Delta length proportions method 3 (left) and method 4 (right).

5.3. CI length

Another consideration in assessing a CIE is the “tightness” of the intervals for a given accurate �.
We measure tightness as the length of the interval. Shorter intervals more tightly bound an estimate
and are often preferred in our applications. Of the IBP CIEs, Method 2 is minimal length by design,
but there are applications where methods 3 and 4 are of interest, so we characterize the compromise
these methods make in tightness.
We compare the CI lengths of the three accurate two-sided proportion CIEs, methods 2–4 in

Fig. 9. The n and x=n axes are as before. Method 2 is designed to produce an interval of minimal
length, so we compared methods 3 and 4 to method 2. The z-axis is the percentage that a given
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Fig. 10. Delta length proportions method 5 (left) and method 6 (right).

method’s CI length is longer than method 2’s (100×(method i’s length−method 2’s length)/method
2’s length). For large n or medium x, the lengths are all roughly the same. This occurs when the
posterior distribution is more symmetric or more gently sloping. Method 3 reverts to asymmetrical
CIs, approaching method 2 CIs, when the CI would extend past zero or one. This explains method
3 having shorter lengths for smaller n and extreme x values. We suspect that the ridge apparent in
method 3’s relative length up through n’s of a few hundred continues for larger n, it is just too
narrow for our coarse sampling. Method 4 satis�es the balanced-tail criteria, even when that means
the CI will not include the estimated value. When x is near zero or n, the CI must be lengthened
signi�cantly.
Fig. 10 plots methods 5 and 6’s CI lengths relative to method 2’s. There are two things causing

method 5’s lengths to be longer than method 2’s. First, method 5 is actually providing a smaller
�, which makes CIs longer. Second, it is not optimized for minimal-length, even for the � it is
providing. If method 5 were accurate and with balanced-tails (as intended) its lengths would be the
same as method 4’s. Method 6’s CIs are balanced-width, so for the correct �, they would behave
the same as method 3’s. Of course, method 6’s CIs are shorter than method 2’s only because their
actual � is larger than desired. In summary, the other methods produce CIs up to 20% larger than
method 2’s for small n (less than a few hundred) and large or small x.
As with the proportion CIEs, the relative lengths of the various accurate rate CIEs are compared

in Fig. 11 for �desired = 0:05. All methods produce the same CI for large x. Method 3’s lengths are
relatively small as its lower CI limit bumps up against zero, where it is also no longer balanced-width.
Method 5 has both the inaccuracy in � and non-optimized length working against it. When they
both provide the same actual �, methods 4 and 5 have similar lengths. The step down in length for
method 5 at x=100 is due to the MATLAB implementation switching to the normal approximation
at that point. Again, method 6’s CI’s are balanced-width, therefore would have lengths comparable
to method 3’s for a given actual �.
In summary, for conditions of interest in classi�er testing, Method 2 provides accurate and tight

CIs and is used as the default method.
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Fig. 11. Delta length for rate CIs.

5.4. Computational requirements

A �nal consideration in CIE selection concerns computational requirements. The run times for
method 2, over all x, for n between 5 and 1000 averaged about 1 s (ranging from 0.5 to 2.5 s) on
an 800 MHz Pentium III PC running interpreted MATLAB code. Method 3 has similar run times.
Methods 1 and 4 take about twice as long. Methods 5 and 6 take virtually no time. The rate IBP CIEs
are about twice as fast as the proportion IBP CIEs. The functions prop−ci and rate−ci are available
as MATLAB source code, which may be used directly or as psuedo-code for implementation in
other languages. Using the source code as is requires MATLAB Release 13 with the Statistics
Toolbox. The source code was developed for multiple purposes (including non-conjugate priors);
if this were not of interest, a simpler and quicker implementation is possible. For a proportion
estimate, � is betacdf (a; x + 1; n− x + 1) + (1-betacdf (b; x + 1; n− x + 1)) and for a rate estimate,
gamcdf (a; x + 1; 1) + (1-gamcdf (b; x + 1; 1)).
The functions betacdf and gamcdf are as used in the MATLAB Statistics Toolbox; returning the

cdf value with the �rst argument being the independent variable and the other two arguments being
parameters of their respective distributions. A binary search over a and b to get a desired �i-IBP,
possibly with other constraints such as balanced-tails, is all that is needed to implement the CIE.

6. Estimates of di�erences

If we are simply interested in a performance measure’s value, a CI tells us how well we know that
value. However, we may be comparing two performance measures. Is one classi�er performing better
than another? Is one set of test data harder than another? Was a particular classi�er design change
an improvement? To answer such questions, we are interested in CI’s for estimates of parameter
di�erences [13], i.e., CIEs for p1−p2 and r1− r2. In principle, a di�erence CIE could be developed
based directly on the posterior distribution and a search for integration limits. However, we here
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�rst develop a tool that computes “signi�cance of di�erences”, e.g., Pr{p1 − p2¿�} and then use
that tool for computing CIs. The signi�cance of di�erences tool may be of interest in its own right
and it made computation of the di�erence CIs more convenient. The di�erence CIEs (prop−di�−ci
and rate−di�−ci) are much slower, taking tens of seconds in some cases, and the comparison with
the Normal and Clopper–Pearson methods is limited to the results reported in [13].

6.1. Signi�cance of di�erences

Suppose we have two sets of test results. We assume that each set of results is independently
produced by a distribution (binomial-based for proportions and Poisson-based for rates). At issue is
whether the parameters of the two distributions are signi�cantly di�erent.
For independent random variables X1 ˙ fx1(x1) and X2 ˙ fx2(x2) with some di�erence of interest

�, Pr(x1 − x2¿ �) =
∫∞
−∞ fx1(�)Fx2(�− �) d�, where Fx2(x2) is the cdf associated with pdf fx2(x2).

This relationship may be developed from the properties of de�nite integrals and that the pdf of a
sum of two independent random variables is the convolution of their pdfs, i.e.,

fx1−x2(�) =
∫ ∞

−∞
fx1(�)f−x2(�− �) d�=

∫ ∞

−∞
fx1(�)fx2(�− �) d�

and then

Pr(x1 − x2¿ �) =
∫ ∞

�
fx1−x2(�) d�=

∫ ∞

�

∫ ∞

−∞
fx1(�)fx2(�− �) d� d�

=
∫ ∞

−∞

∫ ∞

�
fx1(�)fx2(�− �) d� d�

=
∫ ∞

−∞
fx1(�)

∫ ∞

�−�
fx2(−�) d� d�=

∫ ∞

−∞
fx1(�)

∫ −�+�

−∞
fx2(�) d� d�

=
∫ ∞

−∞
fx1(�)Fx2(�− �) d�:

The integrand fx1(�)Fx2(� − �) is signi�cantly greater than zero only in some �nite range. The
�nite range must be provided to the numerical integration routine. The di�culty with selecting these
integration limits was the principal factor in limiting the range of acceptable input values (x6 105

and �¿ 10−4) for the tools provided [9]. If the limits were not su�ciently tight around a range
with non-zero integrand values, the numerical integration routine would fail. The lower integration
limit was based on the larger of several standard deviations less than fx1 ’s mean, several standard
deviations less than fx2 ’s mean, 0 (all the distributions of interest are non-zero only for non-negative
arguments), and delta (which e�ectively shifts fx2 ’s starting point). The upper integration limit is
set at several standard deviations above fx1 ’s mean. For the case of proportions only, the upper
limit is also limited to 1.0. The fx2 distribution does not a�ect the upper limit because it enters the
integrand as a cdf.
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Fig. 12. Monte Carlo test results—proportions (left) and rates (right).

6.1.1. Proportions di�erences
As previously developed, the posterior distribution for proportions with a di�use prior is

fp|x(p | x) =



(n+ 1)

(
n

x

)
px(1− p)n−x; p∈ [0; 1]; x = 0; 1; 2; : : : ; n;

0 otherwise:

We are interested in computing Pr(p1−p2¿ �)=
∫∞
−∞ fp1|x1(�)Fp2|x2(�− �) d�. In MATLAB code

this is simply the integral over t of betapdf (t; a1; b1).×betacdf (t-delta; a2; b2), where a1 = x1 +1; b1 =
n1 − x1 + 1; a2 = x2 + 1, and b2 = n2 − x2 + 1. As in previous sections, x1 is the number of positive
outcomes in n1 trials from a population whose binomial parameter is p1 (x2; n2, and p2 are similarly
de�ned for the second population). The code for this, as prop−di�(x1; n1; x2; n2; delta), returning
Pr(p1 − p2¿ �), is available on the web site [9]. If we are interested in whether p1¿p2, we can
answer that by computing the probability with �= 0. If we are interested in whether the di�erence
is likely to be greater than some threshold then we simply specify � as that threshold. We may also
search for the � that yields a certain desired probability.
A Monte Carlo validation of prop−di� was performed using 200,000 trials. For each trial, p1

and p2 were randomly selected from uniform[0,1] (i.e., a uniform distribution on [0,1]). Samples
sizes, n1 and n2 were then randomly selected from uniform[1; N ], where N was set to 100. If
N is too large, prob−di� tends to be close to zero or one always. We then randomly pick x1
and x2 from binomial(p1; n1) and binomial(p2; n2), respectively. A � was then randomly selected
from uniform[− 1; 1]. Finally, prop−di� was called with (x1; n1; x2; n2; delta) and all parameters and
the result recorded. After all trials were complete, the results were grouped in 20 bins based on
prop−di�’s output (i.e., the computed Pr(p1 − p2¿ �)). For each bin, the fraction of the time that
in fact p1 − p2¿ � was computed. Ideally, the computed probability and the fraction would be
close. Fig. 12 (left) shows the results. Solid dots are the average (within a bin) of the computed
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probabilities (i.e., Pr(p1 − p2¿ �)), circles are the fraction of the time that in fact p1 − p2¿ �,
pluses are the 95% CIs for the circles, as estimates of the true probabilities. Note that all but one
(exactly 95%) of the CIs contain the solid dots; so we are inclined to trust prop−di� .

6.1.2. Rate di�erences
The posterior distribution for the Poisson � parameter is

f�|x(� | x) =


�xe�

x!
; �∈ [0;∞]; x = 0; 1; 2; : : : ;

0 otherwise;

where x is the actual number of events realized. Let r be the random variable associated with a rate,
i.e., r = (1=A)�, where A is a constant area. The posterior pdf for the rate is then

fr|x;A(r | x; A) =


(Ar)xe−Ar

x!
; r ∈ [0;∞]; x = 0; 1; 2; : : : ;A¿ 0;

0 otherwise:

We are interested in Pr(r1 − r2¿ �) =
∫∞
−∞ fr1|x1 ;A1(�)Fr2|x2 ;A2(� − �) d�. The second term in our

probability expression is a cdf; however it is awkward to deal with the cdf corresponding to this
pdf for non-unit areas, so the program converts to normalized units such that A2 is one. That is, we
use A′1 = A1=A2; A′2 = 1:0 and �′ = �× A2.
Pr(r1 − r2¿ �) can be computed in MATLAB as the integral over t of (A1=A2) × gampdf (t ×

(A1=A2); x1 + 1; 1)× gamcdf ((t-delta×A2); x2 + 1; 1). This computation was also Monte Carlo tested
with the results shown in Fig. 12 (right). Although not signi�cant in this test, there is a systematic
bias caused by our having an upper limit when generating r1 and r2 samples. We take this as another
re�ection of limitations in Monte Carlo tests involving rates, as in Section 5.2.1, rather than as an
indication of inaccurate di�erence signi�cances.
The user may note the following property of di�erence signi�cances. Using rate di�erences as an

example, suppose the �rst test is on a small area, say 1:0 km2, and the second test is on a larger
area, say 100 km2. In both tests there are zero events. Although r̂1 = r̂2 = 0, the posterior for r1
and r2 are di�erent and Pr{r1¿r2} is not 0.5. In fact, Pr{r1¿r2}= 0:99. In the example, we are
con�dent that r2 is small (we had zero events in a large test area) while we are quite uncertain
about r1 (a small test area). Since r1 could be any number of values (all greater than zero) while
r2 is de�nitely close to zero, we may reasonably expect r1 to be greater than r2.

6.2. Con�dence intervals

Con�dence intervals are related to the signi�cance of di�erence as follows, using proportions in
the development that applies similarly to rates. The parameter of interest is �p = p1 − p2. The
con�dence interval [a; b] of interest is, by de�nition, a; b;� Pr{�p∈ [a; b] | x1; x2} = 1 − �. This
expression is related to the quantity computed by the tools above, i.e.,
Pr{�p∈ [a; b]} = Pr{�p¿ a ∩ �p6 b} = Pr{�p¿ a} + Pr{�p6 b} − 1 = Pr{�p¿ a} −

Pr{�p¿ b}; so � = 1 − Pr{�p¿ a} + Pr{�p¿ b}. As when directly integrating the Bayesian
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posterior, we search over a and b for the desired �, where the lower tail contribution to � is
1− Pr{�p¿ a} and the upper tail contribution is Pr{�p¿ b}.
The con�dence interval tools prop−di�−ci and rate−di�−ci are implemented, based on the above

development, and included in the posted tool set [9]. These CIEs have functionality similar to prop−ci
and rate−ci, with the additional arguments for x2; n2 (or x2; A2), except method 2 is not implemented.
The implementations of method 5 (Clopper–Pearson based) and method 6 (Normal approximation
based) are those of [13] for proportion di�erences. Methods 5 and 6 are not implemented for rate
di�erences. Note that the correction factor suggestion in [13] and used in method 5 is speci�cally
for � = 0:05 and may not be ideal for other � values. One example reported in [13] is for x1,
n1, x2, n2 and � as 5, 12, 36, 112, and 0.05, respectively. The method 5 interval is −0:1878
to 0.4151 with coverage about 97.91%. The method 3 interval is −0:1665 to 0.3570 with the
desired 95.0% coverage. Extensive Monte Carlo tests of method 5 reported in [13] demonstrate
that “The average coverage using the method described here for di�erences in proportions gave
identical coverage to that computed for single binomial proportions with the same denominators.
When unequal denominators were used, the coverage was intermediate between that expected for
the individual denominator sizes.” [13, pp. 85–86]. The term “coverage” as used in [13] is the 1−�i
of Section 5 above. Therefore, the single parameter CIE method comparisons of Section 5 above
are likely to be indicative of the relative performance of IBP and other CIEs for di�erences. In
particular, the previously demonstrated accuracy advantages for IBP methods in proportion and rate
estimation are likely to apply to their di�erence CI’s as well.

7. Conclusions

Proportion and rate estimates involve discrete distributions and may be based on a small number
of samples n and/or extreme numbers of events x (e.g., x small or near n). The “integration of
the Bayesian posterior distribution” (IBP) based con�dence interval (CI) Estimators (CIEs) are
substantially more accurate than conventional methods under these conditions. Both the IBP and
conventional CIEs described in this paper are available as MATLAB code [9], which may be used
directly or as pseudo-code for other languages. The IBP methods (1–4) search for CI limits (a; b)
such that the integral of the posterior distribution from a to b is 1−� while satisfying the other criteria
(1 or 2-sided, balanced tail/width, minimal-length). The posterior distribution used for proportions
is a beta distribution with parameters �= x+1 and �=n− x+1, i.e., fp|x(p | x)= (n+1)( nx )px(1−
p)(n−x); 0¡p¡ 1. The posterior for rates is a gamma distribution with parameters � = x + 1 and
� = 1, i.e., f�|x(� | x) = �xe−�=x! 0¡�; x = 0; 1; 2; : : : ; n. The IBP methods are easy to implement
with fourth-generation mathematical programming languages, such as MATLAB, especially if they
provide cdf functions for the beta and gamma distributions. Tools are also provided for computing the
signi�cance of di�erences between proportions and rates and con�dence intervals for such di�erences.
These tools allow precise statements about the relationship between two estimates.
Accuracy of the CIEs is assessed in terms of the error in �, i.e., the di�erence between the

desired � and the true � for the returned CI. The errors in � for the IBP CIEs (methods 1–4),
for both proportions and rates, are less than 5 × 10−5 (0.1% for �desired = 0:05) across all tested
conditions. Method 5 (Clopper–Pearson, sometimes considered to be “exact”) has an error in � that
is on the order of 20% for di�cult conditions and is greater than 60% for some cases. Method
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6 (normal approximation, perhaps the most commonly applied CIE in classi�er testing) had errors
in � that were several times the desired �. The Method 6 errors tend to be negative for small or
large x’s, meaning the CIs are understated, so con�dence may be assumed when it is not appro-
priate. That method 6 has regions of poor accuracy is well known, although the validation tests
here help identify the extent of those regions. Method 5’s accuracy limitations are preferable to
method 6’s, but are still quite substantial in our region of interest. The IBP methods are accurate
throughout.
CIs may be desired with additional properties, such as minimal-length, balanced-tail, or balanced-

width. The IBP CIEs provide CIs consistent with the appropriate additional criteria (method 2—
minimal-length, method 3—balanced-width, method 4—balanced-tail), except method 3 compromises
width balance when limits would be unreasonable (e.g., less than zero). The di�erent criteria result
in the same CIs for large n and moderate x values. Where the CIs di�er, the other methods have
CIs 10% or so longer than Method 2’s. Another way to look at the bene�ts of method 2 (the
minimal-length IBP CIE) is by considering the number of additional samples required for a given
CI width. Under conditions common in classi�er performance assessment, method 2 requires about
10% fewer samples than method 5 for a given proportion CI width. Alternatively, under those
conditions, method 2’s CIs run about 10% shorter than method 5’s for a given desired �. Method
2 would require about 15% less test area than method 5 for a given CI width at x = 1 for rate
estimation. Method 2’s CI widths are about 15% less than that of method 5’s at x = 1. These
di�erences decrease with increasing x; at x = 50, both are about 3%.
The IBP CIEs are relatively slow. Proportion or rate CIEs may take a second or two to run on

a PC with interpreted MATLAB code. The di�erence CIEs may take tens of seconds. Methods 5
and 6 are much faster. In many classi�er applications, even with several seconds per CI, the time
required to compute CIs is small compared to that of generating the direct test data. For a given
desired �, it may be faster to do fewer trials with IBP CIEs than to do the greater number of trials
dictated by the inaccurate methods. The IBP CIEs provide advantages for classi�er performance
assessment from accuracy, �exibility, and overall time consumption perspectives. Considering the
cost of samples or of inconclusive results, the implementation investment necessary for accurate IBP
CIEs can be justi�ed. For those situations where IBP CIEs are not available, the test results of
Sections 5.2.2 and 5.3 help characterize the performance of conventional approaches.
Although accurate statistical characterization of uncertainty is a useful �rst step, dealing with

the non-statistical uncertainty due to nonrandom sampling, dependent training and test sets, or
non-representative populations remains an important problem in many classi�er evaluation e�orts.
In such cases, statistical CIs provide a lower bound on the overall uncertainties. Since statisti-
cal uncertainty may only be a signi�cant contributor to the overall uncertainty when it is large,
we are most interested in statistical uncertainty for small sample sizes. So accuracy in statisti-
cal CIs is especially important for small sample sizes—exactly where conventional approaches are
inaccurate.
Tools are provided here that accurately compute con�dence intervals for estimates of proportions,

rates, and their di�erences as they arise in classi�er performance assessment; however, future work in
this area could allow for informative priors, larger input values (i.e., larger than the current limits of
105), smaller � values (i.e., smaller then 10−4), implementations in other languages, faster runtimes,
inclusion of a minimal-length CIE for di�erences, or inclusion of other types of estimates beyond
proportions, rates and their di�erences.
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8. Summary

(“Accurate Con�dence Intervals for Binomial Proportion and Poisson Rate Estimation”, Timothy
D. Ross)
This paper describes con�dence interval estimators for the measures used in classi�er evaluation.

For the discrete distributions, small sample sizes, and extreme outcomes encountered within classi�er
testing, the commonly used con�dence intervals have limited accuracy. This paper makes compu-
tational tools available for con�dence intervals that are accurate over the full range of conditions
of interest. The approach is to search for intervals using an integration of the Bayesian posterior to
measure � (chance of the CI not containing the true value). Con�dence intervals so computed are
accurate in both the classical and Bayesian (assuming di�use priors) settings. The programs pro-
vided include proportion estimates based on binomial distributions, rate estimates based on Poisson
distributions, and their di�erences. One or two-sided CIs may be selected. For two-sided CIEs, either
minimal-length, balanced-tail probabilities, or balanced-width may be selected. The CIEs’ accuracies
are reported based on a Monte Carlo validated integration of the posterior probability distribution and
compared to the normal approximation and Clopper–Pearson methods. While the IBP methods are
accurate throughout, the conventional methods may realize �’s with substantial error (up to 50%).
This translates to 10–15% error in the interval widths or to requiring 10–15% more samples for a
given con�dence level. Tools are also provided for computing the signi�cance of di�erences between
proportions and rates, e.g., Pr(p1−p2¿ �) for proportions, and con�dence intervals for estimates of
di�erences. Such tools allow more precise statements about the relationship between two performance
measures. The tools (prop−ci; rate−ci; prop−di� ; rate−di� ; prop−di�−ci, and rate−di�−ci) are avail-
able on the MATLAB Central File Exchange web site. Although accurate statistical characterization
of uncertainty is a useful �rst step, dealing with the non-statistical uncertainty due to nonrandom sam-
pling, dependent training and test sets, or non-representative populations remains an important open
problem in many classi�er evaluation e�orts. In such cases, statistical CIs provide a lower bound on
the overall uncertainty. Since the contribution of statistical uncertainty may only be signi�cant in the
overall uncertainty when it is large, we are most interested in statistical uncertainty for small sample
sizes. So accuracy in statistical CIs is especially important exactly where conventional approaches
are inaccurate. Tools are provided here that accurately compute con�dence intervals for estimates of
proportions, rates, and their di�erences as they arise in classi�er performance assessment.
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