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Abstract

Topoisomerase I (Top1) catalyzes two transesterification reactions: single-strand DNA cleavage and religation that are
normally coupled for the relaxation of DNA supercoiling in transcribing and replicating chromatin. A variety of endogenous
DNA modifications, potent anticancer drugs and carcinogens uncouple these two reactions, resulting in the accumulation of
Top1 cleavage complexes. Top1 cleavage complexes damage DNA and kill cells by generating replication-mediated DNA
double-strand breaks (DSBs) and by stalling transcription complexes. The repair of Top1-mediated DNA lesions involves
integrated pathways that are conserved from yeasts to humans. Top1-mediated DNA damage and cell cycle checkpoint
responses can be studied biochemically and genetically in yeast and human cells with known genetic defects. Defects in these
repair/checkpoint pathways, which promote tumor development, explain, at least in part, the selectivity of camptothecins and
other Top1 inhibitors for cancer cells.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

DNA topoisomerases exist in all living organisms.
In humans, there are 6 topoisomerase genes coding for
nuclear topoisomerase I (Top1), mitochondrial topoi-
somerase I (Top1mt)[1], topoisomerases II� and�,
and topoisomerases III� and � (reviewed in[2,3]).
Nuclear Top1 is essential for animals as knockout are
not viable in flies[4] and mice[5]. Top1 is how-
ever dispensable both in budding yeastSaccharomyces
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cerevisiae(YSC) [6] and fission yeastSaccharomyces
pombe(YSP)[7]. A critical function of Top1 is to re-
lax supercoiled DNA in transcribing and replicating
chromatin. Top1 may also play roles in DNA repair
and recombinations[8,9].

DNA topoisomerases are the targets of antimicro-
bial and anticancer drugs, and mammalian Top1 is
the selective target of camptothecins[10–12]. Top1
cleavage complexes (seeSection 2) are also produced
by endogenous and exogenous DNA lesions (for re-
view see[13]), including UV-induced base modifica-
tions, guanine methylation and oxidation, polycyclic
aromatic carcinogenic adducts[14], base mismatches,
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abasic sites, cytosine arabinoside or gemcitabine in-
corporation[15] and DNA nicks. Cleavage complexes
can produce DNA damage after collisions of replica-
tion forks and transcription complexes. These lesions,
and in particular replication fork collisions, need to be
repaired for cell survival.

This review focuses on the DNA repair and check-
point pathways elicited by Top1-mediated damage in
nuclear DNA and the conservation of these specific
DNA repair and cell cycle checkpoint pathways from
yeast to humans. Some of the review is speculative
in order to provide a basis for further investigations.
We will concentrate on the genes and corresponding
pathways that determine the cellular responses/repair
of Top1 cleavage complexes both in yeasts and mam-
malian cells. The biochemistry and cellular biology of

Table 1
Exogenous and endogenous factors producing Top1 cleavage complexes

Anticancer drugsa Mb Rc Notes References

Camptothecins T r Highly selective and specific [17]
Indolocarbazoles (NB-506) T r In clinical development [19]
Actinomycin D T r Other effects: DNA, RNA polymerase [17]
Hoechst T r Other effects: DNA minor groove binding [19]
Triple helix camptothecin conjugates T r Sequence specific major groove binding [260]
Indenoisoquinolines T r Developed by Cushman and Pommier [19]
Phenanthridines and analogs T r Developed by LaVoie and Liu [19]
Ecteinascidin 743 T r N2-dG alkylation; NER poison [19]
Cytosine arabinoside T r Other effects: blocks DNA synthesis [261,262]
Gemcitabine T r Other effects: blocks DNA synthesis [15]

Endogenous DNA lesions[13]
Single base mismatches T r Polymerase and mismatch defects [13,263]
Mismatched loops T icc Mismatch deficiencies [263]
Abasic sites T icc AP sites; base excision repair [263]
8-Oxoguanosine B r Free radicals: oxidative lesions [22]
5-Hydroxycytosine ? r Free radicals: oxidative lesions [22]
Single-strand breaks T icc Free radicals; base excision repair [27]
Cytosine methylation F+T r Physiological [264]
Triple helix formation F+T r [23]

Exogenous DNA lesions[13]
UV lesions ? ? Dimers and 6,4-photoproducts [265,266]
IR-induced DNA breaks T icc Both single- and double-strand breaks [27]
06-Methylguanine T r Produced by alkylating drugs (MNNG) [267]
O6-dA-Benzo[a]pyrene adducts T icc Intercalated carcinogenic adducts [268]
N2-dG-Benzo[a]pyrene adducts F icc Minor groove carcinogenic adducts [14,269]
N2-dG-Benzo[c]phenanthrene adducts T r Intercalated carcinogenic adducts [14]
N6-Ethenoadenine T r Carcinogenic vinyl adduct [270]

a For detailed review on non-camptothecin inhibitors (see[19]).
b Mechanism for Top1 cleavage complex production. T: trapping of the Top1 cleavage complexes (i.e. inhibition of religation) (seeFig.

3B); B: enhancement of binding; F: enhancement of the forward (cleavage) reaction.
c Reversibility of the Top1 cleavage complexes. r: reversible; icc: irreversible cleavage complexes.

Top1, the development of non-camptothecin Top1 in-
hibitors, and the apoptotic pathways elicited by Top1
cleavage complexes have been recently reviewed else-
where and will only be mentioned here[2,3,13,16–19].

2. Abnormally high frequency of Top1 cleavage
complexes can be generated by endogenous and
exogenous agents

Top1 break sites are normally ubiquitous in the
genome as a consequence of the normal activity of the
enzyme. Top1 relaxes DNA supercoils, which build
up ahead of replication and transcription complexes,
by inducing transient single-strand breaks. This allows
rotation of the DNA double helix around the intact
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strand and, once the DNA is relaxed, Top1 religates
the breaks and regenerates intact duplex DNA. Bio-
chemically, each Top1-mediated DNA break results
from a nucleophilic attack from the enzyme catalytic
tyrosine (human Tyr723) (for review see[2,3]) (see
Fig. 3B). Covalent Top1-cleaved DNA intermediates
are referred to as “cleavage complexes”. Under normal
conditions, Top1 cleavage complexes are very tran-
sient and not detectable. The religation step is much
faster than the cleavage (forward) step (see biochem-
ical scheme inFig. 3B).

A variety of conditions (summarized inTable 1) in-
crease the frequency of Top1 cleavage complexes by
inhibiting the religation (annotated “T” inTable 1),
which is commonly referred to as “trapping” of
Top1 cleavage complexes. Such trapping is gener-
ally due to a misalignment of the 5′-hydroxyl DNA
end that needs to act as a nucleophile toward the
enzyme tyrosyl-DNA phosphodiester bond for re-
versing the Top1 cleavage complex (seeFig. 3B; for
details see[20]). Enhancement of Top1 binding rather
than religation inhibition has been demonstrated for
8-oxoguanine[21,22]. Position-specific enhancement
of forward rate was recently observed with triple
helix-forming oligonucleotides[23].

3. Cellular lesions induced by Top1 cleavage
complexes

3.1. DNA damage resulting from Top1 cleavage
complexes

Top1 cleavage complexes are normally readily re-
versible after camptothecin removal, and short expo-
sures to camptothecins (for less than 1 h in cell culture)
are relatively non-cytotoxic[24–26]. Persistent drug
exposure is required for effective cell killing, as Top1
cleavage complexes are converted into DNA lesions
by cellular metabolism.Fig. 1 shows several mecha-
nisms that convert reversible Top1 cleavage complexes
into DNA damage (irreversible Top1 covalent com-
plexes) by displacing the cleaved 5′-OH end so that it
cannot be religated. Collisions between transcription
and replication complexes are shown in panels (B) and
(C), respectively. These lesions and the cellular con-
sequences of transcription and replication inhibition
will be discussed in the next section (Section 3.2).

Panels (D)–(G) (Fig. 1) show how preexisting DNA
lesions can generate irreversible Top1 cleavage com-
plexes, commonly referred to as “suicide complexes”
(strand breaks in panels (D) and (E); base lesions in
panel (F)) (seeTable 1) (for review see[13]). The
production of suicide complexes can be enhanced by
Top1 poisons[27]. Accordingly, camptothecins and
ionizing radiations act synergistically[28]. Also, at
high camptothecin concentrations, two Top1 cleavage
complexes may form on opposite strands, generating
a DNA double-strand break (DSB)[29] (Fig. 1G).

3.2. Replication versus transcription

In most cancer cells[25,30,31] and budding
yeast [32], camptothecin cytotoxicity appears pri-
marily related to replication-mediated DNA le-
sions. However, protection by the DNA polymerase
inhibitor, aphidicolin, is generally limited to the
lowest (sub-micromolar) doses of camptothecin
[26,29,33,34]. These dose-dependent effects are as-
sociated with differences in gene expression patterns
[35] and cell cycle responses. Low camptothecin
doses produce reversible G2 delay whereas higher
doses result in S-phase delay and G2 arrest[36].
Replication-independent cytotoxicity can be observed
in non-dividing cells, such as neurons[33] and nor-
mal lymphocytes (personal data, unpublished). More-
over, the XRCC1-defective CHO EM9 cells (see
Section 4.3) remain hypersensitive to camptothecin
when DNA replication is blocked[37,38], suggesting
that specific pathways repair transcription-associated
DNA lesions.

3.3. Replication inhibition by Top1 poisons

Camptothecin inhibits DNA synthesis rapidly and
for several hours after drug removal[24,25,39]. The
inhibition is initiated by collisions between replica-
tion forks and trapped Top1–DNA cleavage com-
plexes (Fig. 1C), as demonstrated in Simian Virus
40 [40,41] and the human ribosomal DNA (rDNA)
locus [42]. Replication fork collisions are generated
when the Top1 cleavage complexes are on the leading
strand for DNA synthesis. Replication proceeds up to
the 5′-end of the Top1-cleaved DNA, a process re-
ferred to as “replication run-off” (Fig. 1C) [42]. The
5′-termini of the DSBs are rapidly phosphorylated in
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Fig. 1. Conversion of Top1 cleavage complexes into DNA damage by displacement of the 5′-hydroxyl at the end of the cleaved strand
by DNA replication, transcription, or preexisting DNA lesions. (A) Schematic representation of a Top1 cleavage complex trapped by
camptothecin (black rectangle). Top1 is covalently bound to the 3′-end of the broken DNA. The other end is a 5′-hydroxyl (OH). (B)
Conversion of the cleavage complex into a covalent Top1–DNA complex by a colliding transcription complex (the RNA is shown in green).
(C) Conversion of the cleavage complex on the leading strand into a covalent Top1–DNA complex by a colliding replication fork (the
leading replication is shown in red; the lagging replication in blue). (D and E) Formation of a suicide complex by a single-strand break
on the same (D) or the opposite (E) strand from the Top1 scissile strand. (F) Formation of an irreversible Top1 cleavage complex by a
base lesion ((∗) abasic site, mismatch, oxidized base,. . . ) at the 5′-end of the cleavage site (see[13]). (G) Formation of a double-strand
break at two Top1 cleavage sites close to each other.

vivo, by the kinase activity of polynucleotide kinase
phosphatase (PNKP) (seeFigs. 3 and 5) (Fig. 1C)
[42]. Replication-mediated DSBs are strand specific,
as they are not detectable on the lagging strand in
rDNA [42]. The repair of these replication-mediated
DSBs is markedly more efficient in rDNA[42] than
in the overall genome[43]. This differential repair
might be due to the unique structure of rDNA, which
consists of approximately 200 tandem repeats, to its
telomeric location at the ends of the short arms of 5 of
the human chromosomes, and to its unique location
within nucleoli.

The persistent inhibition of DNA synthesis (for
up to 8 h) following camptothecin removal[39] is
due to the activation of an S-phase checkpoint[39],
including inhibition of thymidine kinase[44]. This
S-phase checkpoint is due to a decrease in DNA repli-
cation [45], primarily at the level of initiation[46].
It is currently unclear whether this inhibition corre-
sponds to origins that normally fire late in S-phase,
similar to the S-phase checkpoint induced by aphidi-
colin [47,48]. Checkpoint activation prevents cells
from entering mitosis with damaged DNA and pro-
vides additional time for DNA repair. Furthermore,
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replication fork arrest prevents the generation of new
collisions. Inhibition of the S-phase checkpoint by
7-hydroxystaurosporine (UCN-01) has marked cy-
totoxic synergy with camptothecins[49]. UCN-01
inhibits both protein kinases Chk1[50,51] and Chk2
[52]. This observation is important, since UCN-01
is used in clinical cancer chemotherapy. Because the
synergism is more pronounced in cells with defec-
tive p53[49], it is attractive to propose clinical trials
associating camptothecin derivatives and UCN-01.

3.4. Transcriptional effects of Top1 poisons

Camptothecin is a potent inhibitor of both nucleo-
lar (rRNA) and nucleoplasmic (mRNA) transcription
[24,53–55]. This inhibition is primarily due to tran-
scription elongation blocks by trapped Top1 cleav-
age complexes (Fig. 1B) [56–59], which is a high
probability event since Top1 is associated with tran-
scription complexes (for review see[17]). In vitro
assays demonstrated that transcription complexes can
convert Top1 cleavage complexes into irreversible
strand breaks by the elongating RNA polymerase (see
Fig. 1B) [29,60].

The transcription response to Top1 inhibition
is locus- and cell-type dependent[61]. In the
Chinese hamster dihydrofolate reductase (DHFR)
gene, camptothecin stimulates RNA synthesis from
promoter-proximal sequences, while transcription
from promoter-distal sequences is reduced, indicating
that camptothecin stimulates initiation while inhibit-
ing elongation [62]. In human cells, transcription
inhibition by camptothecin is not uniform[63]. While
camptothecin causes a strong holdback of the endoge-
nous c-MYC gene at the P2 promoter, it produces
minimal effect on an episomal c-MYCgene or on the
basal transcription of theHSP70andGAPDH genes
[63]. It has minimal effect on transcription complexes
at most of the rRNA promoters and on7SK RNAtran-
scription by RNA polymerase III. Thus, the effects of
camptothecin are gene dependent.

Transcription inhibition recovers rapidly follow-
ing camptothecin treatment[55,62]. Interestingly,
Cockayne syndrome cells, which are deficient in
transcription recovery following DNA damage and
in transcription-coupled nucleotide excision repair
(NER), are hypersensitive to camptothecin[43], sug-
gesting the importance of transcription-coupled DNA

repair for cellular response to top1-mediated DNA
damage.

Inhibition of Top1 catalytic activity might also in-
hibit transcription by producing an accumulation of
positive supercoils upstream from the transcribing
RNA polymerase complexes[63,64]and by compact-
ing chromatin domains[63,65]. The transcriptional
effects of camptothecins could also be related to two
other functions of Top1. First, Top1 is known to
regulate transcription initiation by binding to TATA
binding proteins, repressing basal transcription and
enhancing transcription activation independently of
its DNA nicking-closing activity [66–68]. Second,
Top1 activates RNA splicing by acting as a specific
kinase for RNA splicing factors from the SR family
such as SF2/ASF[69–71], and by binding to RNA
splicing factors PSF/p54[72,73]. Camptothecin and
NB-506, a non-camptothecin Top1 poison[19], block
this Top1 SR kinase activity in vitro[69,74].

Top1 cleavage complexes can also activate cel-
lular transcriptional stress responses. Camptothecin
produces an elevation of transcription factors, in-
cluding p53[75], AP1 (c-fos and c-Jun) [63,76,77]
and NF-kB[78,79]. Microarray analyses demonstrate
that many genes are rapidly upregulated following
camptothecin treatment[36] in a p53-dependent and
p53-independent manner[35].

4. Repair of Top1 covalent complexes

The various lesions resulting from the conversion
of reversible Top1 cleavage complexes into DNA
damage (schematized inFig. 1B–G) are sometimes
referred to as “suicide complexes” or “dead-end
covalent complexes”. They are characterized by a
covalently-linked Top1 molecule at the 3′-end of the
break. On the 5′-end of the break, the cleaved strand is
generally (except for single-strand removal,Fig. 1D,
and base lesions,Fig 1F) associated with a comple-
mentary strand. In the case of transcription-mediated
Top1 suicide complexes (Fig. 1B) the resulting
double-strand termini are DNA–RNA hybrids,
whereas in the case of replication-mediated suicide
complexes (Fig. 1C), the termini are DNA duplexes
formed between the template and the newly synthe-
sized leading strands (seeSection 3.3). In the case
of Top1 suicide complexes resulting from cleavage
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Fig. 2. Schematic representation of the repair pathways for Top1-mediated DNA damage. Processing of the 3′-end implicates Tdp1, PNKP
(Ape1) following ubiquitin (Ub)-mediated Top1 proteolysis (seeFig. 3 and Section 4.1). 3′-processing can also be carried out by at least
3 different 3′-flap endonuclease complexes: Rad1/Rad10 (XPF/ERCC1 in humans), Mre11/Rad50/Xrs2 (Nbs1 is the human ortholog for
Xrs2), and Mus81/Mms4 (Mus81/Eme1 in humans) (seeFig. 4 and Section 4.2). Processing of the 5′-end of the DNA implicates both
homologous recombination (HR) (BRCA2, RAD52, RAD51) and non-homologous-end-joining (NHEJ) (Ku and DNA–PK). Resolution
of Holliday junctions implicates the RecQ helicase (BLM, WRN) in association with Top3 (seeFig. 6 and Sections 4.4 and 5.5). Gap
filling can be carried out by the base-excision pathway (XRCC1, PNKP, PARP,�-polymerase, ligase III) (seeFig. 5 and Section 4.3).
Chromatin remodeling involves histone modifications (phosphorylation of H2AX (�-H2AX), acetylation under the control of histone
acetyltransferases (HAT) and histone deacetylases (HDAC)). Cockayne syndrome B (CSB) remodels chromatin in conjunction with DNA
repair and transcription.

complexes in nicked DNA (Fig. 1E) or from neighbor-
ing cleavage complexes on opposite strands (Fig. 1G),
a staggered DSB is formed.

Thus, the repair of Top1-mediated DNA damage
requires the removal of the Top1 covalent complex,
the repair of the DNA (or DNA–RNA) double-strand
termini, and replication fork restart. The repair path-
ways and their schematic sites of action are repre-
sented inFig. 2. Top1 can be removed by tyrosyl
DNA phosphodiesterase (Tdp1) and 3′-flap endonu-
cleases (XPF/ERCC1; Mre11/Rad50; Mus81/Eme1)
(see Sections 4.1 and 4.2). Two additional mecha-
nisms not shown inFig. 2 can reverse Top1 cleavage
complexes. First, Top1 can religate a non-homologous
DNA strand bearing a 5′-hydroxyl end, which re-
sults in non-homologous recombinations (HRs)[80].
This property is shared by the vaccinia Top1 and has
been proposed for the repair of replication-mediated
DSB [81]. Vaccinia Top1-mediated DNA religation is
commercially used for cloning (TOPO® Cloning, In-
vitrogen Life Technology, Carlsbad, CA). The repair
of gaps in the DNA and of DSBs at the 5′-end of the
damaged DNA involves the XRCC1 and the homolo-
gous and non-homologous DSB repair pathways (see
Sections 4.3 and 4.4). Some of the known chromatin

rearrangement pathways associated with repair are
listed at the bottom left ofFig. 2 (seeSection 5.6).

4.1. Processing of the 3′-ends of Top1 covalent
complexes by Tdp1 and PNKP

Nash and coworkers[82] discovered theTDP1gene
and showed that Tdp1 catalyzes the cleavage of the
covalent bond between the Top1 catalytic tyrosine and
the 3′-end of the DNA[83] (Fig. 3A). Hydrolysis of
the tyrosyl-DNA phosphodiester linkage generates a
3′-phosphate (Fig. 3A and C), which is further pro-
cessed by a 3′-phosphatase, such as PNKP (or by
Ape1).

Tdp1 belongs to the phospholipase D superfamily
[84] of phospholipid hydrolyzing enzymes. Tdp1 is
ubiquitous and highly conserved in eukaryotes. Tdp1
is physiologically important since a mutation in the en-
zyme causes a neurological disorder called spinocere-
bellar ataxia with axonal neuropathy (SCAN1)[85].
Human Tdp1 is a monomeric protein composed of
two similar domains related by a pseudo-two-fold axis
of symmetry. The catalytic site of each domain con-
tains three conserved residues (HKD motif)[86,87]
critical for Tdp1 activity [84]. A recent structure of
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Fig. 3. Repair of Top1 covalent complexes by the Tdp1-PNKP pathway. (A) Schematic diagram for the successive actions of Tdp1 and
PNKP. Tdp1 requires Top1 to be degraded (by the ubiquitin–proteasome pathway) to be active. (B) The two transesterifications catalyzed
by Top1. DNA religation (reverse step) is much faster than the cleavage reaction (forward step), as indicated by the thickness of the
arrows. (C) When the 5′-hydroxyl end of the broken DNA is too far to act as a nucleophile in the reverse reaction shown in panel (B),
then Tdp1 hydrolyzes the tyrosyl–phosphodiester bond, regenerating a tyrosyl end on the Top1 polypeptide and leaving a 3′-phosphate
end on the DNA. PNKP can hydrolyze this 3′-phosphate and phosphorylate the 5′-end of the broken DNA, which is now a substrate for
DNA polymerases and ligases.

Tdp1 bound to a tyrosine-containing peptide demon-
strate that the alterations in the structure of both the
DNA and the Top1 are required for binding[88]. The
DNA needs to be single-stranded and the Top1 re-

duced to a short polypeptide folded differently from
the native Top1[88]. The specificity of Tdp1 for pro-
cessing 3′-tyrosyl–DNA but not 5′ complexes, sug-
gests that Tdp1 belongs to a pathway specific for
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the repair of Top1–DNA adducts. However, Tdp1 can
also remove 3′-phosphoglycolate generated by oxida-
tive DNA damage, suggesting a broader role for Tdp1
[89].

Both the structure of the DNA segment bound to
Top1 [82,90] and the length of the Top1 polypeptide
chain determine Tdp1’s biochemical activity[90]. Op-
timum Tdp1 activity requires: (1) a DNA segment con-
sisting of at least a few nucleotides[90] that would
bind in Tdp1’s positively charged groove[86]; (2)
an exposed phosphotyrosyl bond at the Top1–DNA
junction; a tyrosyl group linked to the 3′-end of a
nick is a poor substrate[91]), indicating that Tdp1
acts after the 5′-end of the broken DNA has been ei-
ther digested or displaced to provide access to the
3′-phosphotyrosyl bond; and (3) a short Top1 polypep-
tide segment, as the effectiveness of Tdp1 decreases
as the length of Top1 polypeptide chain is extended
[90]. In fact, Top1 needs to be proteolyzed for effi-
cient Tdp1 activity[83,88,90](Fig. 3A). As discussed
in Section 5.1, Top1 ubiquitination and degradation
have been observed following camptothecin treatment
[92,93].

The 3′-phosphate ends generated by Tdp1 need to
be hydrolyzed to a 3′-hydroxyl for further process-
ing by DNA polymerases and/or ligases. In budding
yeast, this 3′-phosphatase activity is carried out by
the DNA 3′-phosphatase Tpp1[94] and by the two
functionally overlapping multifunctional apurinic
(AP) endonucleases, Apn1 and Apn2[95]. Apn1 is
the homolog ofE. coli endonuclease IV and repre-
sents the major AP endonuclease in budding yeast.
Apn2 (also called Eth1) belongs to the second fam-
ily of AP endonuclease (theE. coli exonuclease III
family), which includes the human AP endonucle-
ase, Ape1. Simultaneous inactivation of Tpp1, Apn1
and Apn2 (a to a lesser extent inactivation of Tpp1
and Apn1) is required to confer sensitivity to camp-
tothecin [96], indicating the functional redundancy
of the 3′-phosphatase pathways (Fig. 4A). Interest-
ingly, the hypersensitivity of thetpp1 apn1 apn2
triple mutant is rescued by inactivation of Tdp1[96],
consistent with the view that in the absence of Tdp1,
budding yeast uses the Rad1/Rad10 pathway for re-
moval of the Top1 covalent complexes (Fig. 4A) (see
Section 4.2). The 3′-phosphatase homologs of Tpp1
are Pnk1 in fission yeast[97] and PNKP in human
cells [94,98,99](Fig. 3) (seeSection 4.1). In addition

to their 3′-phosphatase activity, both Pnk1[97] and
PNKP[98,99]possess 5′-kinase activity (seeFig. 3C),
which is missing for Tpp1. Tpp1 as well as Apn1 and
Apn2 [95] are epistatic to Tdp1 (i.e. they function in
the same pathway) (Fig. 4A). Another level of redun-
dancy has recently been shown between Tdp1 and
Apn1 or Ape1. Indeed, purified Apn1 or Ape1 are ca-
pable of removing 3′-tyrosyl lesions from 3′-recessed
and nicked DNA substrates, which are poorly pro-
cessed by Tdp1[95,100]. In yeast, the tyrosyl phos-
phodiesterase activity of Apn1 is probably not relevant
for the repair of Top1-mediated DNA lesions[95].

There is no Tdp1 inhibitor reported to date be-
sides vanadate and tungstate, which have been
used as phosphate mimetic in co-crystal structures
[101]. It would, however, be important to develop
Tdp1 inhibitors for cancer chemotherapy in associa-
tion with camptothecins. The anticancer activity of
Tdp1 inhibitors may prove to depend on the pres-
ence of genetic abnormalities, since camptothecin
hypersensitivity in Tdp1-defective yeast is condi-
tional for deficiencies in the checkpoint (Rad9) and
3′-endonucleases (Mus81/Eme1) pathways (Fig. 4A)
[82,95,102]. A Rad9 defect in a Tdp1-deficient
background confers marked camptothecin sensitiv-
ity [82], and it is tempting to speculate that Tdp1
is primarily required when the G2 checkpoint is
deficient as in the case of the yeastRAD9 mutant.
These alternative Rad9-dependent pathways probably
operate in G2-arrested cells by recombination (see
Section 4.3). A second group of conditional genes
(with respect to Tdp1 deficiencies) includes three
sets of genes from the 3′-flap endonuclease pathway:
Rad1/Rad10, Mre11/Rad50, and Mus81/Eme1. Mu-
tation in each of these genes renders Tdp1-deficient
cells highly sensitive to camptothecin (Fig. 4A; see
below).

4.2. Endonuclease cleavage of Top1–DNA covalent
complexes by the 3′-flap endonucleases: Rad1/Rad10,
Mre11/Rad50/Nbs1 and Mus81/Eme1

Studies in genetically altered yeast strains demon-
strate the existence of alternative pathways beside
Tdp1/PNKP for removing the Top1 covalent com-
plexes[95,102]. At least 3 endonuclease complexes
can cleave damaged DNA 3′ from DNA lesions. The
preferential substrates for these 3′-flap endonucleases
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Fig. 4. Repair of Top1 covalent complexes by the 3′-endonuclease pathways. (A) Schematic representation of the genetic pathways implicated
in the removal of the Top1–DNA covalent complexes. (B) Differential substrate requirements for Rad1/Rad10 (budding yeast orthologs for
human XPF/ERCC1—seeTable 3and Section 4.2), Mre11/Rad50, and Mus81/Mms4 (budding yeast ortholog of human and fission yeast
Mus81/Eme1—seeTable 3and Section 4.2). Both Rad1/Rad10 and Mre11/Rad50 require the DNA to be single-stranded opposite to the
3′-flap, suggesting that gap repair should follow their action. By contrast, Mus81/Mms4 requires the DNA to be double-stranded opposite to
the 3′-flap as in collapsed replication forks. Mre11/Rad50/Nbs1 is not shown because its checkpoint and recombination functions contribute
to cellular response in addition to its nuclease activity[95].

are described inFig. 4B, and their genetic relation-
ships are proposed inFig. 4A.

Rad1/Rad10 (the human ortholog is the nucleotide
excision repair 3′-endonuclease XPF/ERCC1) and
Tdp1/PNKP appear to function in parallel and redun-
dant pathways, whereas Mus81/Mms4 functions in
parallel (Fig. 4A) [95,102]. Like Tdp1, Rad1/Rad10
requires a single-stranded gap between the 3′-end to be
processed and the 5′-end of the DNA (Fig. 4B) [103],
suggesting that Tdp1 and Rad1/Rad10 share com-
mon substrates. Such gapped DNA substrates are also
common with the XRCC1 pathway (seeSection 4.3).
Similarly, the Mre11/Rad50/Xrs2 (MRX) (the human

orthologs are Mre11/Rad50/Nbs1 [MRN]) complex
preferentially cleaves gapped substrates (Fig. 4B) and
hairpin structures[104]. However, the MRN complex
also possesses checkpoint functions that probably
contribute to the normal response to camptothecin
[95,102].

Mus81/Mms4 (the ortholog of budding yeast Mms4
is Eme1 in humans and fission yeast—seeTables 3
and 4) preferentially cleaves broken replication forks
and requires the presence of duplex DNA near the
3′-end to be processed (Fig. 4B) [103,105,106].
Mus81-deficient yeasts are highly sensitive to camp-
tothecin (Tables 3 and 4) [102,103,105,107](Fig. 4A).
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4.3. Possible role of the XRCC1/PARP/PNKP/β-
polymerase/ligase III complex

XRCC1, poly(ADP-ribose) polymerase (PARP),
�-polymerase, ligase III, PNKP[108,109], and Ape1
[110] form base excision repair (BER) complexes. We
recently found that Tdp1 is associated with XRCC1
(Fig. 5), indicating a connection between the XRCC1
pathway and the repair of both transcription- and
replication-associated DNA damage induced by Top1
cleavage complexes[38].

PARP is a relatively abundant nuclear protein con-
taining a zinc finger motif functioning as a nick-
sensor. It binds to double- and single-stranded DNA
breaks generated exogenously or by enzymatic nick-

Top1Top1
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P
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PHO

5'
P
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Tdp1
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β-polymerase

ligase III

Lig IIIXRCC1

Polβ

PARP
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Fig. 5. Proposed repair of a Top1 covalent complex by the
XRCC1-dependent pathway. The XRCC1 complex including the
associated repair enzymes is shown at the top. Tdp1 hydrolyzes the
Top1–DNA-phosphotyrosyl bond. PNKP hydrolyzes the resulting
3′-phosphate and phosphorylates the 5′-hydroxyl. �-Polymerase
fills the gap and ligase III seals the DNA. Ape1 can also form
complexes with XRCC1 and hydrolyze the 3′-phosphate.

ing during BER (reviewed in[111,112]). Binding of
PARP to nicked DNA stimulates PARP to catalyze
the transfer of successive units of the ADP-ribose
moiety of nicotinamide adenine dinucleotide (NAD),
resulting in transient covalent binding of large,
negatively charged, poly(ADP-ribose) polymers to
macromolecular acceptors, including DNA process-
ing enzymes, chromatin and PARP itself[112,113].
Poly(ADP-ribosylation) alters the structure and func-
tion of the acceptors and marks the beginning of
the DNA repair process. Although Top1 is one of
the poly(ADP-ribose) acceptors, the functional con-
sequences of the PARP–Top1 interaction are not
well-understood. While Top1 poly(ADP-ribosylation)
inhibits Top1 activity[114–116], PARP binding acti-
vates Top1[117].

Several observations implicate PARP in the cellular
response to and repair of Top1 cleavage complexes:
(1) PARP is activated in camptothecin-treated cells
[118]; (2) PARP-deficient Chinese hamster V79 cells
[119,120]and PARP-knockout mouse fibroblasts are
hypersensitive to camptothecin (Table 2), and exhibit
slow repair of Top1-induced DNA lesions (Barceló
and Pommier, unpublished); (3) PARP inhibitors such
as 3-aminobenzamide[121] or NU1025[122] sensi-
tize cells to camptothecins; and (4) increased PARP
levels are associated with camptothecin resistance
[123].

XRCC1 has no enzymatic activity but functions
as a scaffolding factor for the enzymes required for
BER, including PNKP[108]. XRCC1 is implicated
in the repair of Top1 cleavage complexes, as: (1)
CHO XRCC1-mutant EM9 cells are hypersensitive
to camptothecin[37,38,124] (Table 2); (2) XRCC1
complementation in EM9 cells restores camptothecin
resistance and enhances the repair of Top1-induced
single-strand breaks and Tdp1 activity[38]; and
(3) camptothecin-resistant cell lines show increased
XRCC1 levels, and transfection of XRCC1 increases
camptothecin resistance[125].

Fig. 5 proposes a scheme in which both Tdp1
and PNKP are physically and functionally associated
with the XRCC1 complex[38]. After removal of the
Top1–DNA complex by Tdp1, PNKP processes the
DNA ends for �-polymerase and ligase III action.
PARP’s nick-sensor function could serve in a damage
survey mechanism to recruit XRCC1 repair com-
plexes to the sites of Top1-associated DNA damage.
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Table 2
Genetic alterations sensitizing mammalian cells to Top1 poisons

Genes Functions References

ATM Protein kinase from the PI(3)K family; implicated in DSB response [155,157,158,271]
NBS1 Scaffolding protein forming a complex with Mre11 and Rad50 (MRN complex);

DSB repair and recombination pathways
[156,185]

DNA–PKcs Protein kinase from the PI(3)K family; implicated in DSB response [39,189,272]
ATR Protein kinase from the PI(3)K family; implicated in replication stress [200]
WRN Helicase from the RecQ family involved in genomic stability [231–233]
BLM Helicase from the RecQ family involved in genomic stability [234]
XRCC2 One of the five Rad51 paralogs: Rad51B, Rad51C, Rad51D, XRCC2 and XRCC3;

implicated in DNA strand exchange/homologous recombination
[124,272,273]

XRCC3 One of the five Rad51 paralogs; implicated in DNA strand exchange/homologous
recombination

[272]

Rad51C One of the five Rad51 paralogs; implicated in DNA strand exchange/homologous
recombination

[274]

BRCA2 Involved in Rad51 loading; homologous recombination [245]
BRCA1 DNA damage response; TC–NER [244]
XRCC1 BER [37,38,124,125]
PARP BER [119,275]
CSA/CSB TCR/BER [43]
�-H2AX Core histone; phosphorylated in response to DSB [173]
p53/p21 Checkpoints; apoptosis [242,276]
Bcl-2 Apoptosis [277]

Abbreviations—ATM: ataxia telangiectasia mutant; ATR: ataxia telangiectasia and Rad3-related; BER: base excision repair; BLM: Bloom
syndrome; CSA/CSB: Cockayne syndrome complementation groups A and B; DNA–PKcs: DNA-dependent protein kinase catalytic subunit;
DSB: DNA double-strand breaks; NER: nucleotide excision repair; PARP: poly(ADP-ribose) polymerase; PI(3)K: phosphatidyl inositol 3
kinase; TCR: transcription-coupled repair.

The absence of PARP may hinder XRCC1 function,
which could explain that nuclear extracts from PARP-
and XRCC1-deficient cells exhibit low activity for
Tdp1, PNKP, and�-polymerase[38] (Barceló and
Pommier, unpublished).

4.4. 5′-End processing: repair of Top1-associated
replication-mediated DNA double-strand breaks

The Top1-induced DSB generated by replication
fork collisions can be processed both by homolo-
gous recombination (Rad52/51) and non-homologous
end-joining (NHEJ) (Ku/DNA–PK). Tables 2–4
demonstrate the involvements of the HR and
NHEJ pathways, as well as of the MRN pathway,
which functions both for HR and NHEJ. PNKP is
also probably implicated since the 5′-end of the
replication-mediated DSB is rapidly phosphorylated
in camptothecin-treated cells[42].

Fig. 6 shows two possible pathways for the re-
pair and restart of replication forks following Top1-
induced DNA damage. In the pathway shown in

panel (A), Tdp1 (seeSection 4.1) or Mus81/Eme1
(see Section 4.2) would remove the Top1 covalent
complexes. Gap repair (see belowSection 4.3and
Fig. 5) would ligate the upstream portion of the
template strand for leading strand synthesis with a
newly synthesized Okazaki fragment. The repair of
the double-strand break would proceed by homolo-
gous recombination following 5′-end resection (the
corresponding nuclease has not been identified). This
pathway is the classical break-induced replication
model proposed by Haber and coworkers[126,127].
The resulting 3′-single-stranded DNA segment would
serve to initiate homologous recombination by the
Rad51/Rad52 pathway. Involvement of both the NHEJ
and HR (Rad51/Rad52) pathways for the repair of
Top1-mediated DNA damage in mammalian cells is
supported by the hypersensitivity to camptothecin of
cells deficient in these pathways (Tables 2–4, and
references therein) and by the induction of HR repair
by camptothecin in mammalian cells[128].

An alternative pathway is shown in panel (B),
which is initiated by replication fork regression (RFR)
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Table 3
Genetic alterations conferring hypersensitivity to topoisomerase I poisoning in budding yeast

Budding Yeast (YSC) Function Humans

Gene Effect References Gene Effect References

RAD52/51 homologous recombination (HR)
RAD52a HS [102,107,187,

188,278,279]
Strand annealing RAD52 ?

RAD51 HS [102,107,188] RecA homolog: strand invasion RAD51C HS [274]
RAD55 HS [102,107] Strand annealing, exchange XRCC2 HS [124,272,273]
RAD57 HS [102,107] Strand annealing, exchange XRCC3 HS [272]
RAD54 HS [102] ATPase
MMS1 S [280] Replication repair/epistatic Rad52
RAD59 MS [102] Rad52-related recombination

MRX (MRN) 3′-nuclease/checkpoint (HR+ NHEJ)
MRE11 HS [95,102,187] MRX/N complex; nuclease MRE11 ?
RAD50 HS [107,188] MRX/N complex; scaffold RAD50 ?
XRS2 HS [107] MRX/N complex; signaling NBS1 HS [156,185]

Mus81/Mms4 (Mus81/Eme1) 3′-flap endonuclease
MUS81 MS [102,103,107] 3′-Flap endonuclease with Mms4 MUS81 ?
MMS4 MS [102,103] Partner for Mus81 nuclease EME1 ?

Tdp1-PNKP 3′-end processing
TDP1 CSb [95,102] Tyrosyl–DNA phosphodiesterase TDP1 ?
TPP1 CSb,c [96,102] Polynucleotide 3′-phosphatase PNKPb ?
APN1 CSb,c [95,102,188] AP endonuclease (endo IV family)
APN2 CSb,c [95,102] AP endonuclease (exo III family) APE1 ?

Rad1/Rad10 (XPF/ERCC1) 3′-endonuclease
RAD1 CSb [95,102,188] 3′-Flap endonuclease with Rad10 XPF NS
RAD10 CSb [95,102] Partner for Rad1 ERCC1 NS

Rad27 (FEN1) 5′-endonuclease
RAD27 MS [102] 5′-Flap endonuclease FEN1 ?

RecQ/Top3 helicases/topoisomerase
SGS1 MS [103,107] Top3-associated helicase WRN HS [231–233]
SRS2 MS [102] Rad51-associated helicase BLM HS [234]
TOP3 S [102,103] Replication/recombination topoisomerase TOP3�

TOP3� ?

9–1–1 (“PCNA-like”) clamp
DDC1 MS [102] Replication/Repair clamp; “9–1–1” RAD9 ?
RAD17 MS [107,188,205] Replication/Repair clamp; “9–1–1” RAD1 ?
MEC3 MS [107] Replication/Repair clamp; “9–1–1” HUS1 ?
RAD24 MS [187] Clamp loader for 9–1–1 RAD17 ?

Sensor PI(3)K-related protein kinases
MEC1 HS [187,188] PI3LK checkpoint sensor kinase ATR HS [200]
DDC2 ? Partner for MEC1 ATRIP ?

TEL1 S [187] PI3LK checkpoint sensor kinase ATM HS [155,157,158,271]
PI3LK checkpoint sensor kinase DNA–PK HS [39,272]

Transducer protein kinases; BRCT proteins
RAD53 MS [188] Checkpoint effector kinase CHK2 ?

RAD9 MS [187,188] Adaptor for checkpoint kinases MDC1 ?
BRCA1 HS [244]
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Table 3 (Continued)

Budding Yeast (YSC) Function Humans

Gene Effect References Gene Effect References

Replication
CDC45 S [281] Initiation of DNA replication CDC45L ?
POL32 MS [107] Small subunit for Pol� TEX14 ?
TRF4 S [253] DNA polymerase POLS ?
DPB11 S [281] Replication initiation/checkpoint TOPBP1 ?
RAD6 MS [107,188,282] Post-replication repair; Ub conjugate RAD6A, B ?
RAD18 S [107,188] Post-replication/repair; loads Rad6 RAD18 ?

Chromatin
HTA1/2 S [187] Histone H2A H2AX S [173]
HHF1/2 S [255] Histone H4 H4 ?
GCN5 S [254] Histone H3 acetyltransferase PCAF ?
YNG2 S [254] Histone H4 acetyltransferase ING1-5 ?
ESA1 S [255] Histone H4 acetyltransferase MYST1/HAT ?
ASF1 S [102] Chromatin assembly ASF1B ?
MCD1 S [253] Chromatin cohesion RAD21 ?
CTF4 MS [102] Chromatid cohesion and segregation AND-1 ?

Transcription
HPR1 S [107] Transcription and recombination MGC5350 ?
SFP1 S [107] Transcription factor REQ ?
CCR4 S [107] Transcription KIAA1194 ?
BUR2 S [107] Cyclin partner for Bur1 Cyclin H ?
RPB9 S [107] RNA polymerase subunit POLR21 ?
MPH1 MS [107,282] RNA helicase MPH1 ?

Ubiquitin
UBC9 S [283] Ubiquitin ligase UBE2I ?
DOA4 S [283] Ubiquitin hydrolase

Abbreviations for effects: HS, S, MS, and CS correspond to hypersensitivity, sensitivity, moderate sensitivity, and conditional sensitivity,
respectively.

a The Rad52 epistasis group includes the RAD50, 51, 52, 54, 55, 57, 59, MRE11 and XRS2 genes.
b Tdp1 deficiency results in HS only in the presence of Rad1/Rad10 deficiency[95,102]; conversely Rad1 deficiency does not confer

hypersensitivity to CPT[103] unless the Tdp1–Apn1 pathway is defective[95]. Tpp1, Apn1+ Apn2+ Tpp1 need to be inactivated to
confer full camptothecin hypersensitivity[96] (seeFig. 3A).

c PNKP possesses both 3′-phosphatase and 5′-kinase activities, whereas the yeast ortholog, Tpp1 only possesses 3′-phosphatase activity.
Neither Apn1, Apn2 or Tpp1 possess AP endonuclease activity[96].

[129,130]. During RFR, annealing of the newly repli-
cated leading and lagging strands forms a DNA cruci-
form (four stranded junction), commonly referred to
as a “chickenfoot” because of its morphology[130]
(Fig. 6B). This reverse movement probably involves
protein complexes promoting DNA strand exchange
and annealing (duplex formation). Rad51, the eu-
karyotic equivalent of the bacterial RecA protein
forms nucleoprotein filaments, and Rad52 promotes
strand invasion and annealing between homologous
DNA sequences[129,131–134]. BRCA2 (which is
FANCD1 [135]) has recently been shown to promote
Rad51 loading and HR[136,137]. Although positive

supercoiling ahead of the blocked replication fork
could also promote branch migration[129,138], this
mechanism appears uniquely unless the DNA fails
to undergo free rotation at the Top1 break site. Once
the DNA downstream from the Top1 cleavage com-
plex has been reannealed, the Top1 cleavage complex
could reverse without intervention of repair enzymes
since the 5′-hydroxyl end of the DNA could be aligned
with the Top1–DNA phosphotyrosyl bond (Fig. 6B).
It is also plausible that Tdp1 could remove Top1 and
that the resulting gap could be repaired by the BER
pathway (seeSection 4.3above). Following the re-
pair/removal of the Top1 cleavage complex, the fork
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Table 4
Genetic alterations conferring hypersensitivity to topoisomerase I poisoning in fission yeast

Fission yeast (YSP) Function Humans

Gene Effect Refrences Gene Effect Refrences

Rhp54 HS [105] Homologous recombination (HR) RAD52 ?
Rhp55 LS [105] Homologous recombination (HR) XRCC2 HS [124,272,273]
Rhp22A LS [105] Homologous recombination (HR) XRCC3 HS [272]
Rhp51 MS [105] RecA homolog; Rad52 epistasis G RAD51C HS [274]

Rad50 HS [105] MRX/N complex; scaffold RAD50 ?

Mus81 HS [105] 3′-Flap endonuclease with eme1 MUS81 ?
Eme1 HS [105] Partner for mus81 nuclease MUS81 ?
RusA Rsa [105] HJ resolvase

Pnk1 Sb [97] Polynucleotide kinase phosphatase PNKP ?

Rqh1 MS [102] Top3-associated helicase WRN HS [231–233]
BLM HS [234]

Chk1 MS [284,285] Checkpoint effector kinase CHK1 ?

Swi1 HS [286] Mating-type switching TIMELESS

a rusA suppresses hypersensitivity ofMus81/Eme1− but does not reverse sensitivity ofrqh1−; rusA also suppresses the lethality of double
mutants forMus81/Eme1+ rqh1 [105]. RusA expressed in budding yeast partially suppresses hypersensitivity to CPT in Mms4-deficient
cells [103].

b Pnk1− cells are hypersensitive to CPT in the absence of additional defects, indicating difference from budding (see footnote ‘a’) and
importance of this pathway in fission yeast, which like mammals possesses a gene that has both 3′-phosphatase and 5′-kinase activity[97].

would restart after unwinding of the cruciform. This
unwinding could be carried out by the RecQ helicases
BLM (Bloom) and WRN (Werner). In the absence of
these helicases, “chickenfoot” structures would need
to be resolved by recombination, which might explain
the high frequency of sister chromatid exchanges in
Bloom syndrome (BLM) cells (for recent review see
[139]).

5. Molecular pathways implicated in the
cellular responses to Top1 cleavage complexes;
determinants of response and resistance with
potential clinical relevance

Cellular responses to Top1 poisons determine both
tumor response and host toxicity. Efficient repair (see
Section 4) is probably coupled with checkpoint ac-
tivation. Cell cycle arrest would have two beneficial
consequences: (1) it would give time for the repair
of DNA damage; and (2) it would prevent further
replication-dependent DNA damage. Both the S-phase
and the G2 checkpoints, as well as the p53/p21 path-
ways are activated by Top1-mediated DNA damage

[49,75]. Because cell cycle checkpoints are connected
to the apoptosis machinery, it is likely that exten-
sive DNA damage activates apoptosis by involving the
same DNA damage sensors and checkpoints[140].
Thus, an exciting challenge is to elucidate the rela-
tionships between sensor proteins, checkpoints, DNA
repair and apoptosis. Integration of these pathways
should explain the cellular determinants of response to
Top1 poisons. The following section will review some
of the cellular pathways/response elicited by Top1 poi-
sons, and how defects in these pathways can sensi-
tize tumors to camptothecins. Details on the roles of
Chk2, c-Abl, and the stress kinase (JNK/SAPK) path-
ways can be found in a recent review[140]. Fig. 7
shows a schematic flowchart diagram for some of
the checkpoint pathways activated by Top1-mediated
DNA damage.

5.1. Ubiquitination, sumoylation and
proteolysis of Top1

Top1 is rapidly degraded in normal peripheral-blood
mononuclear cells[141–143] and some cancer cell
lines [92,93,144] exposed to camptothecins. Top1
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Fig. 6. Schematic representation of the proposed repair of Top1-mediated DNA replication-induced DSBs. (A) The Top1–DNA covalent
complex is removed and the lagging strand ligated to restore one duplex. The 5′-end is first digested, leading to the formation of a
3′-single-stranded DNA segment that can act as a substrate for homologous recombination. (B) Replication fork regression allows the
normal religation of the Top1 cleavage complex and lead to the formation of a “chicken foot”, which is equivalent of a Holliday
junction. Replication fork restart requires melting of the “chicken foot” or resolution of the corresponding Holliday junction by the RecQ
helicase/Top3 pathway (seeSection 5.5).

degradation is deficient in some leukemiae[143,145]
and following oncogenic transformation[142,143],
suggesting that lack of Top1 degradation contributes
to the selectivity of camptothecins for tumors. Top1
degradation is a response to transcription blocks
and is replication independent[143,146]. It is abol-
ished by inhibitors of the 26S proteasome, and
ubiquitin–Top1 conjugates have been detected in
cells treated with camptothecin, suggesting that Top1

is degraded by the ubiquitin/26S-proteasome path-
way [93]. Degradation is nuclear[144] and spe-
cific for the hyperphosphorylated forms of Top1
that are associated with transcription[147], sug-
gesting that collisions between RNA polymerase
II complexes and Top1 cleavage complexes (see
Fig. 1B) trigger Top1 ubiquitination[148] and sub-
sequent degradation of Top1 by the 26S proteasome
[143].
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Fig. 7. Checkpoint pathways induced by Top1-mediated DNA
damage. Sensor protein complexes that bind to damaged DNA are
at the top. Sensor PI(3)kinases, ATM, ATR, and DNA–PK are
in the middle. The effector kinases Chk1 and Chk2 are shown
downstream from the PI(3)kinases.

Top1 degradation may serve two purposes: (1)
confer cellular tolerance to camptothecin and pro-
tect normal cells; and (2) prepare for the excision
of the Top1-covalent complexes by Tdp1, as Tdp1
requires Top1 to be proteolyzed for hydrolyzing the
Top1–DNA bond[83,90] (seeSection 4.1andFig. 2).
Top1 down-regulation is correlated with camptothecin
resistance in cell lines[93], and prevention of Top1
degradation by the 26S proteasome inhibitor MG132
enhances camptothecin-induced apoptosis[142]. Ac-
cordingly, synergy was recently reported between
camptothecins and the clinically used proteasome
inhibitor PS-341[149].

Camptothecins also induce small ubiquitin-like
modifier (SUMO-1; also SUMO-2/3) conjugation to
Top1 [148,150,151]. Sumoylation is an early and
transient response to camptothecin. Human small
ubiquitin-like modifier, also named Ubl1, PIC1,
GMP1, SMTC3, or sentrin is an 11 kDa protein with
18% sequence similarity to ubiquitin. Sumoylation
mimics the classical ubiquitination pathway. The first
step is activation of SUMO, the second, transfer of

SUMO to the conjugation enzyme, and the last step,
ligation of SUMO to its target protein (for review
see[152]). Sumoylation employs a distinct set of E1,
E2, E3 and protease enzymes. Ubc9 is the only E2
enzyme identified for SUMO-1 whereas a dozen E2
enzymes have been identified for ubiquitin in yeast.
Top1 sumoylation shares some characteristics with
ubiquitination. Both modifications take place at ly-
sine residues (K117 and K153 for sumoylation of
human Top1[148]) and are independent of DNA
replication [93,150]. However, they appear to differ
in the following ways: (1) mutation of the K117 and
K153 residues abrogates sumoylation without affect-
ing ubiqutination[148]; (2) sumoylation is specific
for dephosphorylated Top1[146]; (3) it is effective in
both normal and tumor cells[150]; (4) it is not linked
to Top1 degradation; and (5) Top1 sumoylation is
markedly enhanced independently of camptothecin
treatment in cells expressing a catalytically inactive
Top1 (the Y723F)[148]. Top1 sumoylation may com-
petitively inhibit Top1 ubiquitination and degradation
since the same lysine residues are used for both mod-
ifications. Top1 sumoylation may also modulate the
cellular location, function[151] and/or enhance the
activity of Top1[148]. Thus, it is tempting to propose
that ubiquitination and sumoylation have opposite
effects: sumoylation by activating Top1 (via cellular
relocation), and ubiquitination by inactivating Top1
(via proteolysis). Consistently, Top1 sumoylation
has been proposed to enhance camptothecin-induced
apoptosis[148]. However, Ubc9-defective yeast cells
are hypersensitive to camptothecin suggesting that
sumoylation of downstream target from Top1 also
contribute to the cellular responses to Top1-mediated
DNA lesions[150].

5.2. The ataxia telangiectasia mutated (ATM),
Mre11/Rad50/Nbs1 and Chk2 pathways

The ataxia telangiectasia mutated (ATM) gene prod-
uct is a central component of the DSB checkpoint path-
ways[153]. ATM is activated by autophosphorylation
and inhibition of dimerization in response to chro-
matin modifications[154]. Cells from patients with
ataxia telangiectasia (AT) are characterized by their
failure to arrest DNA replication in response to DNA
damage (“radioresistant DNA synthesis” (RDS) phe-
notype). AT cells are highly sensitive to camptothecin
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[155,156] (Table 2). Increased sensitivity to camp-
tothecin is also observed in cells deficient for the ATM
ortholog in Chinese hamster[157,158] and in yeast
(Tel1, Table 3).

The importance of ATM stems from the fact that it
regulates most of the checkpoint and repair pathways.
ATM phosphorylates p53[159–161], Chk2 [162],
Nbs1 [163–166], BRCA1 [167], 53BP1 [168], and
histone H2AX [169] (for review see[153]). After
phosphorylation/activation of ATM, many check-
point proteins, including Nbs1, Mre11, BRCA1, and
53BP1 co-localize in nuclear foci following ioniz-
ing irradiation [170] and cooperate in the ionizing
radiation-induced S-phase checkpoint[171]. AT cells
are also deficient in activating NF-kB following camp-
tothecin treatment[172], suggesting that multiple
ATM-dependent pathways are implicated in the cellu-
lar response to camptothecin. However, AT cells are
not deficient in H2AX phosphorylation in response to
camptothecin[173].

Mutations of theNBS1gene (mutated in Nijmegen
breakage syndrome) result in an AT-related phe-
notype with radio-resistant DNA synthesis[174].
The Nbs1 gene product functions as a heterotrimer
with the Mre11 and Rad50 gene products (MRN
complex) [175], which forms foci at double-strand
break sites [174], probably in association with
other proteins including mismatch repair factors
(MSH2, MSH6, MLH1), BRCA1, the Bloom syn-
drome protein, replication factor C (RFC) and ATM
[176,177]. These large protein complexes have been
named BRCA1-associated genome surveillance com-
plexes (BASC)[177]. MRN also forms nuclear foci
with H2AX in response to camptothecin-induced
replication-mediated DSBs[173].

As described inSection 4.2, the MRN complex pos-
sesses a nuclease activity and could process the DNA
ends for repair/recombination reactions[178,179].
The link between the MRN complex and the S-phase
checkpoint pathway was recently strengthened by the
finding that an AT-like disorder (ATLD) (including
radioresistant DNA synthesis) is caused by mutations
in the Mre11 gene[180]. Because the DNA binding of
the Mre11 complex does not require ATM[165,181],
it seems plausible that binding of the MRN complex to
DSB activates and possibly recruits ATM, which could
then phosphorylate Nbs1[163,164,166,182,183], and
activates the S-phase checkpoint[163,184]. These ob-

servations suggest the existence of a regulatory loop
between the MRN complex, ATM, and the S-phase
checkpoint.

AT cells [155,156] and NBS cells[156,185] are
hypersensitive to camptothecin (Tables 2 and 3),
indicating the importance of the MRN-ATM path-
way for cellular response to camptothecin. Fur-
thermore, camptothecin treatment induces phos-
phorylation of Nbs1 and BRCA1[186]. This
pathway is conserved in budding yeast, as muta-
tions for theTEL1 (ATM homolog) [187], MRE11
[95,102,187], RAD50 [107,188], or XRS2(Nbs1 ho-
molog)[107] genes confer camptothecin hypersensiti-
vity (Table 3).

5.3. The RPA and Ku–DNA–PKcs pathways

Camptothecin-induced replication-mediated DSB
induce phosphorylation of the middle-size subunits
of the human single-strand DNA binding protein
(RPA2) by DNA-dependent protein kinase (DNA–PK)
[39]. Like ATM, the catalytic subunit of DNA–PK
(DNA–PKcs) belongs to the PI(3)kinase family.
DNA–PKcs functions with the heterodimer of Ku
proteins (Ku70/80) that bind to the ends of the
DSB and activate the kinase activity of DNA–PKcs.
DNA–PKcs-deficient cells (human glioblastoma
MO-59-J cells [39] and neurons from SCID mice
[189]) cells are hypersensitive to camptothecin (see
Table 2). Moreover, the MO-59-J cells are defec-
tive in DNA synthesis inhibition following camp-
tothecin treatment[39], suggesting that DNA–PK
regulates the S-phase checkpoint. RPA2 has been
proposed as one of the effectors in this pathway
[39]. Although the exact roles of RPA2 phosphory-
lation remain to be elucidated, RPA2 is essential for
stabilizing single-stranded DNA during replication,
repair, and homologous recombinations[134]. An in-
triguing observation is that the cell cycle checkpoint
abrogator UCN-01 inhibits RPA2 phosphorylation
by acting upstream from DNA–PK[39]. Based on
the recent findings that UCN-01 inhibits both Chk1
[50,51]and Chk2[52], it is possible that “cross-talks”
exist between the Chk1/Chk2 and DNA–PK path-
ways (Fig. 7). Furthermore, “cross-talks” probably
exist between the ATM and DNA–PK pathways
since ATM can be directly activated by DNA–PK
[190].
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5.4. The ATR-ATRIP, hRad9–hHus1–hRad1 (9–1–1),
and Chk1 pathways

RPA is also required for activation of the Rad17,
hRad9–hHus1–hRad1 (9–1–1), ATR pathway[191]
and for ATR-dependent S-phase checkpoint activation
[192].

ATR (ataxia telangiectasia and Rad 3-related) func-
tions in the S-phase checkpoint probably in connec-
tion with the 9–1–1 complex (for review see[193]).
ATR is with ATM and DNA–PKcs, a member of
the PI(3)kinase family. By contrast to ATM, ATR
is an essential gene[194], and ATR-deficient cells
accumulate large numbers of replication-associated
DNA breaks[195]. Recently, splicing mutations af-
fecting expression of ATR have been shown to result
in Seckel syndrome, which shares similarities with
Nijmegen breakage and ligase IV syndromes[196].
ATR functions in close physical and functional as-
sociation with ATR interacting protein (ATRIP), the
ortholog of the yeast checkpoint genes Rad26 (fission
yeast) and DDC2 (budding yeast) (seeTable 3) [197].
Although the three PI(3)kinase pathways (ATM,
ATR, DNA–PK) exhibit some degree of redundancy,
ATM and DNA–PK are primarily activated by DSBs,
whereas ATR–ATRIP are more specifically activated
by replication- and UV-mediated DNA damage.
The ATM and ATR pathways also have differential
substrate specificity. ATM preferentially activates
Chk2, whereas ATR preferentially activates Chk1
[193,198] (Fig. 7). Recent studies demonstrate that
in ATR-kinase dominant-negative cells (ATR-kinase
dead; ATR/kd)[199], phosphorylation of Chk1 in re-
sponse to Top1 poisons is not observed, both S-phase
and G2 checkpoints are abrogated, and the cytotoxi-
city of topotecan is enhanced[200] (Table 3). Thus,
it is likely that ATR is critically involved in S-phase
checkpoint activation in response to Top1-mediated
DNA damage. ATR could exert its S-phase and
G2-checkpoint functions by activating Chk1, which in
turn phosphorylates and promotes the degradation of
Cdc25A in response to camptothecin[198]. ATR also
controls H2AX phosphorylation and the recruitment
of the MRN complex to the damaged replication sites
in response to camptothecin[173] (seeSection 5.7).

The ATR, 9–1–1, and Chk1 pathways are prob-
ably closely connected (Fig. 7) because, in fis-
sion yeast, Rad1, Hus1, and Rad9 are essential for

Chk1 activation[201–203], and in human cells, the
ATR-associated protein (ATRIP) is required for phos-
phorylation of hRad17 in response to DNA damage
[197].

In humans and fission yeast, the group of checkpoint
proteins, Hus1, Rad1, Rad9, and Rad17 are required
to block entry into mitosis when DNA replication is
inhibited or in the presence of damaged DNA (for re-
view see[193,204]). The budding yeast orthologs are
Mec3, Rad17 and Ddc1 for Hus1, Rad1 and Rad9,
respectively (Table 3), indicating the conservation of
the DNA integrity/checkpoint pathways from yeasts
to humans. The budding yeast ortholog for Rad17 is
Rad24, and strains defective for these genes are hy-
persensitive to camptothecin (Table 3) [102,107,187,
188,205].

Hus1 interacts with Rad1 and Rad9[206–209].
In human cells, the “9–1–1” complex[210] inter-
acts with hRad17[211] and proliferating cell nuclear
antigen (PCNA)[212]. Human Rad17 is homolo-
gous to RFC1 (the largest subunit of the pentameric
Replication Factor C) and Hus1, Rad1 and Rad9
are structurally related to PCNA[213], suggesting
mechanistic similarities between the 9–1–1/Rad17
pathway and components of the normal replicative
DNA polymerase complex. Rad17 in a complex with
RFC2-5 (equivalent of clamp loader RFC) and the
9–1–1 complex could act as a sliding clamp for DNA
polymerase (∼PCNA) [213,214]. A recent study sug-
gests that translesion DNA polymerases such as Pol
zeta and Din B may be recruited by the 9.1.1 com-
plex [215]. It is therefore assumed that Rad17 and the
9–1–1 complex act as sensors for DNA damage and
that Rad17 loads the 9–1–1 complex onto damaged
DNA at arrested replication forks[192,193]. Recently,
Rad17 was found to be an essential gene controlling
replication[216].

In camptothecin-treated cells, Hus1 and Rad1 be-
come hyperphosphorylated, and Rad9 becomes firmly
anchored to nuclear components in association with
Hus1 and the hyperphosphorylated form of Rad1
[217]. Hus1 is an essential gene whose inactivation
results in genomic instability and massive apoptosis
in mice [218]. p21 inactivation is required for via-
bility of Hus1-deficient cells, andHus1−/−p21−/−
cells display a unique sensitivity to hydroxyurea and
UV, but only slightly increased sensitivity to ionizing
radiation[218].
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5.5. The RecQ (Bloom and Werner syndrome)
pathways

The RecQ pathway, in association with Top3[219],
is important for: (1) faithful chromosome segregation
during anaphase[220]; (2) meiotic recombinations
[221]; (3) possibly unwinding replicating DNA[222];
(4) resolution of stalled replication forks[223]; and (5)
replication forks restart after their collapse[224,225]
(resolution of Holliday junctions inFig. 6 B and C)
[224,225].

The RecQ pathway is highly conserved. TheE.
coli ortholog is RecQ, and the yeast orthologs are
Sgs1 in budding yeast (Table 3), and Rqh1 in fission
yeast (Table 4). Slow growth suppressor 1 (Sgs1) was
identified as a suppressor of the slow growth phe-
notype of Top3 mutants[221]. Sgs1 mutants exhibit
hyper-recombination and defects in chromosome seg-
regation [226]. Sgs1 interacts with both Top2 and
Top3 [226–228]. There are 5 RecQ orthologs in
humans. Mutations in 3 of them, BLM, WRN and
RecQ4 lead to human diseases (Bloom, Werner and
Rothmund–Thompson syndromes, respectively[229])
characterized by premature ageing and increased
cancer incidence. Although BLM, WRN and Sgs1
proteins are similar in length, andsgs1mutant can
be partially rescued by BLM and WRN[230], these
three proteins share little homology outside their he-
licase domain[230]. By contrast to BLM, WRN cells
do not show increased sister chromatin exchanges.

WRN [231–233]and BLM [234] cells (Table 2),
and yeast cells deficient for Sgs1[102,103,107]
(Table 3) or Rqh1[102] (Table 4) are hypersensitive
to camptothecin. WRN protein forms distinct nu-
clear foci in response to replication-mediated DNA
damage induced by camptothecin[235]. These WRN
foci co-localize with RPA and with Rad51 foci par-
tially, implying cooperative functions between the
RecQ/Top3 pathway and the homologous recom-
bination pathways in response to Top1-mediated
DNA damage[235] (see Fig. 6). WRN also binds
to Ku70/80, which stimulate its exonuclease activity
[236,237], suggesting a possible regulatory function
on the NHEJ pathway as well.

Crosstalk exists between the RecQ and the ATR and
ATM pathways. Phosphorylation of BLM by ATR is
required for formation of MRN foci in the presence of
stalled replication forks[238,239]. Phosphorylation of

BLM by ATM at T99 is also required for the cellular
response to DNA damage[240]. The known camp-
tothecin sensitivity of both AT and BLM-defective
cells makes it important to investigate the connec-
tions between ATR, ATM and BLM in response to
Top1-mediated DNA damage.

5.6. The p53, BRCA1 and Fanconi anemia (FA)
pathways

Although mutations in the p53 pathway are
the most common defects in human cancers,
p53-deficiencies do not translate into hypersensitiv-
ity to camptothecin in cultured cancer cells[241].
However, transfection of the E6 papilloma virus
ubiquitin ligase, which degrades p53, sensitizes both
colon and breast human carcinoma cells to camp-
tothecin [242]. Camptothecin-induced p53 elevation
is replication-dependent[75] and, by contrast to
ionizing-radiation-induced p53 elevation, is preserved
in AT cells [243], indicating that this p53 response is
independent of ATM. Because of the diversity of the
p53 downstream targets that either induce apoptosis
or cell cycle arrest or enhance DNA repair[140],
it is likely that the outcome of p53 deficiencies is
conditional on the cellular context.

BRCA1- and BRCA2-deficient cells are hypersen-
sitive to camptothecins[244,245], which is logical
considering the key roles of BRCA1 and BRCA2 in
DNA repair, HR (seeSection 4.4), checkpoint re-
sponse[132], and genomic stability. BRCA1 is prob-
ably one of the human functional analogs of Rad9 in
budding yeast. As for BRCA1, Rad9 mutants are hy-
persensitive to camptothecin[187,188](seeTable 3).
The other Rad9 human functional analogs include
MDC1, 53BP1, and Nbs1. These BRCT-containing
proteins may serve to present potential substrates for
the checkpoint PI(3)kinases, ATM and ATR. BRCA1
is connected to the Fanconi anemia (FA) pathway.
BRCA1 serves as a mono-ubiquitin ligase for one of
the Fanconi proteins, FANCD2[246]. BRCA2 was
also recently identified as another Fanconi protein,
FANCD1 [132,135]. Thus, the BRCA and FANC
pathways are closely connected.

The sensitivity of Fanconi anemia cells to camp-
tothecin is controversial. Saito and coworkers found
that FA cells are hypersensitive to camptothecin while
their Top1 gene is normal[247]. By contrast, two
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independent studies found no difference in sensitivity
to camptothecin[248,249]. Discrepancies might be
due to the existence of 7 complementation groups for
Fanconi anemia[132], and to the fact that the cell
lines previously used belonged to different comple-
mentation groups[250].

5.7. The chromatin remodeling pathways (CSA/CSB,
γ-H2AX, histone acetylation)

Recently, chromatin changes and histone modifica-
tions have been shown to contribute to DNA repair and
cell cycle checkpoint responses.Tables 2–4list chro-
matin modifications that sensitize to camptothecin.

It has been known for some time that Top1 cleav-
age complexes induced by camptothecin induce the
disassembly of nucleosomes, resulting in DNA relax-
ation [65,251]. Cockayne syndrome B (CSB) acts as
a chromatin remodeling factor[252]. CSB cells are
hypersensitive to camptothecin (Table 1) and accumu-
late abnormally high levels of DSBs in nascent DNA
[43]. Yeast mutants defective for chromatin assembly
and cohesion (TRF4, MCD1/SCC1, CTF4) are also
hypersensitive to camptothecin[102,253], indicating
the importance of chromatin remodeling for the repair
of Top1-mediated DNA lesions.

The basic structural chromatin unit is the nucleo-
some, consisting of 150 bp of DNA wrapped around
the histone octamer. Ser139-phosphorylated histone
H2AX (referred to as�-H2AX) is rapidly accumulated
in response to DSBs[169], including those gener-
ated by Top1 cleavage complexes in replicating DNA
[173]. �-H2AX could alter chromatin structure to al-
low access to DNA repair factors, and it could func-
tion in checkpoint activation in association with other
proteins that co-localize in nuclear foci, such as the
MRN complex, BRCA1, and BLM[169]. Cells from
H2AX knockout mice are hypersensitive to camp-
tothecin[173,187]and fail to form MRN foci in re-
sponse to camptothecin[173]. The H2AX kinases in
response to replication-mediated DSBs are primarily
ATR and DNA–PK, whereas ATM is primarily in-
volved in�-H2AX formation in non-replicating DNA
[173]. Thus,�-H2AX might link chromatin structure
and PI(3)kinase checkpoint pathways in mammalian
cells.

Histone acetylation facilitates chromatin opening
and transcription. Deficiencies in histone H3 and H4

acetylation in GCN5 and ESA1 mutants, respectively,
and in ASF1 mutants sensitize yeast cells to S-phase
genotoxic agents including camptothecin[102,254]
(Table 3). Similarly, mutations in wild-type H4 acety-
lation sites shows camptothecin hypersensitivity, de-
fects in NHEJ repair and in replication-coupled repair.
Both pathways require the ESA1 histone acetyl trans-
ferase (HAT), which is responsible for acetylating H4
tail N-terminal lysines, including ectopic lysines that
restore repair capacity to a mutant H4 tail[255], sug-
gesting a role for histone acetylation in DNA repli-
cation, repair, recombination, and genomic integrity
during replication. These observations are relevant to
the fact that histone acetylation modifiers are in clini-
cal trials and will be tested in association with camp-
tothecins.

6. Summary and conclusions

The repair of Top1-mediated DNA damage involves
multiple apparently redundant pathways (seeFig. 2).
Excision of the Top1–DNA adducts can be effected by
at least 4 pathways including the phosphodiesterase
phosphatase Tdp1/PNKP pathway (Section 4.1), and
the three recently identified 3′-flap endonuclease path-
ways (Rad1/Rad10, Mre11/Rad50, Mus81/Mms4)
(Section 4.2). The DNA breaks associated with Top1
covalent complexes can be repaired by at least 4
other pathways including the XRCC1 (BER) pathway
(Section 4.3), the two DSB pathways (NHEJ and HR)
(Sections 4.4 and 5.3), and the RecQ helicase/Top3
pathway (Section 5.5). Recent evidence suggests that
HR repair seems to be more important than NHEJ
for the repair of replication fork-associated DSBs
induced by Top1 cleavage complexes[256]. Two ad-
ditional mechanisms have been demonstrated in vitro.
First, Top1 cleavage complexes can be reversed by
illegitimate recombinogenic repair, whereby Top1 at
a DNA break transfers the covalently held strand to a
5′-hydroxyl DNA end other than the original strand at
the break. Such reactions have been extensively stud-
ied in vitro for the mammalian[257] and the vaccinia
Top1 enzymes. Their recombinogenic potential might
explain the mutagenicity of Top1 cleavage complexes
and camptothecins. Second, it has been shown that
human[258] and vaccinia[259] Top1s can catalyze
autocleavage of the covalent adduct in the presence



Y. Pommier et al. / Mutation Research 532 (2003) 173–203 193

of a suitably active nucleophile such as hydrogen per-
oxide, which can be produced in vivo by some cells
during stress. Although there is in vivo data on this
mechanism, it is worth mentioning the intrinsic re-
pair capacity of Top1. The redundancy for the repair
pathways involved in the processing of Top1 cleav-
age complexes might only be apparent because it is
likely that each pathway functions preferentially for
certain types of lesions generated under specific con-
ditions. For instance transcription-mediated lesions
(Fig. 1B) and base mismatches (Fig. 1F) might be
repaired primarily by the XRCC1 pathway, whereas
replication-mediated DSBs (Fig. 1C) might rely on
the Mus81/Mms4, RecQ helicases/Top3, and HR
pathways. It is also likely that more than one path-
way can repair the same lesions. Such redundancy
(seeSection 4.2and Fig. 2) should provide biolog-
ical robustness, i.e. in the absence of one pathway,
another could remove the top1 covalent complexes.
The conservation of the repair pathways from hu-
mans to yeasts supports the view that endogenous
Top1-mediated DNA lesions occur under physiologi-
cal conditions (seeTable 1).

The conditional sensitivity of Tdp1-deficient yeasts
in the context of either Rad9 or Rad1/Rad10 de-
ficiencies (Section 4.2and Fig. 4A), suggests that
it might be possible to develop selective therapeu-
tic strategies against specific tumors. A majority of
tumors are deficient for DNA repair (for instance,
mismatch repair) and/or for cell cycle checkpoint pro-
teins (such as p53, pRb, BRCA1, FANC). Thus, Tdp1
inhibitors may selectively potentiate camptothecins
in XPF/ERCC1-deficient cells and in tumors defi-
cient for BRCA1, MDC1, TOPBP1, 53BP1, or Nbs1
(the human Rad9 orthologs). It is rather likely that
the relative selectivity of camptothecins (and other
cytotoxic DNA damaging agents) for cancers is due
to preexisting deficiencies (in DNA repair or/and cell
cycle checkpoint or/and survival pathways), which by
themselves provide selective growth advantages for
tumor development.

Camptothecins are clearly active in a subset of pa-
tients. They are currently prescribed based on the his-
tological origin of the tumors (colon, ovarian, lung,
. . . ) irrespective of their individual molecular pro-
file. Genetic defects promoting tumor development
are likely to determine the cancer sensitivity to cyto-
toxic agents, such as Top1 inhibitors. Diagnosing such

defects and relating them to specific drug responses
should provide the rationale for using cytotoxic drugs
in individual patients. Thus, it remains critical to fur-
ther characterize which molecular defects selectively
sensitize cells to camptothecins and to the novel Top1
inhibitors presently in development, and to further de-
fine the molecular profiling of tumors.

Yeast is a powerful tool to elucidate molecular
pathways, and the viability of Top1-deficient cells in
yeast can be used to validate Top1 as the primary
target for the pathways elicited by camptothecin or
other potential novel Top1 poisons. Most current stud-
ies are being performed in budding yeast (Table 3).
Additional studies in fission yeast, which until now
has been less used for camptothecin studies, should
provide further insights into the cellular response
pathways to Top1-mediated DNA damage (Table 4).
Finally, the availability of murine knockout models,
human cell lines from patients with rare genetic dis-
eases, and knockdown cells (by siRNA) will undoubt-
edly provide opportunities for rationale drug use and
design based on the presence of specific molecular
defects in the target cancer cells.
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