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In this paper, the off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid
immovable (fixed) sphere is investigated. It is shown here that shifting the sphere off the axis of
wave propagation induces a dependence of the scattering on the azimuthal angle. Theoretical
expressions for the incident and scattered field from a rigid immovable sphere are derived. The
near- and far-field acoustic scattering fields are expressed using partial wave series involving
the spherical harmonics, the scattering coefficients of the sphere, the half-conical angle of the
wave number components of the beam, its order and the beam-shape coefficients. The
scattering coefficients of the sphere and the 3D scattering directivity plots in the near- and far-
field regions are evaluated using a numerical integration procedure. The calculations indicate
that the scattering directivity patterns near the sphere and in the far-field are strongly
dependent upon the position of the sphere facing the incident high-order Bessel vortex beam.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Wave scattering from regularly- and irregularly-shaped objects occurs in nature, in which some forms of radiation, such as
light, sound, or even gravitational waves deviate from their incident trajectory to form a well-defined scattering pattern in space
[1].

As an example in the field of acoustics, this topic is investigated extensively in underwater applications [2–5] with the aim of
indentifying targets from their sonar echoes. In most of these important investigations, scattering from plane (axisymmetric)
waves is only considered [6]. Therefore, the acoustic scattering is not dependent on the incident beam's parameters. Nevertheless,
when the incident beam is in the form of a Gaussian focused (finite) beam [7–10], a zero-order [11], or a high-order Bessel vortex
beam [12–14], the scattered field strongly depends on the beam's parameters, such as the beam's focus, and the half-cone angle of
incidence. In those studies, however, the axial acoustic scattering is only investigated such that the target is centered along the axis
of propagation of the incident waves.

It is nonetheless recognized that a complete solution of the problem requires solving for both the on- and off-axial acoustic
scattering. Despite the significant scientific reports investigating the axial acoustic scattering by a sphere, the lack of such a
solution provides us with the impetus to tackle this problem. A theoretical derivation is established here to study these effects and
determine the acoustic pressure distribution of a mono-frequency high-order Bessel vortex beam incident upon a rigid sphere.
Such beams have attracted significant attention and considerable investigations in optics and acoustics applications because they
belong to the family of non-diffracting beams that do not spread while propagating in space (See section II.A in [15] for a detailed
discussion). Furthermore, they are self-healing; if part of the beam is obstructed or distorted, the beam reconstructs itself after a
All rights reserved.
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characteristic propagation distance [16]. Thus, such beams have provided an attractive alternative to using standard Gaussian
beams in various applications [17–20].

In this paper, a general spherical coordinate separation-of-variables solution for the incident and scattered acoustic
pressures, as well as numerical simulations are presented for the determination of the scattered acoustic pressure distribution
both near the surface of a rigid immovable sphere and in the far-field region. The incident field is composed of a high-order Bessel
vortex beam of arbitrary character. Calculations for the rigid sphere in non-viscous water demonstrating the effects of shifting
the sphere off the beam's axis are presented. Some aspects and properties of the near- and far-field acoustic scattering are
discussed in full detail. An understanding of the scattering properties is central for analyzing the acoustic radiation forces [21–26]
and torques on spheres and may be helpful in the development of an “acoustic blender” [27] and tweezers for rotating and
manipulating small objects.

2. Theory and analysis

Consider an acoustical wave field emerging from an arbitrarily shaped aperture propagating in an ideal fluid incident upon a
rigid sphere and described by its complex pressure P(inc.) that is a solution of the Helmholtz wave equation,
Fig. 1. G
sphere
∇2 + k2
� �

P inc:ð Þ = 0; ð1Þ

k is the wave number.
where
In a system of spherical coordinates (r, θ, ϕ) with its origin chosen at the center of the sphere (See Fig. 1), the most general

separation of variables solution of the Helmholtz Eq. (1) is given by
P inc:ð Þ r; θ;ϕð Þ = P0 ∑
∞

p=0
∑
p

q=−p
apq kað Þ jp krð Þ + bpq kað Þyp krð Þ
h i

Yq
p θ;ϕð Þ; ð2Þ

P0 is the pressure amplitude, apq(ka) and bpq(ka) are arbitrary beam-shape coefficients, jp(.) and yp(.) are the spherical
where
Bessel function of the first and second kind, respectively, and Yp

q(.) are the qth-order spherical harmonics of pth-degree. The
factor exp(− iωt) is suppressed from Eq. (2) since the space-dependent pressure is only concerned. It is important to note here
that Eq. (2) represents a general solution of Eq. (1), however it requires specific boundary conditions to be used in a real
physical system. In the description of acoustical (or optical) high-order Bessel (vortex) beams, which describe a wave-field that
is physically finite at the origin (r=0), the parameter bpq(ka)=0, and the spherical Bessel functions of the second kind yp(.)
may be excluded since they represent a singularity at the origin.

Without loss of generality, the incident pressure field is therefore rewritten as
P inc:ð Þ r; θ;ϕð Þ = P0 ∑
∞

p=0
∑
p

q=−p
apq kað Þjp krð ÞYq

p θ;ϕð Þ: ð3Þ
eometry of the problem. The primed coordinate system has its origin at the center of the beam, while the unprimed coordinate system is referenced to the
center.



394 F.G. Mitri, G.T. Silva / Wave Motion 48 (2011) 392–400
Consider a spherical target immersed in a non-viscousfluid, andplaced arbitrarily in thefield of the incident pressurefield as given

by Eq. (3). The presence of the spherical target in the waves' path causes the incident field to scatter. The scattered field is represented
by

∞ p
P sc:ð Þ r; θ;ϕð Þ = P0 ∑
p=0

∑
q=−p

apq kað ÞSp kað Þh 1ð Þ
p krð ÞYq

p θ;ϕð Þ; ð4Þ

hp
(1)(.) are the spherical Hankel functions of the first kind, and Sp(ka) are the scattering partial wave coefficients of the
where

sphere determined by applying appropriate boundary conditions at the interface fluid-structure, with the assumption that the
fluid is ideal. These functions generally depend on the sphere's material parameters such as the longitudinal sound speed cL, the
shear or transverse sound speed cT, and the mass densities of both the fluid ρf and the sphere ρs. For a rigid immovable sphere,
these coefficients are determined using the solution that satisfies the boundary condition of the vanishing of the particle velocity at
the boundary r=a such that,
Sp kað Þ = −j′p kað Þ= h 1ð Þ′
p kað Þ; ð5Þ

a is the sphere's radius.
where
To determine the beam-shape coefficients apq(ka), the analogy with the representation of the electric field [i.e. (29) in [28]] is

used to express the incident acoustic pressure at the surface of the sphere (i.e. r=a) as
P inc:ð Þ r = a; θ;ϕð Þ = P0 ∑
∞

p=0
∑
p

q=−p
apq kað Þjp krð ÞYq

p θ;ϕð Þ: ð6Þ
The coefficients apq(ka) are then determined by applying the orthogonality condition of the spherical harmonics

∫
2π

ϕ=0

∫
π

θ=0

Yq
p θ;ϕð ÞYq′�

p′
θ;ϕð ÞdΩ = δ

pp′δqq′ ;where δij =
1; if i = j;
0; if i≠j;

�
is the Kronecker's delta function and dΩ=sin θdθdϕ. Accordingly,

these coefficients are expressed as
apq kað Þ = 1
jp kað ÞP0

∫
2π

ϕ=0

∫
π

θ=0

P inc:ð Þ r = a; θ;ϕð ÞYq�

p θ;ϕð Þsinθdθ
" #

dϕ;

where the superscript “�” denotes a complex conjugate:

ð7Þ
After determining the beam-shape coefficients apq(ka), the scattered pressure field can be evaluated after substituting Eq. (7)
into Eq. (4) using Eq. (5).

For the case of a generalized Bessel vortex beam of order m, the incident pressure field, that is a proper solution of the
homogeneous Helmholtz Eq. (1), is expressed in a coordinate system (x′, y′, z′) with its origin chosen at the center of the beam
(Fig. 1), where ϕ′=tan−1(y′/x′), and R′ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′2 + y′2ð Þ

p
; as
P inc:ð Þ = P0e
ikzz′ Jm krR′

� �
eimϕ′

; ð8Þ

Jm(.) is the cylindrical Bessel function of the first kind of positive order m (that can be also negative, however this
where
case is excluded here), kz=k cos β and kr=k sin β are the axial and radial wave-numbers, β is the half-cone angle formed
by the wave-number k relative the axis of wave propagation, and ϕ′, and z′ are the azimuthal and axial components,
respectively.

In a system of spherical coordinates with its origin chosen at the center of the sphere, it has been shown in a previous work [12]
that the incident pressure of a high-order Bessel (vortex) beam coincidingwith the axis of wave propagation, and represented by a
cylindrical wave function given by Eq. (8), is expressed as a closed-form mathematical equation [12,14],
P inc:ð Þ r; θ;ϕð Þ = P0e
ikzrcosθ Jm krrsinθð Þeimϕ = P0e

ikrcosβcosθJm kr sin β sinθð Þeimϕ
;

= P0 ∑
∞

n=m

n−mð Þ!
n + mð Þ! 2n + 1ð Þi n−mð Þjn krð ÞPm

n cosθð ÞPm
n cosβð Þeimϕ

; ð9Þ

Pn
m(.) are the associated Legendre functions of order m and degree n.
where

Rewriting Eq. (9) as a double-summation series as,
P inc:ð Þ = P0 ∑
∞

n=m

n−mð Þ!
n + mð Þ! 2n + 1ð Þi n−mð Þjn krð ÞPm

n cosθð ÞPm
n cosβð Þeimϕ

;

= P0 ∑
∞

n=0
∑
n

ℓ=−n

n−ℓð Þ!
n + ℓð Þ! δℓmH n−mð Þ 2n + 1ð Þi n−ℓð Þjn krð ÞPℓ

n cosθð ÞPℓ
n cosβð Þeiℓϕ;

ð10Þ
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the parameter ℓ is a dummy summation index, the factor H n−mð Þ = 1; if n−mð Þ≥0;
0; if n−mð Þb0;

�
is the discrete Heaviside step
where

function, and comparing Eq. (10) with Eq. (3) using the well-known identity for the spherical harmonics,
Yq
p θ;ϕð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p + 1ð Þ

4π
p−qð Þ!
p + qð Þ!

s
Pq
p cosθð Þeiqϕ; ð11Þ

o the determination of the beam-shape coefficients for the on-axis scattering as follows,

apq jon−axis = anm jon−axis = i n−mð ÞPm
n cosβð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π 2n + 1ð Þ n−mð Þ!

n + mð Þ!

s
H n−mð Þ: ð12Þ
It is common to investigate the acoustic scattering in the far-field region. Therefore, in the far-field region (kr→∞), the steady-
state (time-independent) scattered pressure from a sphere [29,30] using Eq. (4) is expressed as
P sc:ð Þ r; θ;ϕð Þ =
kr→∞

P0
a
2r

f∞ ka; θ;β;ϕð Þeikr; ð13Þ

the spherical Hankel function of the first kind reduces to the following asymptotic approximation; h 1ð Þ
p krð Þ→kr→∞

1
i p + 1ð Þkr

eikr:
where

The (complex) form function for a sphere f∞(ka,θ,β,ϕ), is therefore defined by the exact partial wave series as
f∞ ka; θ;β;ϕð Þ = 2
ika

∑
∞

p=0
∑
p

q=−p
apq kað Þi −pð ÞSp kað ÞYq

p θ;ϕð Þ: ð14Þ
3. Numerical results and discussion

To explore the theory and illustrate the nature and the behavior of the solution related to the on- and off-axis far-field acoustic
scattering by a rigid sphere, a computer program is developed using MATLAB® software package. Accurate computation of the
spherical Bessel and spherical Hankel functions and their derivatives is achieved using modified versions of the specialized math
functions “besselj”, “bessely” and “besselh” within the software package. The computations are performed on an Intel(R) Core
(TM)2 Quad CPU Q9650 @ 3.00 GHz, 3.25 GB of RAM personal computer with a truncation constant pmaxNNka and corresponding
to the biggest order included to ensure proper convergence of the series. Calculation of the beam-shape coefficients requires
determining the surface integral in Eq. (7). The numerical procedure consists of sampling the integrand (i.e. pressure) over the
sphere's surface. The integral is then evaluated by quadrature based on a Riemann sum in the MATLAB® software package. It is
important to emphasize that dense grids are required in both the θ and ϕ directions to obtain proper convergence of the numerical
integrations.

The main interest is to evaluate the magnitude of the on- and off-axis acoustic scattering by a rigid sphere in the near-field by
substituting Eq. (8) into Eq. (7) and then plugging the result into Eq. (4), as well as the far-field through the form function given by
Eq. (14) using Eqs. (7) and (8). The beam-shape coefficients apq(ka) are evaluated numerically by discretizing the integral in
s of the spherical Bessel function of the first kind computed using the “fzero” function inMATLAB® software package in the range 0≤x≤50 (The table list
es of the parameter x for which jp(x)=0).

j0(x) j1(x) j2(x) j3(x) j4(x) j5(x) j6(x) j7(x) j8(x) j9(x) j10(x)

π 0 0 0 0 0 0 0 0 0 0
2π 4.49341 5.76346 6.98793 8.18256 9.35581 10.5128 11.657 12.7908 13.9158 15.0335
3π 7.72525 9.09501 10.4171 11.7049 12.9665 14.2074 15.4313 16.641 17.8386 19.0259
4π 10.9041 12.3229 13.698 15.0397 16.3547 17.648 18.923 20.1825 21.4285 22.6627
5π 14.0662 15.5146 16.9236 18.3013 19.6532 20.9835 22.2953 23.5913 24.8732 26.1428
6π 17.2208 18.689 20.1218 21.5254 22.9046 24.2628 25.6029 26.927 28.2371 29.5346
7π 20.3713 21.8539 23.3042 24.7276 26.1278 27.5079 28.8704 30.2173 31.5502 32.8705
8π 23.5195 25.0128 26.4768 27.9156 29.3326 30.7304 32.1112 33.4768 34.8287 36.1682
9π 26.6661 28.1678 29.6426 31.0939 32.5247 33.9371 35.3332 36.7145 38.0825 39.4382
10π 29.8116 31.3201 32.8037 34.2654 35.7076 37.1323 38.5414 39.9361 41.3179 42.6877
11π 32.9564 34.4705 35.9614 37.4317 38.8836 40.3189 41.7391 43.1454 44.5391 45.9212
12π 36.1006 37.6194 39.1165 40.5942 42.0544 43.4988 44.9286 46.3451 47.7493 49.1422
13π 39.2444 40.7671 42.2695 43.7536 45.2211 46.6733 48.1117 49.5371
14π 42.3879 43.914 45.421 46.9106 48.3844 49.8437
15π 45.5311 47.0601 48.5711

48.6741
s



Fig. 3. Comparison between the 3D directivity plots in the near-field (i.e. r=1.2a) (first row, (a)–(c)) and the far-field (second row, (d)–(f)) for a rigid sphere in
the field of a first-order (m=1) Bessel vortex beam. The half-cone angle is β=45° and ka=5. In (a),(d), the sphere is centered on the beam's axis. In (b),(e), the
sphere is shifted only in the x direction such that the offset is (x,y)-offset=(0.1λ/2a;0). In (c),(f), the sphere is shifted in both x and y directions such that the offse
is (x,y)-offset=(0.1λ/2a; 0.2λ/a). The arrows on the left-hand side indicate the direction of the incident waves.

Fig. 2. (a) shows the 3D directivity pattern for the axial far-field scattering obtained using the numerical integration, whereas (b) shows a comparison between the
numerical (dotted line) and the closed-form analytical (solid line) solutions corresponding to the polar 2D plots. The acoustical waves form a first-order Besse
vortex beam (i.e.m=1), with a size parameter ka=5 and a half-cone β=85°. The arrows on the left-hand side of (a) and (b) indicate the direction of the inciden
waves. Perfect agreement is noticed.
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l
t

Eq. (7). Its inspection shows that the denominator involves the spherical Bessel function of the first kind jp(ka). A particular care
needs then to be paid to the choice of ka so as to avoid the zeros of jp(ka), hence, the resulting indeterminacies that may appear
while evaluating the integral. Appropriate selection of ka requires excluding those to corresponding zeros of jp(ka) that are listed
in Table 1 for convenience.

Initially, a test is performed to verify the accuracy and correctness of the numerical findings. The test requires computing and
comparing the on-axis scattering results of the present theory with the ones obtained from the axial scattering theory using a
closed-form solution previously developed and published in [12,14]. Fig. 2-(a),(b) shows a comparison between the directivity
pattern result for the axial far-field scattering obtained by using the numerical integration (i.e. “(x,y)-offset=(0,0)” corresponds
to a sphere centered on the beam's axis, and the closed-form solution. For this test example, the acoustical waves are selected to
form a first-order Bessel vortex beam (i.e. m=1), with a size parameter ka=5 and a half-cone β=85°. The arrows on the left-
hand side of (a) and (b) indicate the direction of the incident waves. As observed from this figure, excellent agreement is obtained
t

image of Fig.�3
image of Fig.�2
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between the twomethods. Additional examples and further tests (not shown here) with higher-order (mN1) Bessel vortex beams
for different size parameters (excluded from Table 1) and half-cone values have been performed and provided excellent matching
between the two methods.

To illustrate the effect of shifting the sphere off the axis of the beam, the acoustic scattering of a first-order (m=1) Bessel vortex
beamwith β=45° at ka=5 is investigated. The 3D directivity plots are displayed in Fig. 3. The top row (i.e. Fig. 2-(a)–(c)) displays
the scattering in the near-field for r=1.2a for three different cases: in (a) the sphere is centered on the beam's axis such that the
(x,y)-offset is zero. In (b), the sphere is shifted only in the x direction such that the offset is (x,y)-offset=(0.1λ/2a;0). In (c), the
sphere is shifted in both x and y directions such that the offset is (x,y)-offset=(0.1λ/2a; 0.2λ/a). The arrows on the left-hand side
indicate the direction of the incident waves. The bottom row in Fig. 3-(d)–(f) shows the 3D directivity plots in the far-field without
(Fig. 3-(d)) andwith (Fig. 3-(e),(f)) displacement offsets taking the same values as in (b) and (c) respectively. It is obvious that the
on-axis scattering displayed in (a),(d) shows perfectly symmetric directivity patterns and is significantly different from the off-
axial scattering as shown in (b),(c),(e) and (f). Moreover, the characteristic property of the first-order Bessel vortex beam related
to the pressure null at the center of the (hollow) beam is strongly manifested in the axial scattering such that the forward and
backward acoustic scattering from the sphere (along the axis) vanish. This is somewhat predicted from Eq. (10) because of the
dependence on the associated Legendre functions Pnm(cos θ) that vanish for θ=0∘ (i.e. forward direction) and θ=180∘ (backward
direction). This is a property of the high-order Bessel vortex beam (i.e. m N 0). However, as the offset increases, the scattering
pattern loses symmetry and takes particular directivity patterns determined by the amount of the offset (See also Animated
supplementary file 1). In the supplementary animation file 1, the 3D scattering directivity patterns have been calculated for a
sphere that is shifted off-axially in the bandwidth 0≤x≤1.2127 in incremental steps of δx=λ/200a=0.0063.

It is obvious from Fig. 3 that near- and far-field scattering directivity plots are not alike. Additional on- and off-axis calculations
(not shown here) for a first-order Bessel vortex beam are performed in the near-field while increasing the distance r from the
center of the sphere in increments of 0.1. It is verified that when r largely exceeds a (i.e. rN5a and beyond, i.e. r→∞), the near-field
scattering directivity plots closely approach the far-field scattering patterns.

Further calculations for the far-field acoustic scattering of a first-order Bessel vortex beam are performed to investigate the
effect of varying the half-cone angle on the 3D directivity plots. The results are shown in Fig. 4 for a size parameter ka=5 and for
half-cone angle values ranging from β=10° to β=80° in increments of δβ=10°. The arrows in the figure denote the direction of
incident waves. In this example, the rigid sphere is shifted along the x-direction by an offset of 0.1λ/2a. As observed in this figure,
the symmetry in the 3D acoustic scattering directivity patterns in the far-field is further broken as β increases.

Moreover, the analysis of Eqs. (3), (4) and (14) for which the order m equals zero, show that the problem reduces to the
scattering by a zero-order Bessel beam [31]. In addition, when both the orderm and the half-cone angle β equal zero, the problem
reduces to the scattering of plane progressive waves by a sphere [6].

Another example is provided in Fig. 5 in which the order of the beamm and the size parameter ka are varied. The computations
are made for a size parameter ka=10 and a half-cone angle β=45° for the ease of comparison between the earlier computational
Fig. 4. The effect of varying the half-cone angle on the 3D directivity plots for the far-field acoustic scattering of a first-order Bessel vortex beam by a rigid sphere
shifted along the x-direction by an offset of 0.1λ/2a. The results are shown for a size parameter ka=5 and for half-cone angle values ranging from β=10° to
β=80° in increments of δβ=10°. The arrows denote the direction of incident waves.

image of Fig.�4


Fig. 5. The effect of varying both the order m of the high-order Bessel (vortex) beam and the size parameter ka on the 3D directivity plots of the far-field acoustic
scattering. The computations are made for a size parameter ka=10 and a half-cone angle β=45°. The arrows denote the direction of the incident waves. (a),(c)
correspond to the directivity patterns from a rigid sphere centered on the axis of a first- and a second-order Bessel vortex beam, respectively. Shifting the sphere
off-axis certainly affects the scattering patterns of the higher-order Bessel vortex beams as shown in (b),(d).
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plots displayed in the previous figures. The arrows in the figure denote the direction of incident waves. Fig. 5-(a),(c) corresponds
to the far-field acoustic scattering directivity patterns from a rigid sphere centered on the axis of a first- and a second-order Bessel
vortex beam, respectively. Shifting the sphere off-axis certainly affects the scattering patterns of the high-order Bessel vortex
beams as shown in Fig. 5-(b),(d). As observed previously, the symmetry in the directivity plots is broken as soon as the sphere is
shifted off-axis.

In all the preceding examples, the sphere is considered rigid immovable (fixed) in water. However, other types of sphere's
materials can be used, provided that their appropriate scattering coefficients are used. These scattering coefficients are available in
standard literature reports for elastic [6], viscoelastic spheres [32], spherical bubbles [2], soft and solid spherical shells [33,34],
coated spheres [35], and coated spherical shells [36,37]. It is important to note that elastic sphere exhibit resonances that affect the
acoustic scattering response. Further studies on the off-axial scattering of Bessel beams by elastic spheres are in order and will be
the subject of future investigations.

It is important to emphasize here that the theory is suitable to investigate the on- and off-axial acoustic scattering for any beam
that satisfies the homogeneous (source-free) Helmholtz wave Eq. (1). It is understood that non-diffracting beams (such as the
zero-order and high-order Bessel vortex and trigonometric beams of integer order) are adequate solutions of the homogeneous
Helmholtz equation, and their acoustic scattering properties can be satisfactorily investigated through the present theory.
Nevertheless, Bessel beams with a fractional order [38–40], Gaussian and their derivatives (i.e. Bessel–Gaussian, Hermite–
Gaussian, Laguerre–Gaussian, Ince–Gaussian, Hypergeometric–Gaussian and others) are generally diffractive and prone to
spreading as they propagate in space, thus they do not satisfy the homogeneous Helmholtz Eq. (1) [41]. Therefore, the scattering
for such (diffractive) beams may be analyzed through diffraction theory [42]. There exist, however, exceptions [43] in which a
focused Gaussian beammay be considered as a good approximation of a non-diffracting beam as long as the beam waist radius is
larger than a wavelength (See section IV in [28], also [44]), thus the present theory may be applicable in that limit. This
approximationmay also apply for the case of a fractional Bessel beam in that same limit and outside the region of diffractionwhere
the beam's symmetry may be preserved. However, this problem is nonetheless acknowledged and further investigations are
needed to verify that assumption.

As mentioned previously, the size parameter ka should be judiciously chosen so as to avoid the zeros of the spherical Bessel
function of the first-kind (given in Table 1) in Eq. (7). In doing so, possible numerical indeterminacies in the computation of the
beam-shape coefficients are circumvented. Moreover, at high ka values (i.e. kaN15 and beyond), more sampling and discretization
of the domain are needed to ensure proper convergence and hence guarantee the accuracy of the solution. With the aim of
overcoming the numerical indeterminacies at the zeros of the spherical Bessel function of the first-kind and improving the
computational time, other numerical models (analogous to the ones used in the scattering of electromagnetic radiation (i.e. light)

image of Fig.�5
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by a spherical particle [44–47]) that approximate the integral in Eq. (7) with an analytical converging function may be developed,
however, they are outside the scope of the present research.

This present theory ignores dissipative and viscous effects as well as thermal damping. Therefore, the 3D directivity plots
obtained here may only be directly relevant for cases where the radius of the sphere is larger than the oscillating thermo-viscous
boundary layer produced by the incident wave in the vicinity of the sphere in a viscous fluid. This present analysis should assist the
development of complete acoustic scattering models that include viscous effects, streaming and thermal damping that may be
significant in highly viscous fluids.

4. Conclusions

In summary, theoretical expressions for the incident and scattered acoustic pressure fields are derived, and for the first time,
numerical calculations of near-surface and far-field acoustic scattering directivity 3D diagrams are presented for a rigid sphere
placed off the axial center of a high-order Bessel vortex beam. A quantitative analysis of the scattering on- and off-axis is provided
in both near- and far-field regions for various half-cone angle values. When the sphere is placed on-axis, the backward scattering
and forward scattering vanish for all frequencies as shown previously [12]. However, when the sphere is shifted off the beam's axis
of wave propagation, significant modifications in the directivity plots occur, which are determined by the amount of the shift, the
choices for the frequency as well as varying the beam's order and its half-cone angle. In addition to providing physical insight into
the off-axial scattering of acoustic Bessel vortex beams, this investigation would potentially assist in the development of the
transverse acoustic radiation force and could provide a useful test of finite element codes for the evaluation of the scattering.
Furthermore, the theory developed here can be extended to study the off-axial electromagnetic scattering by dielectric [48],
conductive, or other types of spheres.

Supplementary materials related to this article can be found online at doi:10.1016/j.wavemoti.2011.02.001.

Acknowledgments

Dr. Mitri acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9) from Los Alamos National
Laboratory. Dr. Silva acknowledges the funding from a grant CNPq 150745/2007-9 (Brazilian agency). Disclosure: this unclassified
publication, with the following reference no. LA-UR 11-00970, has been approved for unlimited public release under DUSA ENSCI.

References

[1] A. Lagendijk, B.A. van Tiggelen, Resonant multiple scattering of light, Phys. Rep. 270 (1996) 143–215.
[2] L. Flax, G.C. Gaunaurd, H. Uberall, Theory of Resonance Scattering, Phys. Acoust. 15 (1981) 191–294.
[3] G.C. Gaunaurd, Elastic and acoustic resonance wave scattering, Appl. Mech. Rev. 42 (1989) 143–192.
[4] G.C. Gaunaurd, M.F. Werby, Acoustic resonance scattering by submerged elastic shells, Appl. Mech. Rev. 43 (1990) 171–208.
[5] G.C. Gaunaurd, H.S. Strifors, Transient resonance scattering and target identification, Appl. Mech. Rev. 50 (1997) 131–149.
[6] J.J. Faran, Sound scattering by solid cylinders and spheres, J. Acoust. Soc. Am. 23 (1951) 405–418.
[7] G.C. Gaunaurd, H. Uberall, Acoustics of finite beams, J. Acoust. Soc. Am. 63 (1978) 5–16.
[8] P.L. Edwards, J. Jarzynski, Scattering of focused ultrasound by spherical microparticles, J. Acoust. Soc. Am. 74 (1983) 1006–1012.
[9] J.P. Barton, N.L. Wolff, H. Zhang, C. Tarawneh, Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field, J. Acoust. Soc. Am. 113

(2003) 1216–1222.
[10] D.P. Duncan, J.P. Astheimer, R.C. Waag, Scattering calculation and image reconstruction using elevation-focused beams, J. Acoust. Soc. Am. 125 (2009)

3101–3119.
[11] P.L. Marston, Scattering of a Bessel beam by a sphere, J. Acoust. Soc. Am. 121 (2007) 753–758.
[12] F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Ann. Phys. 323 (2008) 2840–2850.
[13] P.L. Marston, Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example, J. Acoust. Soc. Am. 124 (2008) 2905–2910.
[14] F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere, IEEE Trans. Ultrason.

Ferroelectr. 56 (2009) 1100–1103.
[15] C. Lopez-Mariscal, J.C. Gutierrez-Vega, The generation of nondiffracting beams using inexpensive computer-generated holograms, Am. J. Phys. 75 (2007)

36–42.
[16] Z. Bouchal, J. Wagner, M. Chlup, Self-reconstruction of a distorted nondiffracting beam, Opt. Commun. 151 (1998) 207–211.
[17] K. Volke-Sepulveda, A.O. Santillan, R.R. Boullosa, Transfer of angular momentum to matter from acoustical vortices in free space, Phys. Rev. Lett. 100 (2008)

024302.
[18] K.D. Skeldon, C. Wilson, M. Edgar, M.J. Padgett, An acoustic spanner and its associated rotational Doppler shift, New J. Phys. 10 (2008).
[19] S.T. Kang, C.K. Yeh, Potential-well model in acoustic tweezers, IEEE Trans. Ultrason. Ferroelectr. 57 (2010) 1451–1459.
[20] F.G. Mitri, Potential-well model in acoustic tweezers - Comment, IEEE Trans. Ultrason. Ferroelectr. 58 (2011) 663–666.
[21] F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Ann. Phys. 323 (2008) 1604–1620.
[22] F.G. Mitri, Langevin acoustic radiation force of a high-order Bessel beam on a rigid sphere, IEEE Trans. Ultrason. Ferroelectr. 56 (2009) 1059–1064.
[23] F.G. Mitri, Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere, Ultrasonics 49 (2009) 794–798.
[24] F.G. Mitri, Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves, Eur.

Phys. J. E 28 (2009) 469–478.
[25] F.G. Mitri, Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves, J. Phys. A: Math. Theor.

42 (2009) 245202.
[26] P.L. Marston, Radiation force of a helicoidal Bessel beam on a sphere, J. Acoust. Soc. Am. 125 (2009) 3539–3547.
[27] F.G. Mitri, Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type α and integer order m with a rigid sphere: Linear acoustic

scattering and net instantaneous axial force, IEEE Trans. Ultrason. Ferroelectr. 57 (2010) 395–404.
[28] J.P. Barton, D.R. Alexander, S.A. Schaub, Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam, J. Appl.

Phys. 64 (1988) 1632–1639.
[29] W.G. Neubauer, R.H. Vogt, L.R. Dragonette, Acoustic reflection from elastic spheres. I. Steady-state signals, J. Acoust. Soc. Am. 55 (1974) 1123–1129.



400 F.G. Mitri, G.T. Silva / Wave Motion 48 (2011) 392–400
[30] L.R. Dragonette, R.H. Vogt, L. Flax,W.G. Neubauer, Acoustic reflection from elastic spheres and rigid spheres and spheroids. II. Transient analysis, J. Acoust. Soc.
Am. 55 (1974) 1130–1137.

[31] G.T. Silva, Off-axis scattering of an ultrasound Bessel beam by a sphere, IEEE Trans. Ultrason. Ferroelectr. 58 (2011) 298–304.
[32] V.M. Ayres, G.C. Gaunaurd, Acoustic resonance scattering by viscoelastic objects, J. Acoust. Soc. Am. 81 (1987) 301–311.
[33] F.G. Mitri, Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field, Ultrasonics 43 (2005) 681–691.
[34] F.G. Mitri, Acoustic radiation force acting on absorbing spherical shells, Wave Motion 43 (2005) 12–19.
[35] F.G. Mitri, Acoustic radiation force due to incident plane-progressive waves on coated spheres immersed in ideal fluids, Eur. Phys. J. B 43 (2005) 379–386.
[36] G.C. Gaunaurd, A. Kalnins, Resonances in the sonar cross sections of coated spherical shells, Int. J. Solids Struct. 18 (1982) 1083–1102.
[37] F.G. Mitri, Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves, Ultrasonics 44 (2006) 244–258.
[38] S.H. Tao,W.M. Lee, X.C. Yuan, Dynamic optical manipulation with a higher-order fractional Bessel beam generated from a spatial light modulator, Opt. Lett. 28

(2003) 1867–1869.
[39] S.H. Tao, W.M. Lee, X.C. Yuan, Experimental study of holographic generation of fractional Bessel beams, Appl. Opt. 43 (2004) 122–126.
[40] S.H. Tao, X.C. Yuan, Self-reconstruction property of fractional Bessel beams, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21 (2004) 1192–1197.
[41] F.G. Mitri, Gegenbauer expansion to model the incident wave-field of a high-order Bessel vortex beam in spherical coordinates, Ultrasonics 50 (2010)

541–543.
[42] J.T. Hodges, G. Gréhan, G. Gouesbet, C. Presser, Forward scattering of a Gaussian beam by a nonabsorbing sphere, Appl. Opt. 34 (1995) 2120–2132.
[43] P. Varga, P. Török, The Gaussian wave solution of Maxwell's equations and the validity of scalar wave approximation, Opt. Commun. 152 (1998) 108–118.
[44] J.A. Lock, Improved Gaussian beam-scattering algorithm, Appl. Opt. 34 (1995) 559–570.
[45] B.R. Johnson, Light scattering by a multilayer sphere, Appl. Opt. 35 (1996) 3286–3296.
[46] W. Yang, Improved recursive algorithm for light scattering by a multilayered sphere, Appl. Opt. 42 (2003) 1710–1720.
[47] http://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres.
[48] F.G. Mitri, Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere, Opt. Lett. 36 (2011) 766–768.

http://en.wikipedia.org/wiki/Codes_for_electromagnetic_scattering_by_spheres

	Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere
	Introduction
	Theory and analysis
	Numerical results and discussion
	Conclusions
	Acknowledgments
	References


