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a b s t r a c t 

In the last couple of decades, the world has seen several stunning instances of quantum al- 

gorithms that provably outperform the best classical algorithms. For most problems, how- 

ever, it is currently unknown whether quantum algorithms can provide an advantage, and 

if so by how much, or how to design quantum algorithms that realize such advantages. 

Many of the most challenging computational problems arising in the practical world are 

tackled today by heuristic algorithms that have not been mathematically proven to out- 

perform other approaches but have been shown to be effective empirically. While quantum 

heuristic algorithms have been proposed, empirical testing becomes possible only as quan- 

tum computation hardware is built. The next few years will be exciting as empirical test- 

ing of quantum heuristic algorithms becomes more and more feasible. While large-scale 

universal quantum computers are likely decades away, special-purpose quantum compu- 

tational hardware has begun to emerge, which will become more powerful over time, as 

well as small-scale universal quantum computers. 

© 2016 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the last couple of decades, the world has seen several stunning instances of quantum algorithms that provably outper-

form the best classical algorithms. For most problems, however, it is currently unknown whether quantum algorithms can

provide an advantage, and if so by how much, or how to design quantum algorithms that realize such advantages. Many

of the most challenging computational problems arising in the practical world are tackled today by heuristic algorithms

that have not been mathematically proven to outperform other approaches but have been shown to be effective empirically.

While quantum heuristic algorithms have been proposed, empirical testing becomes possible only as quantum computation

hardware is built. The next few years will be exciting as empirical testing of quantum heuristic algorithms becomes more

and more feasible. While large-scale universal quantum computers are likely decades away, special-purpose quantum com-

putational hardware has begun to emerge, which will become more powerful over time, as well as small-scale universal

quantum computers. 
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Successful NASA missions require solution of many challenging computational problems. The ambitiousness of such fu-

ture missions depends on our ability to solve yet more challenging computational problems to support better and greater

autonomy, space vehicle design, rover coordination, air traffic management, anomaly detection, large data analysis and data

fusion, and advanced mission planning and logistics. To support NASA’s substantial computational needs, NASA Ames Re-

search Center has a world-class supercomputing facility with one of the world’s most powerful supercomputers. In 2012,

NASA established its Quantum Artificial Intelligence Laboratory (QuAIL) at Ames to explore the potential of quantum com-

puting for computational challenges arising in future agency missions. The following year, through a collaboration with

Google and USRA, NASA hosted one of the earliest quantum annealer prototypes, a 509-qubit D-Wave II machine, which last

summer was upgraded to a 1097-qubit D-Wave 2X system. 

Because quantum annealers are the most advanced quantum computational hardware to date, the main focus for the

QuAIL team has been on both theoretical and empirical investigations of quantum annealing, from deeper understanding of

the computational role of certain quantum effects to empirical analyses of quantum annealer performance on small prob-

lems from the domains of planning and scheduling, fault diagnosis, and machine learning. This paper will concentrate on

the team’s quantum annealing work, with only brief mention of research related to capabilities of other near-term quantum

computational hardware that will be able to run quantum heuristic algorithms beyond quantum annealing. For information

on quantum computing more generally, and other algorithms, both heuristic and non, see quantum computing texts such as

[1] . 

The power of quantum computation comes from encoding information in a non-classical way, in qubits, that enable

computations to take advantage of purely quantum effects, such as quantum tunneling, quantum interference, and quantum

entanglement, that are not available classically. The beauty of quantum annealers is that users can program them without

needing to know about the underlying quantum mechanical effects. Knowledge of quantum mechanics aids in more effective

programming, just as an understanding of compilation procedures can aid classical programming, but it is not necessary for

a basic understanding. 

For this reason, the first three sections consist of an overview of quantum annealing ( Section 2 ), a description of how

to program a quantum annealer ( Section 3 ), and a high-level review of our exploration of three potential application areas

for quantum annealing ( Section 4 ). The quantum effects involved are only lightly mentioned, so these sections should be

easily accessible to computer scientists without any knowledge of quantum mechanics or quantum computing. Section 5 ,

which examines the role various physical processes play in quantum annealing, requires more physics knowledge for a full

understanding, as does Section 6 that discusses hardware, though a classically-trained computer scientist without knowledge

of quantum mechanics can get a high-level understanding. We conclude with a brief section summarizing the outlook for

the future. 

2. Quantum annealing 

Quantum annealing [2,3] is a metaheuristic optimization algorithm that makes use of quantum effects such as quantum

tunneling and interference. It is one of the most accessible quantum algorithms to people versed in classical computing be-

cause of its close ties to classical optimization algorithms such as simulated annealing and because the most basic aspects

of the algorithm can be captured by a classical cost function and parameter setting. Quantum annealers are special-purpose

quantum computational devices that can run only the quantum annealing metaheuristic. For readers not familiar with quan-

tum annealing in physics, we refer to Section 5 for a general introduction. 

Quantum annealers are designed to minimize Quadratic Unconstrained Binary Optimization (QUBO) problems; i.e., the 

cost function is of the form 

C(x ) = 

∑ 

i 

a i x i + 

∑ 

i< j 

b i, j x i x j , (1) 

where { a i , b i,j } are real coefficients and x ∈ {0, 1} n is a vector of binary-valued variables. An application problem must be

mapped to a QUBO before it can be solved on a quantum annealer. For application problems with constraints, the cost

function is supplemented with penalty terms that penalize bit strings that do not correspond to valid solutions. 

The simplicity of the QUBO formalism belies its expressivity. There exist many techniques for mapping more complicated

problems to QUBO: 

• A wide class of optimization problems of practical interest can be expressed in terms of cost functions that are polyno-

mials over finite sets of binary variables. Any such function can be re-expressed, through degree-reduction techniques

using ancilla variables, as quadratic functions over binary variables. We describe such degree-reduction technique in our

section on the CNF mapping of planning problems to QUBO. 
• Cost functions involving non-binary, but finite-valued, variables can be rewritten in terms of binary variables alone, and

optimization problems with constraints can often be written entirely in terms of cost functions over binary variables

through the introduction of slack variables. 

For these reasons, the QUBO setting is more general than it may seem. We give examples of QUBO mappings for different

applications domains in later sections. 
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Fig. 1. Typical annealing profile A ( s ) and B ( s ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current quantum annealers such as the D-Wave 2X are fabricated using superconducting materials and operated at tens

of milli-Kelvin temperatures. The processors make use of superconducting flux qubits [4] that are superconductor loops

sandwiched with Josephson junctions, engineered so that when an external flux is applied, a persistent current appears in

the loop. The computational basis of the qubit is the clockwise and counter-clockwise flow of the currents, corresponding

to values of + 1 and −1, respectively, of the spin variable s j for qubit j . An Ising Hamiltonian 

H 1 = 

∑ 

j 

h j s j + 

∑ 

i, j 

J i, j s i s j (2)

can be programmed on the D-Wave system by setting the values of the flux biases h j on each qubit s j and couplings J i , j
between qubits. A mapping s j = 2 x j − 1 relates an Ising Hamiltonian to a QUBO form. Because only select couplers are

implemented in the hardware, only certain quadratic terms can be directly implemented. Embedding, using multiple qubits

to represent a single binary variable, is necessary to implement arbitrary QUBOs, a topic we will return to when we discuss

programming quantum annealers in more depth. 

Quantum annealing is carried out by evolving the system under the time-dependent Hamiltonian 

H(t) = A (s ) H 0 + B (s ) H 1 (3)

where H 1 is the problem Hamiltonian in QUBO form and H 0 is the initial Hamiltonian, which in current annealers is fixed

and cannot be set by the programmer. Generally, the Hamiltonian H 0 is chosen to have a simple energy landscape so that

an unsophisticated relaxation process will efficiently put the system in low energy states. During the anneal, H 0 is gradually

changed until it becomes H 1 . The intuition is that if the system starts in low energy states and the change is smooth enough,

the system will end up in low energy states of the final Hamiltonian, just as a top spinning on a tray will continue to spin

when the tray is moved as long as the change in position is smooth enough. The functions A ( s ) and B ( s ) are generally chosen

in a way that H 0 dominates at s = 0 and H 1 dominates at s = 1 (see Fig. 1 ). Current annealers provide a range of total anneal

times t f , where s = t/t f , enabling traversals at different speeds. On the D-Wave 2X housed at NASA, the annealing time can

be chosen in a range from 5 μs to 2 ms. Future annealers may allow programmers to choose A ( s ) and B ( s ), but they are

currently fixed in the D-Wave 2X. 

When viewed as an algorithm for exploring the landscape defined by the cost function to find a global minimum, quan-

tum annealing resembles a commonly used classical algorithm for optimization: simulated annealing. While in simulated

annealing thermal fluctuation provides the mobility over energy barriers between local minima, quantum annealing has an

additional source of mobility: quantum fluctuations that facilitate tunneling through the barriers. Such quantum fluctua-

tions are realized through H 0 which serves as a driver Hamiltonian responsible for quantum fluctuations because it does

not commute with the target Hamiltonian H 1 . As the anneal continues, the driver term is reduced, slowly turning off the

fluctuations, as the problem Hamiltonian’s strength increases. 

Quantum annealing should not be confused with adiabatic quantum computation which is known to support universal

quantum computing. The problem Hamiltonian in quantum annealing typically is a classical Hamiltonian. While adiabatic

quantum computation also interpolates between an initial and final Hamiltonian, the final Hamiltonian can be highly non-

classical with no analogous classical cost function, thus enabling much more general sorts of quantum computations. 

3. Programming a quantum annealer 

This section discusses the two main steps in programming a quantum annealer: mapping the problems to QUBO; and

embedding , which takes these hardware-independent QUBOs to other QUBOs that match the specific quantum annealing

hardware that will be used. 
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3.1. Mapping 

For a cost function not natively in QUBO form, the typical procedure to map the problem into QUBO is to properly choose

binary variables, formulate constraints, and embed the violation of constraints as energy penalties. We illustrate this process

with an example from Ref [5] . 

Example: In a graph coloring problem, the task is to determine whether each vertex of a graph G ( V , E ) can be colored

from a set C so that no two vertices connected by an edge have the same color. The goal is to formulate a cost function

such that the minimum is zero. One way to choose the binary variable is to use x v ,c = 0 or 1 to express whether vertex

v is assigned color c . The ensuing constraints would be: (1) Each vertex needs to be assigned exactly one color that can

be expressed in binary form as ( 
∑ 

c x v ,c − 1) 2 . (2) Connected vertices cannot share the same color; otherwise, the energy

penalty is raised, 
∑ 

c 

∑ 

v , v ′ ∈ E x v ,c x v ′ ,c . The cost function expressed in QUBO is then H = 

∑ 

v ( 
∑ 

c x v ,c − 1) 2 + 

∑ 

c 

∑ 

v , v ′ ∈ E x v ,c x v ′ ,c .
When no requirement is violated, the cost function has value zero, which is the ground state of H . 

In this example, the cost function H is naturally quadratic. More generally, the cost functions of many optimization

problems can be expressed as higher-degree polynomials of the binary variables (PUBOs). Degree-reduction techniques can

then be applied to recast a PUBO as QUBO, usually at the price of adding ancilla variables [6] . 

3.2. Embedding 

Because the physical hardware has limited connectivity, there usually does not exist a direct one-to-one mapping be-

tween the QUBO binary variables and the physical qubits so that each binary term in the QUBO corresponds to a pair

of connected qubits. To obtain the needed connectivity in the embeddable QUBO, an additional step is required. Unlike

the mapping step, the embedding step is hardware dependent. A cluster of qubits { y i , k } connected to each other in the

hardware graph will represent a single variable x i . For any term x i x j in the mapped QUBO, there is a connection in the

embeddable QUBO between one of the qubits in the cluster for x i and one qubit in the cluster for x j . Minor embedding is

the process of determining a cluster for each binary variable in the problem QUBO [7] . The problem of finding the optimal

minor embedding is itself NP-complete, but fortunately it is not necessary to find the optimal embedding. In general, for

planar architectures, there are straightforward, fast algorithms to embed an N -variable problem in hardware consisting of

no more than N 

2 physical qubits [7–9] . In the near term, while the hardware is so qubit constrained, heuristic algorithms

[10] are used to try to minimize resources and maximize the size of the problems embeddable on the machine. 

To encourage the qubits in the cluster to all take the same value by the end of the anneal so that the value of the

variable they represent is unambiguous, the embeddable QUBO also includes constraint terms J F y i , p y i , q for any pair p , q of

qubits in the cluster that are connected to each other, where J F is the strength of the coupling. This is to ensure that in

the most energy-favorable configuration, all qubits in the cluster take the same value. The Hamiltonian obtained from the

embeddable QUBO shares the same ground state energy as the Hamiltonian from the mapped QUBO, but conforms to the

hardware architecture. The higher energy spectrum may be considerably altered, so different embeddings can significantly

affect performance. 

The optimal strength of J F is a subject of extensive research [5,11,12] . One might think it should be as high as possible

to force the qubits to all take the same value at the end, but in practice there is a sweet spot. Coupling strengths that are

too high degrade performance. Intuitively, a high coupling strength makes it harder to change the value of a variable in the

cluster once they take on a value that is not, ultimately, optimal, though the actual quantum dynamics are more complicated

than this simple explanation. 

The layout of the qubits and couplers of a D-Wave quantum annealer is a n × n lattice of unit cells called a Chimera

graph. Each unit cell is composed of a bi-partite graph of 8 qubits. A schematic diagram of the graph formed by nine cells is

shown in Fig. 2 . The current D-Wave machine at NASA has 12 × 12 such units and a total of 1152 qubits, of which 1097 are

working. Each qubit is coupled to at most 6 other qubits, 4 within its own unit cell and 2 to qubits in its neighboring cells.

To embed a generic QUBO of N variables, N 

2 qubits and couplers are needed in the worst case so that each binary variable

can be represented by N physical qubits and effectively couple to all other binary variables. As an illustration, Fig. 3 shows

an example of embedding a triangle onto a bi-partite graph. 

When an Ising problem is programmed to the chip, errors due to noise or manufacturing miscalibration associated

with the bias fields ( h ’s) and couplers ( J ’s) would affect the annealing performance. Simple offset errors can be corrected

through software, but more complicated errors are harder to mitigate. One strategy is to repeat the annealing with a gauge-

transformed Hamiltonian in which the states used to represent 0 and 1 are swapped. The qubits are encoded into s ′ 
j 
= g j s j 

where g j = ±1 , and the biases and couplers are accordingly set as h ′ 
j 
= g j h j and J ′ 

i, j 
= g i g j J i, j . The resulting Hamiltonian

H 

′ = 

∑ 

j h 
′ 
j 
s ′ 

j 
+ 

∑ 

i, j J 
′ 
i, j 

s ′ 
i 
s ′ 

j 
, which is equal to the original Hamiltonian, is sent to the annealer and the solution obtained is

then decoded using s j = g j s 
′ 
j 
. One set of parameters { g j } is called a gauge. In the absence of errors, the annealing results for

H and H 

′ should be the same while the actual performance could be gauge-dependent. Success probabilities averaged over

a set of gauges are typically used. Various error suppression and correction strategies exist, both fully quantum [13] , a mix

of quantum and classical [14] , and a more recent quantum approach [15] . Once the problem is programmed, the annealing

is repeated multiple times (typically thousands to millions), and each time the final state measured in the computational

basis is recorded. 
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Fig. 2. Nine unit cells in a Chimera graph. 

Fig. 3. Schematics of embedding the Hamiltonian H = J 1 , 2 s 1 s 2 + J 1 , 3 s 1 s 3 + J 2 , 3 s 2 s 3 on a graph. Left: Triangle graph to be embedded. Right: Graph after 

embedding on a bi-partite graph of size 4. The variable s 1 is represented by two physical qubits s a and s b with a strong ferro-magnetic coupling J F < 0. 

The Hamiltonian after embedding is H embed = J F s a s b + J 1 , 2 s a s d + J 1 , 3 s b s c + J 2 , 3 s c s d . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Applications 

In this section, we give a high-level overview of our in-depth studies of three potential applications areas: planning and

scheduling, fault diagnosis, and machine learning. Further technical details can be found in the publications referenced in

each section. 

4.1. Quantum annealing for planning and scheduling 

Automated planning and scheduling has many applications, from logistics, air traffic control, and industrial automation

to conventional military missions, resource allocation, and assistance in disaster recovery. Many of the challenges in au-

tonomous operations include significant planning and multi-agent coordination tasks in which operational teams must gen-

erate courses of action prior to the event and adjust those plans as new information becomes available or unexpected events

occur. 

Many planning and scheduling problems are very challenging to solve; as the number of events to plan or schedule

grows, the number of possible solutions grows exponentially. These problems are often NP-hard or harder, and are currently

tackled by classical heuristic algorithms. The emergence of quantum annealing hardware allows the exploration of quantum

heuristic approaches to these problems [3] , with the objectives to search for significant improvements over existing tech-

niques in the efficiency with which good plans can be found, or in finding better plans that satisfy more constraints, and/or

in greater diversity in the plans found. 

Given the severe limitation in quantum memory of current quantum annealers, in order to benchmark the machines, it

is imperative to find prescriptions to identify small problems that exhibit signature of hardness. Currently, the most com-

mon approach to designing benchmark planning problems is to extract solvable problems from real-world applications. This

approach has the benefit of tuning algorithms toward the applications from which the benchmark problems are obtained.

A complementary approach is to design parameterized families that capture aspects of practical planning problems and can

be shown to be intrinsically hard. Such families support focused examination of these aspects, small problems that can
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Fig. 4. (a) Pictorial view of a planning problem. The initial state (e.g., Rover behind the rocks without sample) is specified by assigning True (1) or False 

(0) to state variables (named A-J in this simplified example). The planning software navigates a tree, where a path represents a sequence (with possible 

repetitions) of actions selected from a pool (colors). Each action has preconditions on the state variables (e.g., moves can be done around the rocks but not 

through them) that need to be satisfied for the actions to be executed (the circles under the state variables in the search tree need to be True) and has an 

effect on the state (colored variables in shaded regions of the new state have changed values). A valid search plan (multiple valid plans are possible) will 

reach the goal state (e.g., Rover in front of the rocks with a sample collected). (b) Direct time-indexed QUBO structure for a planning problem with only 

positive preconditions and goals. Each node represents a state variable (left) or an action (right) at any given time t . Time flows from top to bottom, and 

variables y (t) 
i 

for the actions at time t are shown between the state variables x (t−1) 
i 

for one time step and the state variables x (t) 
i 

for the next time step. The 

node grayscale intensity represents the magnitude of local field (bias) h i applied to a given qubit i , and the double contour in a node indicates a negative 

bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be meaningfully considered to be hard, and scaling analyses with respect to size. Families of small but hard problems are

critical for present research into quantum annealing because the current quantum annealers can handle only small prob-

lems. Families we have designed for the purpose of assessing the performance of quantum annealers have proved useful in

distinguishing the strengths and weaknesses of state-of-the-art planners [16] . 

4.1.1. QUBO formulation of general planning problems 

Classical planning problems are expressed in terms of binary state variables and actions . Examples of state variables in

the domain of autonomous rover navigation are “Rover R is in location X ” and “Rover R has a soil sample from location X ,”

which may be True or False. Actions consist of two lists, a set of preconditions and a set of effects (see Fig. 4 ). The effects of

an action consists of a subset of state variables with the values they take on if the action is carried out. For example, the

action “Rover R moves from location X to location Y ” has one precondition, “Rover R is in location X = True” and has two

effects “Rover R is in location X = False” and “Rover R is in location Y = True.”

A specific planning problem specifies an initial state , with values specified for all state variables, and a goal , specified

values for one or more state variables. As for preconditions, goals are conventionally positive, so the specified value for the

goal variables is True. Generally, the goal specifies values for only a small subset of the state variables. A plan is a sequence

of actions. A valid plan, or a solution to the planning problem, is a sequence of actions A 1 , . . . , A L such that the state at time

step t i −1 meets the preconditions for action A i , the effects of action A i are reflected in the state at time step t i , and the state

at the end has all of the goal variables set to True. 

Ref [5] . discusses a general QUBO formulation of planning problems (see Fig. 4 (b)). If the original planning problem has

N state variables and we are looking for a plan of length L , then the QUBO problem will have N(L + 1) binary variables x (t) 
i 

,

where t ∈ { 0 , . . . , L } is the time index, and i is the index of the state variable in the original planning problem. In addition,

if the original planning problem has M possible actions, we will have LM additional binary variables y (t) 
j 

which indicate

whether the j th action is carried out at time step t or not. A QUBO can then be defined in terms of these variables, with

terms capturing the goal, precondition, effect, single-action, and no-op (no variable change without an action) constraints:

H = H 

′ 
goal + H no −op + H 

′ 
precond + H effects + H single-action . (4) 

Ref [5] . describes a somewhat more general cost function that supports multiple actions per time step. 
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4.1.2. Advanced scheduling applications 

Scheduling was recognized early on as one the most promising near-term targets for quantum annealing due to its

efficient quadratic time-indexed Mixed-Integer Linear Programming formulation. Furthermore, there is a rich literature of

complex pre-processing and hybrid classical techniques. Using this direct quadratic formulation of scheduling instead of the

most general planning formulation leads to very significant performance advantages in runs of the D-Wave machines [5] . 

Scheduling formalizes problems dealing with the optimal allocation of resources (machines, people) to tasks (jobs) over

time, under various constraints and figures of merit. In one direct QUBO formulation, a bit is associated to the execution

of a given job in a given machine (out of M possible) at a given time (discretized in T slots), allowing for very efficient

mappings on current quantum annealers supporting two-body Ising-type interactions, using NMT qubits, where N is the

number of jobs. While objective functions of the priority maximization type are easily implementable as linear penalty func-

tions requiring only local fields on the corresponding logical bits, objectives requiring makespan minimization require a more

involved encoding with either T ancilla clock variables highly connected to the qubits relative to the jobs scheduled last, or

by complementing the quantum solver with guidance from classical methods, such as binary search [12] . 

Many planning and scheduling problems are of such scale and complexity that they are by necessity solved in pieces,

and so quantum hardware can be naturally integrated into the solution of such problems. Hybrid solvers employing quan-

tum annealing together with classical methods are particularly suited to scheduling applications, because the state-of-the-art

approaches for specific scheduling problems are typically combining different approaches in a modular way, and decomposi-

tions can be employed to get around programming bottlenecks such as high connectivity, precision requirements, continuous

constraints, or to employ quantum annealing as a heuristic module of a complete solver [17,18] . As a heuristic module of a

complete solver, quantum annealing enables more directed search of the solution space. Building a complete solver out of a

probabilistic quantum subroutine requires non-trivial classical co-processing, but recent work has shown that it can be done

successfully. In particular, partial solutions returned by a quantum solver can be used to derive bounds on the optimum

value of the function to be optimized, and therefore focus on the most promising or neglect the least promising parts of the

solution space. 

Recent work on the application of quantum annealing to scheduling includes programming and benchmarking quan-

tum annealers on small problems from the domains of graph coloring [5] , job shop scheduling [12] , Mars lander activity

scheduling [17] , air traffic runway landing [18] , and alternative resource scheduling [18] . The question of speedup with re-

spect to purely classical methods are inconclusive due to the small size of the problems implementable on current quantum

annealers and the inefficiency of embedding techniques [5] . This body of work has identified precision and connectivity

requirements that suggest future generations of annealers may be able to solve currently intractable scheduling problems

within a decade. 

Planned technological advances in quantum annealing architectures will also make possible tighter integration of quan-

tum and classical components in the hybrid approaches discussed above, both through more programmable devices that

allow for greater flexibility as subroutines and through application-specific devices that maximize the effectiveness of par-

ticular algorithms. In future, we expect quantum hardware to be integrated into larger systems much as graphical processing

units are today [19] . 

4.2. Fault detection and diagnostics of graph-based systems 

Another application domain we have studied with quantum annealing devices is the diagnostics of electrical power-

distribution systems (EPS); a collaboration between QuAIL and the Discovery and System Health (DaSH) technical area at

NASA Ames. Diagnosing the minimal number of faults capable of explaining a set of given observations, e.g., from sensor

readouts, is a hard combinatorial optimization problem usually addressed with artificial intelligence techniques. In [20] , we

presented the first application of the Combinatorial Problem → QUBO Mapping → Direct Embedding process where we were

able to embed instances with sizes comparable to those found in real-world problems. We demonstrated problem instances

with over 100 electrical components (including circuit breakers and sensors) running on a quantum annealing device with

509 quantum bits. In comparison, the number of components in the electrical circuits used for diagnostics competitions

from NASA’s Advanced Diagnostics and Prognostics Testbed (ADAPT) ranges between 40 and 100 [21] . 

4.2.1. QUBO formulation 

As shown in Fig. 5 (a), there are two types of components. The first are circuit breakers (CB), which in their healthy mode

allow the flow of current, and are illustrated as the nodes of the quaternary tree. We denote them by the set of binary

variables { x i }, with x i = 1 ( x i = 0 ) corresponding to CB i in a healthy (faulty) state. The other component type is the sensor

or ammeter, which is not only another electrical component that could potentially malfunction, but also forms part of the

observations from which one is asked to perform the diagnosis of the electrical network. Therefore, for each ammeter, we

have an observation parameter and a status variable indicating its healthy or faulty state. The observations (or readouts) are

part of the problem definition and provided as input parameters. We denote this set of binary parameters { l i }, with l i = 1

( l i = 0 ) if the i th ammeter is showing a High (Low) readout. Similar to the { x i } variables for the CBs, the uncertainty in the

ammeter readouts is introduced by assigning to them a set of binary variables, { y i }, with y i = 1 ( y i = 0 ) corresponding to

ammeter i in a healthy (faulty) state. 
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Fig. 5. General scheme of an experimental setup for the diagnosis of multiple faults with a quantum annealer. (a) A possible realization of the diagnosis 

of multiple faults in an EPS network with one power source, 21 CBs and 16 sensors or ammeters. The orange crosses indicate faulty electrical components 

( x i = 0) . In this particular instance of six faults, a plausible explanation of the readouts places one of the faults on a CB and the remaining five on the 

ammeters. However, this is only one of the 2 6 six-fault explanations that are equally likely in this case. (b) QUBO form of the problem where coupling 

between two logical qubits is represented as edges. (c) The subsequent embedding into the Chimera graph usually requires more variables since some 

logical qubits are represented by several physical qubits (depicted here as nodes in the graph) due to the sparse connectivity of the hardware graph. In 

this problem, 81 physical qubits are needed to implement the QUBO with 46 logical variables. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The goal is to find the minimum number of faults in the electrical components, either in the CBs and/or the ammeters,

consistent with the circuit layout and the readouts. We solve this as a minimization problem over the pseudo-Boolean

function H problem 

({ x i }, { y i }; { l i }), whose construction is explained below. After H problem 

is transformed into its QUBO form,

we can subsequently use the quantum annealer to find the assignment for each of the { x i } and { y i }. 

The construction of the pseudo-Boolean function contains two contributions: 

H problem 

= H numFaults + H consist . (5) 

H consist is constructed such that it is zero whenever the prediction from the assignment of all the { x i } and { y i } is consistent

with the readouts { l i } from the ammeters, and greater than zero when the readouts and the prediction, given the { x i }

and { y i } assignments, do not match. Consider the set P i as the set of CB indices in the path from the root node (CB 1)

where power is input, all the way to the CB connected to the i th ammeter. Thus, for the network in Fig. 5 (a), P 1 = { 1 , 2 , 6 } ,
P 2 = { 1 , 2 , 7 } , ���, and P 16 = { 1 , 5 , 21 } . If we denote the number of paths as n paths (equals the number of ammeters in this

network), one can construct H consist as: 

H consist = λpath 

n paths ∑ 

i =1 

y i g i , f i ({ x j } j∈ P i ) = 

∏ 

j∈ P i 
x j , (6)

with g i = l i + f i − 2 f i l i , a binary function with g i = 0 when the prediction f i , based only on the CB statuses in the path P i ,

is consistent with the readouts l i , and g i = 1 when the prediction and the readout are in disagreement. In other words,

g i = xor ( f i , l i ) . 

H numFaults is proportional to the number of faults (whenever x i = 0 or y i = 0 ) in the electrical network: 

H numFaults = λCB 
faults 

n CB ∑ 

i =1 

(1 − x i ) + λsensor 
faults 

n sensor ∑ 

i =1 

(1 − y i ) , (7) 

and when combined with H consist , as written in Eq. (5) , defines the problem energy function to be minimized by favoring

the minimal set of faulty components that are simultaneously consistent with the observations in the outermost sensors. A

thorough discussion on setting the values of all the penalties is provided in [20] . 
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Notice the pseudo-Boolean H consist is a high-degree polynomial, and for this particular network, the order of the polyno-

mial is related to the depth of the tree. We can reduce the degree of the polynomial to a quadratic expression, H QUBO , with

the overhead of adding more binary variables, while conserving the global minimum of the original function, H ({ x i }, { y i };

{ l i }). Further details on the techniques used for this reduction are provided in [20,22] . 

Assuming it requires n A ancilla variables { a i } to reduce the high-degree polynomial to the quadratic expression, we can

relabel the CB, sensor, and ancilla variables, { x i }, { y i }, and { a i }, respectively, into a new set of binary variables { q i } for

i = 1 , 2 , · · · , n l , with n l = n CB + n sensor + n A as the total number of logical qubits. The final quadratic cost function to be

minimized can then be written as 

H QUBO ({ q i } ) = E 0 QUBO + 

∑ 

i, j 

Q i, j q i q j 

= E 0 QUBO + q 

T · Q · q . (8)

As shown in Fig. 5 , this expression can be represented as a graph with the number of vertices equal to the number of logical

qubits n l corresponding to the set of variables { q i }. In this representation, Q i,i can be treated as the weights on the vertices,

while Q i,j are the weights for the edges representing the couplings between variables i and j (see Fig. 5 ). Notice that since

q 2 
i 

= q i , the expression q 

T · Q · q contains both linear terms Q i,i , and quadratic terms Q i,j , when i � = j . E 0 
QUBO 

corresponds to

the constant independent term. 

Although the problems studied in [20] are simpler than typical real-world instances, we believe that they still capture

some non-trivial features, such as the inclusion of uncertainty in the sensor readouts. Of course, aiming to embed all the

details from realistic scenarios will require significantly more qubits and also depend on the specific network/problem to be

solved. 

As another realization of the fault detection application, the QuAIL team is examining combinational digital circuits [23] ,

a more realistic scenario used to benchmark codes devoted to solving diagnostics related problems [21] . Preliminary results

look very promising and harder than any other benchmarks reported in the literature and used to address the question of

quantum speedup in quantum annealers. 

4.3. Sampling and machine learning applications 

Sampling from high-dimensional probability distributions is at the core of a wide spectrum of computational techniques

with important applications across science, engineering, and society. Examples include deep learning, probabilistic program-

ming, and other machine learning and artificial intelligence applications. 

Much of the record-breaking performance of classical machine learning algorithms regularly reported in the literature

pertains to task-specific supervised learning algorithms [24] . Unsupervised learning algorithms are more human-like, and in

principle more general and powerful, but their development has been lagging due to the intractability of traditional sam-

pling techniques such as Markov Chain Monte Carlo (MCMC). Indeed, as leading researchers in the field have pointed out

[24] , future success of unsupervised learning algorithms requires breakthroughs in efficient sampling algorithms. Quantum

annealing holds the potential to sample more efficiently and from more complex probabilistic models, which would signifi-

cantly advance the field of unsupervised learning. 

4.3.1. A different class of problems for quantum annealing 

A computationally hard problem, key for some relevant machine learning tasks, is the estimation of averages over prob-

abilistic models defined in terms of a Boltzmann distribution 

P B (s ) = 

1 

Z 
exp 

( ∑ 

i, j 

W i j s i s j + 

∑ 

i 

b i s i 

) 

, (9)

where Z is the normalization constant or partition function, s = { s 1 , . . . , s N } denotes a configuration of binary variables, and

W ij and b i are the parameters specifying the probability distribution. 

Sampling from generic probabilistic models, such as P B ( s ) in Eq. (9) , is hard [25] in general. For this reason, algorithms

relying heavily on sampling are expected to remain intractable no matter how large and powerful classical computing re-

sources become. Even though quantum annealers were designed for challenging combinatorial optimization problems, it has

been recently recognized as a potential candidate to speed up computations that rely on sampling by exploiting quantum

effects, such as quantum tunneling [26,27] . 

4.3.2. Quantum-assisted learning of Boltzmann machines 

Indeed, some research groups have recently explored the use of quantum annealing hardware for the learning of Boltz-

mann machines and deep neural networks (see [26,28] and references therein). The standard approach to the learning of

Boltzmann machines relies on the computation of certain averages that can be estimated by standard sampling techniques,

such as MCMC. Another possibility is to rely on a physical process, like quantum annealing, that naturally generates samples

from a Boltzmann distribution. In contrast to their use for optimization, when applying quantum annealing hardware to

the learning of Boltzmann machines, the control parameters (instead of the qubits’ states) are the relevant variables of the
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problem. The objective is to find the optimal control parameters that best represent the empirical distribution of a given

dataset. 

These ideas are framed within a hybrid quantum-classical computing paradigm. Given a classical machine learning in-

frastructure, the idea is to replace the software module that generate samples, e.g., via MCMC, with a quantum annealing

process. This quantum sampling module could be similarly employed in other domains where sampling is useful. Thus,

demonstrating quantum speedup for sampling would have broad implications. 

In recent work [26] , the QuAIL team has demonstrated how to properly use a quantum annealer by overcoming criti-

cal challenges such as the instances-dependent temperature estimation. In fact, while the probability distribution P B ( s ) in

Eq. (9) is specified by parameters W ij and b i , the control parameters of a quantum annealer are instead J i j = T eff W i j and

h i = T eff b i . According to quantum dynamical arguments [27] , T eff is an instance-dependent effective tem perature, different

from the physical temperature of the device. Unveiling this unknown temperature is key to effectively using a quantum an-

nealer for Boltzmann sampling. By introducing a simple effective temperature estimation algorithm [26] , it was possible to

successfully use the D-Wave 2X system for the learning of a special class of restricted Boltzmann machines that can serve

as a building block for deep learning architectures. Experiments run using a synthetic dataset showed that the quantum-

assisted algorithm outperformed in terms of quality (i.e., the value of the likelihood reached) the standard classical algorithm

named CD-1 and approached the performance of CD-100, which takes about 100 times more computational effort than CD-1

(see [26] for details). Complementary work that appeared roughly simultaneously showed that quantum annealing can be

used for supervised learning in classification tasks [28] . 

These results are encouraging, but there remain numerous challenges before the full potential of quantum annealing

hardware for sampling problems can be harnessed. While each future generation will no doubt be an improvement, hard-

ware advances alone will not suffice. The QuAIL team is therefore developing algorithmic strategies to address these other

problems, with promising initial results. For example, we recently demonstrated experimentally [29] the feasibility of a

fully unsupervised machine learning application by successfully training our quantum annealer, using up to 940 qubits, to

generate, reconstruct, and classify images that closely resemble (low resolution) handwritten digits, among other synthetic

datasets. We showed a Turing test (see Fig. 4 in [29] ) to challenge people to distinguish between handwritten digits and

digits generated by the quantum device; most people we informally showed this Turing test either failed or found it diffi-

cult. To reach this milestone, we implemented densely connected hardware-embedded models that are more robust to noise

and more efficient to learn with state-of-the-art quantum annealers. 

The ultimate question that drives this endeavor is whether there is quantum speedup in sampling applications. Current

experience with the use of quantum annealers for combinatorial optimization suggest the answer is not straightforward. This

work is part of the emerging field of quantum machine learning [30] , an essentially unexplored territory where quantum

annealing might have a large impact in the near term. 

4.4. Best practice programming and compilation techniques 

These explorations have spurred QuAIL to design advanced techniques to guide programming and improve performance.

Software calibration methods devised by the team are present in [31] . In [5] , we compare different mappings and in [32] ,

we present advanced techniques to intelligently select gauges based on small numbers of trial runs that often improve

performance by an order of magnitude. Compilation strategies for quantum annealers, including guidelines for optimally

setting the strength of J F are discussed in [5,11,12] . Furthermore, we have identified certain common structures in the QUBO

representations of many applications because different constraints often have similar forms [5] . 

5. Physics of quantum annealing 

This section discusses results clarifying the role of various processes in quantum annealing that suggest where to look

for potential quantum speedup and where such an advantage would be unlikely. So far, we have been informal about what

we mean by quantum speedup. However, knowing the different types of quantum speedup is helpful in assessing results

related to the computational power of quantum annealing. It is also necessary to improve our understanding of potential

classes of problems for which such a quantum device can excel. 

5.1. Background 

The target of quantum annealing is to optimize a function of QUBO form, as in Eq. (1) . The cost function has a physical

realization in a system comprising quantum bits (qubits) where each binary variable is encoded as a qubit. The coefficients

( a i ) translate into bias fields applied on the qubits and ( b i , j ) is represented as the coupling strength between two qubits. The

cost function thus corresponds to a Hamiltonian , H 1 , as in Eq. (2) , which describes the energy of the system. The Hamilto-

nian bears strong similarity with the cost function. However, while in the classical cost function the binary variables can

take value either zero or one, in a Hamiltonian the qubit is allowed to be (and in a physical quantum system, can be)

in a superposition of these two states α| 0 〉 + β| 1 〉 . The optimization problem translates into finding the ground state of
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the Hamiltonian, i.e., the eigenstate of the lowest eigenvalue of H 1 . In order to do so, quantum annealing introduces

quantum fluctuation in the system, represented as a non-commuting term in the Hamiltonian, H 0 . A typical H 0 easy

to prepare physically as H 0 = 

∑ 

j σ
x 
j 

where each σ x 
j 

swaps states 0 and 1 on the j th qubit. The weight of H 0 with re-

spect to H 1 is the strength of the fluctuation. The initial state of the system is one with all possible classical configu-

rations that are equally likely. The system starts with a strong quantum fluctuation that gradually quenches. The quan-

tum fluctuation provided by H 0 allows the dynamics to explore a larger region of the search space and gradually con-

centrate (with large probability) at the global minimum. At the beginning of the search, the initial state is very far

from the global minimum but a large fluctuation allows the system a better chance to accept a state that is energeti-

cally higher; thus allowing a more extensive search of the solution space. As the annealing progresses, the fluctuation is

tuned down and the system spends more and more time around the global minimum, eventually staying there once the

fluctuation disappears. This process resembles simulated annealing where the quantum fluctuation replaces the thermal

fluctuations. 

Another perspective of the same process is to view the total Hamiltonian as slow moving and time dependent. If the

Hamiltonian is varying slowly enough, the system will follow its instantaneous eigenstate (this is known as the adiabatic

theorem). Since the initial state is actually the ground state of H 0 , a slow tuning would eventually result in the ground state

of the problem Hamiltonian, H 1 . A key question is: how slow is slow enough? During the evolution when there is another

energy level close to the ground state and if the change of Hamiltonian is not slow enough, there is a risk the system would

jump to the higher level and never return, and the algorithm would fail. The closer the two energy levels are, the slower

the Hamiltonian must vary in order to mitigate this risk. The spectral gap (the minimal distance between the two energy

levels) plays a crucial role in quantum annealing. 

Ref. [33] defines four classes of quantum speedups: 

• Provable quantum speedup: It is rigorously proven that no classical algorithm can scale better than a given quantum

algorithm. 
• Strong quantum speedup: The quantum heuristic is faster than any known classical algorithm. This type of speedup has

been established for dozens of special-purpose algorithms, with Shor’s polynomial-time algorithm for factorization being

the most prominent. The best classical algorithm may be continually evolving, as is the case for most areas in which

classical heuristics prevail; the ICAPS (International Conference on Automated Planning and Scheduling) planning com-

petition and the SAT competition generally see new algorithms every year. 
• Potential quantum speedup: The quantum speedup is in comparison to a specific classical algorithm or a set of classical

algorithms. 
• Limited quantum speedup: There is a quantum speedup only if the quantum heuristic is compared to the closest classical

counterpart. 

A finer-grained classification, which takes into account the type of classical algorithm used in the comparison, has been

proposed in [34] . 

To better understand where quantum annealing may confer an advantage, it is important to appreciate its major sources

of error. The algorithm may fail to find a solution due to escape from the ground state either via non-adiabatic transi-

tions or decoherence processes. Yet another possibility is that the ground state does not correspond to the optimal solution

due to control noise. In the following, we review some of the recent developments in assessing the impact of these error

mechanisms. 

5.2. Quantum annealing bottlenecks 

Some insight into the relative performance of quantum annealing can be gained by studying random optimization prob-

lems using the tools of statistical mechanics. Absent noise, non-adiabatic transitions can be prevented only if the annealing

proceeds slowly across points where the gap �E that separates the instantaneous ground state from excited states becomes

small (taking at least time t ∝ � / �E ). The most widely discussed bottleneck, where the gap reaches a local minimum, is

the quantum phase transition. Some of the computationally hardest problems exhibit a discontinuous (first order) phase

transition, where the gap is exponentially small. In a common scenario, the ground state wavefunction abruptly changes

from being a superposition of a large number of spin configurations to being nearly localized near a global minimum. If the

transverse field is lowered too fast, the algorithm performs no better than a random guess. 

Continuous (second order) phase transitions scale better, although strong fluctuations of disorder (randomness of the

parameters of the problem) can still make the gap scale as a stretched exponential (exponential in some fractional power of

problem size). This still leaves a large swath of problems — most amenable to quantum annealing — where the disorder is

irrelevant at the critical point (phase transition) so that the gap there is only polynomially small. Recent work [35] addresses

this practically relevant scenario and finds that after the phase transition bottleneck, the algorithm encounters further bot-

tlenecks with gaps that scale as a stretched exponential. 

As annealing progresses, the number of spin configurations with significant amplitudes decreases until the wavefunction

is completely localized. This is roughly equivalent to having a partial assignment of variables: An increasing fraction of

binary variables have converged to a definite value, while the remaining variables are in a superposition state. At times, a
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state with a different assignment of already fixed variables becomes more energetically favorable, and a large number of

variable have to flip simultaneously in a multi-qubit tunneling, which is the source of ”hard” bottlenecks described above.

This process is analogous to ”backtracking” in classical search algorithms. 

The major finding is that the number of tunneling bottlenecks is proportional to the logarithm of problem size. In prac-

tice, as the problem size increases, the time complexity of quantum annealing will exhibit a crossover from polynomial scal-

ing (when the phase transition bottleneck is dominant) to exponential (when the expected number of “hard” bottlenecks

exceeds one). This size threshold is related to the ”density” of spin glass bottlenecks. Similar concept can be introduced

for other heurstic search algorithms, such as simulated annealing. The bottleneck density can thus be used as a metric of

performance indicating problem sizes above which the time complexity increases exponentially. 

Interestingly, the minimum requirement for the annealing time is to avoid non-adiabatic transition at the phase tran-

sition (polynomial scaling). As it turns out, for fully coherent annealing, having one long annealing cycle versus choosing

the best out of repeated short cycles results in identical time-to-solution (as long as annealing time exceeds the aforemen-

tioned minimum). Shorter annealing times minimize the effects of decoherence and have been favored in most experimental

studies on the D-Wave hardware. 

Coupling to the environment affects these results in multiple ways. First, it changes the universality class of the phase

transition, worsening scaling of the minimum annealing cycle [36] . Second, it suppresses multi-qubit tunneling since in

addition to flipping qubits, corresponding environmental degrees of freedom have to adjust. If quantum-mechanical tun-

neling is strongly suppressed, equilibrium may be reached via thermal excitation due to finite temperature. In this regime,

performance would paradoxically improve with increasing temperature as the system becomes more classical. 

5.3. Multi-qubit co-tunneling 

Multi-qubit quantum co-tunneling is expected to be a key microscopic mechanism responsible for quantum speedup in

quantum annealing. In the following, we consider limited speedup; i.e., speedup compared to simulated annealing. Realistic

hardware is subject to intrinsic noise that affects the quantum dynamics of the system, and therefore needs to be considered

when evaluating the efficiency of quantum annealing hardware. The effect of hardware noise is twofold: (1) Coupling to

noise allows inelastic processes, prohibited by energy conservation in the closed system. Inelastic relaxation provides an

efficient route to a local minimum within a convex region of the potential energy landscape. (2) Dephasing noise leads to

loss of coherence between the states on different sides of the barrier, resulting in an incoherent tunneling regime, and, in

the strong coupling regime, causes renormalization of the tunneling rate. 

In the case of the flux qubits of the D-Wave system, the typical decoherence time (a measure of how long quantum

features of a single qubit can be maintained, specifically the characteristic decay time of the off-diagonal elements of the

qubit’s density matrix) is of the order of nanoseconds to tens of nanoseconds, which is shorter than the minimum run time

of the annealing schedule, 5 μs. Nevertheless, D-wave annealers demonstrate signatures of quantum many-body dynamics,

particularly incoherent multi-qubit quantum tunneling and evidence of 8-qubit tunneling has been reported [37] . In the

course of quantum annealing, the dynamics of the device are limited to low-energy multi-qubit superposition states, which

are more robust against the effects of noise and decoherence than single qubit states. In this regime, single qubit excitations

caused by noise local to each qubit are strongly suppressed by the strong qubit-qubit coupling energy. At the same time,

slow fluctuations of local magnetic flux result in a time-dependent spectrum of the multi-qubit low-energy states, which

introduces decoherence of the multi-qubit dynamics. 

In the vicinity of the algorithm’s bottlenecks, quantum annealing hardware realizes incoherent tunneling [37] . Differ-

ent tunneling regimes are determined by comparing the quantum tunneling rate near the computational bottleneck to the

characteristic dephasing rate. In a common regime, the tunneling rate near the bottleneck is exponentially small, while the

dephasing rate is at least of order one. In this regime, quantum tunneling can be only incoherent in nature [38] : an analog

of the decay of a metastable state into a continuous spectrum encountered in nuclear physics and chemistry, as opposed to

a coherent superposition of states on two sides of a potential barrier. The incoherent regime is characterized by a quadratic

slowdown of quantum tunneling. Nevertheless, there exist classes of problems where limited polynomial speedup is pos-

sible in this regime, particularly in cases where the shape of the potential barrier favors quantum tunneling over classical

over-the-barrier escape, such as when barriers are tall and thin [39] . 

An alternative [40] , operational also in the case of thick barriers where the usual intuition would favor classical escape, is

the class of problems characterized by exponential degeneracy of the metastable state separated by a barrier from the global

minima. The latter is typical for NP-hard problems; a common feature of classical mean-field spin glass models [41] is

a polynomial number of global minima separated by large potential barriers from an exponential number of metastable

states. In such a landscape, simulated annealing slows down exponentially due to an additional entropic barrier associated

with escaping the exponentially degenerate set of metastable states. In contrast, in the course of quantum annealing, the

transverse field splits the degeneracy of the classical problem and thereby avoids the additional entropic barrier. 

To better understand multi-qubit tunneling processes, we developed an instantonic calculus for analytical treatment of

the thermally-assisted tunneling decay rate of metastable states in fully-connected quantum spin models [42,43] . The tun-

neling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynam-

ical field is simulated efficiently by path integral Quantum Monte Carlo (QMC). We show analytically that the exponential

scaling with the number of spins of the thermally-assisted quantum tunneling rate and the escape rate of the QMC process
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Fig. 6. (a) Lumped element model for LC oscillator with current I and voltages V C = −V J . (b) Tunable SQUID loop biased by external flux �ext . (c) Effective 

circuit of a qubit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are identical [44] . This analytical result complements prior numerical work [45] and provides an explanatory model. This

effect is due to the existence of a dominant instantonic tunneling path. We solve exactly the nonlinear dynamical mean-

field theory equations for a single-site magnetization vector that describe this instanton trajectory. We also derive scaling

relations for the spiky barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins

while a classical over-the-barrier activation rate scales exponentially. 

5.4. Role of noise 

Intrinsic noise cannot be eliminated from real quantum devices: manufacturing imperfections, as well as thermal fluctu-

ations, induce quantum dephasing and decoherence (see Section 6 ). Noise can sometimes be helpful (thermal fluctuations

are responsible for the thermally-assisted annealing effects discussed earlier), but can cause quantum devices to work far

from their ideal state, limiting the actual performance and hiding any potential quantum speedup. 

In addition, control noise can change the target Hamiltonian H 1 with the consequence that the target solution is no

longer in the ground subspace of H 1 . In this case, even a perfect quantum device, subject only to control noise, would

find a “false” ground state, which could be far from any target solution. The maximum noise that can be added to H 1

before the target solutions do not belong to the ground subspace of H 1 is called resilience [46,47] . In general, resilience

can be increased by properly rescaling the energy of H 1 . Real quantum devices, however, have a limited range of en-

ergies so the resilience cannot be completely neglected. Recent work shows that a low resilience could hide a quantum

speedup [46] . 

6. Quantum annealing hardware 

To date, the most significant progress in quantum annealing hardware is based on the engineering of quantum super-

conducting circuits with macroscopic collective variables (e.g., electric charge and magnetic flux) exhibiting quantum coher-

ence. Here we review basic design and operational principles of such circuits, focusing on different types of superconducting

qubits, inter-qubit coupling, and decoherence processes caused by various sources of the environmental noise. 

6.1. Quantization of electric circuits with Josephson junctions 

Let us briefly describe quantization of zero-resistance superconducting circuits, which is based on the lumped element

method [48–50] . We can represent a circuit using two alternative sets of variables: current and voltage ( I ( t ) and V ( t )) or

charge and flux ( Q ( t ) and �( t )), connected with each other via the relations I = d Q/d t and V = d �/d t . Let us start with

the simplest circuit such as an LC oscillator (see Fig. 6 (a)), whose dynamics is governed by the Kirchhoff’s laws I L = I C ≡ I

and V L + V C = 0 . Using V L = Ld I/d t and V C = Q C /C, one obtains the equation of motion Ï + ω 

2 
LC I = 0 , where ω LC = 1 / 

√ 

LC is the

characteristic frequency for classical current (and voltage) oscillations. The magnetic flux � and charge Q are governed by

similar equations, e.g., �̈ + ω 

2 
LC 

� = 0 . Using variables ( Q , �) one can express the equations of motion in the Hamiltonian

form, ˙ � = ∂ H/∂ Q and 

˙ Q = −∂ H/∂ �, where the classical Hamiltonian function is H = Q 

2 / 2 C + �2 / 2 L . Following the standard

quantization procedure, we replace classical variables with corresponding operators, introduce the commutator 
[

ˆ �, ˆ Q 

]
= i h̄ ,

and arrive at the Hamiltonian of a quantum harmonic oscillator, ˆ H = 

ˆ Q 

2 / 2 C + 

ˆ �2 / 2 L, describing the quantized electromag-

netic modes of a macroscopic LC circuit with equidistant energy levels, E n = h̄ ω LC (n + 1 / 2) with n = 1 , 2 . . . . Clearly, this

energy spectrum is not suitable for an implementation of a two-level qubit. 

In order to separate two well-defined levels that can be used as logical states |0 〉 and |1 〉 , one should employ a non-

harmonic circuit with almost negligible coupling of the qubit levels and the rest of the spectrum. A natural solution is to

introduce a Josephson junction as a nonlinear and non-dissipative element of the circuit. Josephson junctions are formed

by two superconductors weakly connected through a high barrier. Within the lumped element approach, they are described

by the current-voltage characteristics I J = I 0 sin (2 π�/ �0 ) where I 0 is a critical current and �0 = π h̄ /e is the flux quan-

tum. Analysis of different realizations of a qubit is based on the Kirchhoff’s laws and on the description of the junction’s

contributions in terms of I J and V J (or �). 

A tunable qubit is realized if one replaces a single Josephson junction by a SQUID loop formed by two paral-

lel junctions biased by an external flux, �ext (see Fig. 6 (b)). The current passing through the SQUID is given by I J =
I 0 cos (2 π�ext / �0 ) sin (2 π�/ �0 ) [51] , which can be thought of as an effective junction with tunable critical current I eff =
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Fig. 7. Effective circuits and potential energies vs. flux for: (a) Flux qubit (tunable Josephson junction shunted by LC oscillator); and (b) Junction shunted by 

capacitor only (charge qubit). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I 0 cos (2 π�ext / �0 ) controlled by �ext . A typical tunable qubit can be represented as an effective junction shunted by a linear

circuit with admittance Y ω (see Fig. 6 (c)). Below we consider two basic types of such qubits shunted by either LC oscillator

(flux qubit) or a capacitor (charge qubit). 

6.2. Hamiltonians of flux and charge qubits 

Effective Josephson junctions, inductance and capacitance, connected in parallel, form a flux qubit (see Fig. 7 (a)). The

circuit is governed by the Kirchhoff’s laws for currents I J , L , C and volt ages V J , L , C : I J = I C + I L , V J + V C = 0 , and V J + V L = 0 . Using

these relations, we obtain the equation of motion for a flux � threading through the device as: C �̈ + �/L + I eff sin 

(
2 π�
�0 

)
=

0 , which leads to the following Hamiltonian of a flux qubit 

ˆ H = 

ˆ Q 

2 

2 C 
+ 

( ̂  � − �x ) 2 

2 L 
− �0 I eff

2 π
cos 

2 π ˆ �

�0 

. (10) 

Here we assumed that the inductance loop L can be biased by an additional external flux �x applied through inductive

coupling. The first (capacitance) term 

ˆ Q 

2 / 2 C in Eq. (10) can be interpreted as a kinetic energy while the second and third

terms describe a potential formed by inductance and Josephson terms, respectively. 

For further consideration, it is convenient to introduce dimensionless flux ˆ φ = 2 π ˆ �/ �0 + π and charge operators ˆ q =
−id /d ̂  φ. Then the Hamiltonian in Eq. (10) can be expressed as 

ˆ H = 4 E C ̂  q 2 + E L 
( ̂  φ − φx ) 2 

2 

+ E eff
J cos ˆ φ, (11) 

and it is different from the LC oscillator by adding the effective ener gy of Josephson junction, E eff
J 

= �0 I eff/ 2 π . We also in-

troduce here the capacitance and inductance energies, E C = e 2 / 2 C and E L = (�0 / 2 π) 2 /L and φx = 2 π�x / �0 + π . The Hamil-

tonian in Eq. (11) corresponds to a particle with kinetic energy proportional to E C and potential energy determined by the

interplay between E L and E eff
J 

through the ratio β = E eff
J 

/E L = 2 π I effL/ �0 . If β < 1, Eq. (11) describes a single-well anhar-

monic oscillator, while for β > 1 the double-well potential emerges and there are two closely-spaced tunnel-split levels

defining a qubit. The quantum dynamics is determined by tunneling between the wells that can be controlled by variation

of the barrier height E eff
J 

, and by tilting the two-well potential via the tilt flux φx . Flux qubits described by Eq. (11) are

implemented in D-Wave quantum annealers [51] . 

A typical charge qubit operates as an open circuit shown in Fig. 7 (b). To derive the Hamiltonian we must omit the induc-

tance term in the equations of motion, which results in 

ˆ H = 4 E C ̂  q 2 + E eff
J cos φ, (12) 

and contains only the Josephson (periodic) part of the potential energy. The eigenvalue problem is reduced to the Mathieu

equation. Operational regimes of various qubits described by the generic Hamiltonian in Eq. (12) drastically depend on the

ratio E J / E C . 

Several types of qubits have been realized during the last two decades. The simplest charge qubit, comprised of a voltage

source in series with a Josephson junction ( the Cooper pair box ), had been implemented in [52] . Because of the large charging

energy, E J / E C � 1, the two charge states different by a single Cooper pair are the working states of this qubit. Unfortunately,

the Cooper pair box is highly sensitive to the charge noise. To overcome this difficulty, another qubit called the transmon

was developed [53] . The transmon is derived from the Cooper pair box, but it operates in a different regime of E eff
J 

/E C � 1 . It

benefits from the fact that its charge dispersion and noise sensitivity decreases exponentially with E J / E C . Tuning E eff
J 

controls

the amplitude of the potential, which forms a periodic array of minima and maxima shown as red and blue regions of a

contour plot in Fig. 7 (b). Since E J / E C � 1, tunneling between different minima is greatly suppressed and the qubit is realized

at an arbitrary minimum where the lower states are unevenly spaced due to the nonparabolicity of the cosine potential.

Therefore, one can manipulate the lowest pair of levels as in the case of a flux qubit. In Fig. 8 , we present basic types of

qubits [54] and show typical ratios E L / E J and E J / E C for these qubits (“Mendeleev-like table”) [55] . Selection criteria among

various qubits for particular applications are determined not only by internal device parameters but also by their coupling

properties and tolerance to the environmental noise. 
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Fig. 8. (a) Summary of the basic types of superconducting qubits [54] . (b) Ratios of energies E L / E J and E J / E C for different types of qubits (Mendeleev-like 

table) [55] . 

Fig. 9. Effective circuits for different regimes of interqubit coupling: (a) between flux qubits via mutual inductance M c ≡ M 12 , (b) through inductive 

loop controlled by SQUID, [56] (c) between transmons coupled via capacitance C c , and (d) tunable coupling between transmons controlled by Josephson 

junction with nonlinear inductance L c [57] . (e) Schematic of the coplanar waveguide resonator (light blue), the transmon qubits and the first harmonic of 

the standing wave electric field shown in red [54,58] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Inter-qubit coupling 

Controllable couplings between qubits is at the heart of any quantum computing application. The simplest and most

commonly used couplers are based on linear superconducting circuits; e.g., mutual inductances or capacitances, as shown

in Figs. 9 (a) or (b). A typical multi-qubit system is described by an anisotropic Heisenberg Hamiltonian: ˆ H = 

∑ 

i,α B iα ˆ σiα +∑ 

i, j,α(i � = j) J αi j ̂
 σiα ˆ σ jα, where ˆ σiα are pseudo-spin Pauli matrices in a qubit 2 × 2 Hilbert space, B i α are the components of

local fields, and J α
i j 

are exchange coupling parameters. Mechanism of inductive coupling between flux qubits i and j via

mutual inductance M i j = M ji ( Fig. 9 (a)) is straightforward: if M ij � = 0, the external flux from qubit i threads through qubit j

loop (or vice versa) and affects the energy levels. Thus, the longitudinal coupling (proportional to ˆ σ1 z ̂  σ2 z ) can be expressed

as J z 
i j 

∼ M i j I i I j . The direct inductive coupling is not tunable; however, a tunable coupling strength can be realized if the

inductance loop is driven by a SQUID. An example of such coupling, utilized in D-Wave quantum annealers, is schematically

shown Fig. 9 (b) [56] . It is based on bias currents that produce controlled flux biases. 

A circuit diagram of two capacitively-coupled transmons is shown in Fig. 9 (c), and can be analyzed using the lumped

element method as above. As a result, the interaction Hamiltonian for a pair of transmons can be expressed as ˆ q i ̂  q j C/C c .

Calculating matrix elements of ˆ q i, j within the two-level approximation, we obtain the transverse coupling (proportional to

ˆ σix ̂  σ jx ) with the coupling parameter J x 
i j 

∼
√ 

�E i �E j (C/C c ) , where �E i is level splitting of i th transmon. The purely capacitive

coupling is not tunable, but the coupling strength can be controlled using a non-linear coupler with Josephson junction (a

tunable inductor). This circuit is depicted in Fig. 9 (d), where arrows indicate the flow of current for an excitation in the left

qubit [57] . It is important that the coupling be tunable with nanosecond resolution, making this circuit suitable for various
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applications ranging from quantum logic gates to quantum simulations. Similar circuits are employed for readout of a flux

qubit state in D-Wave quantum annealers, where each qubit is connected inductively with a quantum flux parametron ( rf -

SQUID with a small inductance, a large capacitance and a very large critical current) [51,59] . Another approach is to couple

all qubits to a shared passive element (quantum bus) such as a cavity or a coplanar waveguide resonator (CPW) [54] . 

6.4. Qubit relaxation and decoherence 

Superconducting qubits are macroscopic quantum objects whose generic quantum properties, such as superposition of 

states and entanglement, inherently suffer from detrimental effects caused by a macroscopic, noisy environment [60] . To

describe environmental noise phenomenologicaly, one should take into account random charge, flux, and Josephson junction

noise sources that modulate lumped elements of the equivalent circuit in the qubit Hamiltonians in Eqs. (11) or (12) . 

After tracing over the environmental variables, the qubit dynamics is governed by the Bloch equation with two transition

rates �1 and �2 (or times T 1 and T 2 ) describing qubit relaxation and decoherence , respectively. The two rates are related:

�2 = �1 / 2 + �d , where �d describes dephasing due to the low frequency noise. The flux qubits (e.g., D-Wave qubits) studied

to date suffer from a low-frequency flux noise due to environmental spins [61,62] . This leads to a substantial dephasing rate

�d and, in turn, to a large difference between the relaxation and decoherence rates, �2 ∼ �d � �1 . In transmon qubits, the

flux noise is absent and the low-frequency charge noise is suppressed; i.e., the decoherence rate is low and �2 and �1 are

close to each other. 

A particular choice of a qubit depends on its suitability for a given application. For instance, quantum annealing requires

strong coupling between the qubits. Therefore, in this case the flux qubit is a preferred choice because a typical value of

the coupling parameter for D-Wave flux qubits is several GHz. On the other hand, the coupling between transmon qubits

is much weaker (on the order of 10 MHz). Thus, the coupling and connectivity requirements of the quantum annealing

outweigh the disadvantages caused by the higher decoherence rate of the flux qubits. 

7. Conclusions 

The emergence of quantum annealers in the past few years has enabled the explorations described in this paper. The

next few years promise to be yet more exciting as more sophisticated quantum annealers become available and one sees the

advent of the first universal quantum computers able to run other quantum heuristic algorithms. The NASA QuAIL team is

excited to be at the forefront of these developments, and looks forward to working with quantum hardware and algorithms

teams from around the world to explore quantum heuristics and thereby broaden the areas in which quantum computation

has clear applications. 
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