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Abstract

In the restricted circular three-body problem, two massive bodies travel on circular orbits about their mutual center of mass and gravitationally
perturb the motion of a massless particle. The triangular Lagrange points, L4 and L5, form equilateral triangles with the two massive bodies and
lie in their orbital plane. Provided the primary is at least 27 times as massive as the secondary, orbits near L4 and L5 can remain close to these
locations indefinitely. More than 2200 cataloged asteroids librate about the L4 and L5 points of the Sun–Jupiter system, and five bodies have been
discovered around the L4 point of the Sun–Neptune system. Small satellites have also been found librating about the L4 and L5 points of two
of Saturn’s moons. However, no objects have been discovered around the Earth–Moon L4 and L5 points. Using numerical integrations, we show
that orbits near the Earth–Moon L4 and L5 points can survive for over a billion years even when solar perturbations are included, but the further
addition of the far smaller perturbations from other planets destabilize these orbits within several million years. Thus, the lack of observed objects
in these regions cannot be used as a constraint on Solar System formation, nor on the tidal evolution of the Moon’s orbit.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The general problem of the motion of three or more mu-
tually gravitating bodies is not solvable analytically. However,
Lagrange (1772) proved that there are five stationary positions
in the restricted circular three-body problem. At these station-
ary points, a massless (test) particle can remain fixed in a frame
rotating with the angular velocity of the two massive bodies.
Three of these so-called Lagrangian points lie along the line
connecting the two massive bodies; all three of these colinear
Lagrangian points are saddle points in the potential, and thus
they are unstable in the sense that a particle displaced slightly
from any one of them tends to drift away from the equilib-
rium point. The two other stable points also lie in the plane
of the orbit of the massive bodies, and they are the same dis-
tance from each of the massive bodies as the massive bodies
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are from one another; thus, each of these Lagrangian points
forms an equilateral triangle with the two massive bodies. The
triangular Lagrangian points are potential energy maxima, but
they are stabilized by Coriolis forces provided the primary is
> (29 + √

621)/2 ≈ 26.96 times as massive as the secondary.
[See Danby (1988) for a derivation and further details.] The tri-
angular Lagrangian point leading (trailing) the secondary body
in orbit is denoted L4 (L5).

More than two thousand asteroids are currently known to or-
bit near and librate about the L4 and L5 triangular Lagrangian
points of the Sun–Jupiter system (http://ssd.jpl.nasa.gov/et_
form.html); these asteroids are known as the trojans. Numeri-
cal models show that test particles in regions near the triangular
Lagrangian points of the other giant planets can also survive for
the age of the Solar System, although the immediate vicinity of
Saturn’s L4 and L5 points are unstable, and in general plane-
tary perturbations make the regions near the L4 and L5 points
of Saturn and Uranus less stable than those near the L4 and L5
points of Jupiter and Neptune (Innanen and Mikkola, 1989;
Nesvorný and Dones, 2002). No L4 and L5 librators of Sat-
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Table 1
Initial coordinates of test particles (simulations with all planets)

Region δa (10−5 AU)a δλ (◦)a ea � (◦)a i (◦)b Ω (◦)a Number of particles Figure #

L4 −5, 5, 1 55, 67, 1 0.02, 0.2, 0.02 0, 330, 30 0 – 17,160 1a
L4 −3.5, 0.5, 0.4 61, 67, 0.5 0.07, 0.15, 0.01 310, 350, 5 0 – 11,583 1b
L4 −2.2, −0.2, 0.33 63.25, 65.25, 0.5 0.11, 0.125, 0.005 322, 334, 4 0 – 560 1c
L4 −2, −0.5, 0.3 63.5, 64.7, 0.3 0.113, 0.122, 0.003 325, 331, 2 0 – 480 1d
L5 −5, 5, 1 −67, −55, 1 0.02, 0.2, 0.02 0, 330, 30 0 – 17,160 2a
L5 −2, 2, 0.4 −64, −58, 0.5 0.09, 0.17, 0.01 250, 290, 5 0 – 11,583 2b
L5 −1.6, 0.8, 0.4 −62, −60, 0.5 0.125, 0,155, 0.01 264, 276, 4 0 – 700 2c
L4 −5, 5, 2 55, 67, 3 0.04, 0.2, 0.04 0, 270, 90 0.5, 1, 2, 4, 8 0, 270, 90 12,000 3a
L4 −2, 2, 1 60, 66, 1.5 0.08, 0.16, 0.02 160, 200, 10 0.5, 1, 2, 4, 8 0, 270, 90 12,500 3b
L4 −2, −0.5, 0.3 63.5, 64.7, 0.3 0.113, 0.122, 0.003 325, 331, 2 0.5, 1, 2, 4, 8 0, 270, 90 9600 3c
L5 −5, 5, 2 −67, −55, 3 0.04, 0.2, 0.04 0, 270, 90 0.5, 1, 2, 4, 8 0, 270, 90 12,000 4a
L5 −1, 3, 1 −64, −58, 1.5 0.1, 0.18, 0.02 250, 290, 10 0.5, 1, 2, 4, 8 0, 270, 90 10,000 4b
L5 −1.4, 0.1, 0.3 −61.6, −60.4, 0.3 0.118, 0.136, 0.006 267, 273, 2 1, 2 0, 270, 90 3840 4c
L4 −5, 5, 2.5 54, 66, 3 0.02, 0.1, 0.02 0, 288, 72 30, 35, 40, 45, 50 0, 324, 36 31,250 5

a The numbers listed represent the minimum value, maximum value, and spacing between values of the specified parameter.
b Listing of values of inclination used.
urn and Uranus have yet been found, but five Neptune L4 point
librators have been identified (Sheppard and Trujillo, 2006;
http://cfa-www.harvard.edu/iau/lists/NeptuneTrojans.html).

The Earth/Moon mass ratio of 81.3 is suitable for L4 and L5
point stability, and simulations of lunar formation find that
some debris often remain trapped in horseshoe orbits encom-
passing three trojan points (Kokubo et al., 2000). However,
despite numerous searches (Valdes and Freitas, 1983 and refer-
ences therein), no objects have been detected librating about the
triangular Lagrangian points of the Earth–Moon system. High-
precision numerical integrations that include the Sun, Moon
and planets demonstrate that some test particles initially near
the Earth–Moon L4 and L5 points remain there for at least
the 1000 years that these studies have simulated (Jorba, 2000);
included among the survivors is a group with high inclina-
tion. Earth–Moon trojans may have been destabilized billions
of years ago when tidal recession of the Moon caused the sys-
tem to pass through a resonance with the Sun (Ćuk et al., 2006).
We study herein the fates of such particles on million year time
scales at the current epoch.

2. Numerical experiments

We performed numerical integrations of test particles ini-
tially located near the Earth–Moon L4 point for the Earth–
Moon–Sun case and for particles near both the L4 and L5
points including all eight planets together with the Moon and
the Sun. When complicating factors such as orbital eccentric-
ity and additional perturbers are present, the triangular points
are not necessarily the locations of the most stable orbits for
test particles (Nesvorný and Dones, 2002). Thus, we conducted
our numerical investigations on a grid of initial particle phase
space locations centered upon each triangular Lagrangian point
of the Earth–Moon system. The phase space of possible initial
test particle state vectors has six dimensions, representing the
position and velocity of the particle or an equivalent set of or-
bital elements. We chose to select initial conditions on a grid
of the following geocentric orbital elements: δa, representing
the difference between the particle’s semimajor axis and that
of the Moon; δλ, the difference between the particle’s mean
longitude and that of the Moon; e, eccentricity; δ� , the differ-
ence between the particle’s longitude of perigee and that of the
Moon; i, inclination of the particle’s orbit relative to that of the
Moon; Ω , the longitude of the particle’s ascending node relative
to the Earth–Moon line of nodes. All integrations apart from
the Earth–Moon–Sun high eccentricity case were begun at the
epoch 2002 Jan 01 0:0 hours = JD 2452275.5. The masses and
initial coordinates and velocities for all massive bodies were
taken from JPL’s horizon telnet site.

Particles were removed when they collided with the Moon
or the Earth, or when they reached a distance of 1 AU from
the Earth. In the early stages of our numerical simulations, the
most common end state is collision with the Moon. Later, most
remaining test particles escape from geocentric orbit and drift
1 AU away. Only a small fraction actually hit Earth (prior to
escaping from the Earth–Moon system). Every particle in the
integrations that included all of the planets was followed until
it either hit the Earth or the Moon or escaped from the Earth–
Moon system. The Earth–Moon–Sun integrations with current
Fig. 1. Lifetimes of test particles near the L4 leading Lagrangian point of the Earth–Moon system are displayed as a function of initial particle position. The plots
represent the results of a four-dimensional survey in initial δa (difference between the semimajor axis of the particle and that of the Moon), δλ (mean longitude with
respect to the Moon), e (eccentricity), � (longitude of periapse) phase space. For each value of a and λ, the circles represent results for the initial eccentricities
shown by the color bar at the right. The diameter of the circle is proportional to the logarithm of the lifetime (in years) of the longest-surviving particle with initial
coordinates given (among the several particles with differing � that were simulated) in our integrations that included the Moon, the Sun and all eight planets. The
small and large concentric circles below the color bar represent lifetimes of 1000 and 106 years, respectively. Panel (a) shows results from our coarsest grid that
contained 17,160 particles, and the following panels show progressively finer grids in the region (denoted by dashed line boxes) of the longest-lived particles. Note
that although the longest-lived particles are concentrated in a particular region in panels (a) and (b), no well-defined peak is present in the panel (d). Black crosses
mark the initial locations of particles that were stable for 1 Gyr in the Earth–Moon–Sun simulations.
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Fig. 1.
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(c)

(d)

Fig. 1. (continued)
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eccentricity were terminated after 1 billion years and those with
high eccentricity were terminated after 100 million years.

Our 8 planet integrations used Everhart’s RADAU integra-
tor algorithm (Everhart, 1985) as implemented in the Mercury
integration package (Chambers, 1999). This is a moderately
efficient, highly accurate, high-order integrator. We began by
integrating on coarse grids centered at each of the two trian-
gular Lagrangian points. We conducted four-dimensional sur-
veys of test particles initially orbiting in the same plane as
the Moon with initial semimajor axes from −5 × 10−5 AU �
δa � 5 × 10−5 AU in steps of 1 × 10−5 AU, initial longitudes
from 55◦ � |δλ| � 67◦ in steps of 1◦, initial eccentricity 0.02 �
e � 0.18 in steps of 0.02 and initial perigee angles, � , spread
uniformly in longitude at intervals of 30◦. The initial grids for
our survey of moderately inclined particles were δa: −5×10−5

to +5×10−5 in steps of 2×10−5; |δλ|: 55 to 67◦ in steps of 3◦;
e: 0.04 to 0.20 in steps of 0.04; δ� : 0 to 270◦ in steps of 90◦;
i = 0.5,1,2,4,8◦; Ω : 0 to 270◦ in steps of 90◦. Thus, we began
with 17,160 particles on in-plane orbits and 12,000 particles
on moderately inclined orbits around each of the triangular La-
grangian points. We subsequently zoomed-in to conduct higher
resolution investigations of the regions in which particles sur-
vived for the longest times and integrated particles on finer grids
within these regions. We also followed 31,250 highly inclined
(30◦ � i � 50◦) particles near L4. The initial parameter ranges
and spacings for all of our 8 planet runs are given in Table 1.

The lifetimes of the longest-lived particles in our planar
8 planet integrations around L4 are displayed graphically in
Fig. 1. Figs. 2–5 present analogous plots for planar integra-
tions in the vicinity of L5, moderately inclined orbits about L4,
moderately inclined orbits about L5, and highly inclined orbits
about L4, respectively. No particle in our planar or moder-
ately inclined orbit integrations that included all of the planets
survived for even 3 million years. In the initial and second
simulations around each Lagrangian point, there are regions in
phase space where particle lifetimes are longest, so we zoomed
in on these regions and examined progressively higher reso-
lution grids in phase space. However, in the final simulations
around each Lagrangian point, no unresolved region of δa − δλ

phase space appears to be preferred (Figs. 1d, 2c, 3c and 4c).
The longest-lived particle in our highly inclined simulations,
which began with δa = −5 × 10−5 to +5 × 10−5; |δλ| = 57◦;
e = 0.04; δ� = 72◦; i = 35◦; Ω = 36◦, survived for 3.48 Myr,
the second longest, with i = 30◦, for 2.74 Myr, and all other
(a)

Fig. 2. Lifetimes of test particles near the L5 trailing Lagrangian point of the Earth–Moon system are displayed as a function of initial particle position. The plots
represent the results of a four-dimensional survey in initial δa (difference between the semimajor axis of the particle and that of the Moon), δλ (mean longitude with
respect to the Moon), e (eccentricity), � (longitude of periapse) phase space. For each value of a and λ, the circles represent results for the initial eccentricities
shown by the color bar at the right. The diameter of the circle is proportional to the logarithm of the lifetime (in years) of the longest-surviving particle with initial
coordinates given (among the several particles with differing � that were simulated) in our integrations that included the Moon, the Sun and all eight planets. The
small and large concentric circles below the color bar represent lifetimes of 1000 and 106 years, respectively. Panel (a) shows results from our coarsest grid that
contained 17,160 particles, and the following panels show progressively finer grids in the region (denoted by dashed line boxes) of the longest-lived particles.
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(b)

(c)

Fig. 2. (continued)
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particles were lost in <1.77 Myr. Because there was no region
of this part of phase space that seemed to be especially stable,
we did not zoom-in around the longest-lived particles in our
high i runs. While a higher resolution survey of this chaotic
phase space would almost certainly identify somewhat longer-
lived orbits, it is quite unlikely that trajectories which remain
near either of the Earth–Moon triangular points for a substan-
tial fraction of the age of the Solar System would be found. The
particular initial locations of the most stable orbits would differ
if we changed the starting epoch by even a small amount, but
characteristic lifetimes of these orbits would not.

In order to determine the reason(s) that particles cannot re-
main in the vicinity of the Earth–Moon triangular Lagrangian
points for geological time scales, we performed integrations of
test particles in the Earth–Moon–Sun restricted 4-body prob-
lem. Our first set of integrations for the Earth–Moon–Sun case
used a version of Wisdom and Holman’s mixed-variable sym-
plectic mapping modified for wide binary systems (i.e., Earth–
Sun) that is described in Chambers et al. (2002). The central
body was the Earth. The wide-binary companion was the Sun.
The Moon and test particles were assumed to be orbiting the
Earth, while receiving perturbations from the Sun (the distant
binary companion). We conducted a four-dimensional survey
of test particles initially orbiting near L4 in the same plane
as the Moon in a region where particles in the 8 planet inte-
grations were relatively long-lived. We followed 81 particles
with initial semimajor axes from −1.5 × 10−5 AU � δa �
0.55 × 10−5 AU in steps of 0.5 × 10−5 AU, initial longitudes
from 63.5◦ � |δλ| � 64.5◦ in steps of 0.5◦, initial eccentricity
0.115 � e � 0.125 in steps of 0.005 and initial perigee an-
gles, � , from −34◦ to −30◦ in steps of 2◦. In contrast to the
8 planet integrations, when the only forces considered are the
Newtonian gravitational attraction of the Earth, Moon and Sun
27 test particles remained in the vicinity of the L4 triangular
Lagrangian point of the Earth–Moon system for the entire one
billion years that we simulated (crosses in Figs. 1 and 3). We
did not perform analogous restricted 4-body simulations around
the L5 point. The total fractional energy error during 109 year
integration was 1.5 × 10−8 and the total fractional angular mo-
mentum error was 1.5 × 10−11.
(a)

Fig. 3. Lifetimes of test particles beginning on moderately inclined orbits near the L4 leading Lagrangian point of the Earth–Moon system are displayed as a function
of initial particle position. The plots represent the results of a six-dimensional survey in initial δa (difference between the semimajor axis of the particle and that
of the Moon), δλ (mean longitude with respect to the Moon), e (eccentricity), � (longitude of periapse), i (inclination), Ω (longitude of the particle’s ascending
node relative to the Earth–Moon line of nodes) phase space. For each value of a and λ, the circles represent results for the initial eccentricities shown by the color
bar at the right. The diameter of the circle is proportional to the logarithm of the lifetime (in years) of the longest-surviving particle with initial coordinates given
(among the several particles with differing � , i, and Ω that were simulated) in our integrations that included the Moon, the Sun and all eight planets. The small
and large concentric circles below the color bar represent lifetimes of 1000 and 106 years, respectively. Panel (a) shows results from our coarsest grid that contained
12,000 particles, and the following panels show progressively finer grids in the region (denoted by dashed line boxes) of the longest-lived particles. Black crosses
mark the initial locations of particles that were stable for 1 Gyr in the Earth–Moon–Sun simulations.
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(b)

(c)

Fig. 3. (continued)
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Although planetary perturbations are orders of magnitude
smaller than solar perturbations, they change the eccentricity of
Earth’s orbit about the Sun. Particles are lost more rapidly when
Earth’s orbital eccentricity is high and increasing, but variations
in the value of Earth’s heliocentric inclination have relatively
little effect (Fig. 6). This suggests that the planets indirectly
affect the orbits of particles near the Earth–Moon L4 and L5
points through solar perturbations, either because high eccen-
tricity of the Earth’s orbit causes problems or because variations
in eccentricity of the orbit destabilize the Earth–Moon triangu-
lar Lagrangian points. Alternatively, planetary resonances anal-
ogous to those that may have excited lunar eccentricity (Ćuk,
2007) may more directly destabilize test particles placed near
the Earth–Moon triangular Lagrangian points. In order to dis-
tinguish between these three possibilities, we conducted addi-
tional restricted 4-body integrations; all of these simulations
used the RADAU integrator.

We investigated the effects of increased solar eccentricity
by performing a restricted 4-body simulation in which the ini-
tial positions and velocities of the Sun and Earth were taken
from an integration of the Sun plus 8 planets done using
RADAU until a point when the Earth was close to a maxi-
mum in its eccentricity. The initial orbital elements of the Sun
were: a = 0.9991711 AU, e = 0.0618808, i = 0.7350◦, � =
302.5934◦, Ω = 6.2966◦, λ = 162.4466◦, with the key factor
being that e was much larger than it is at the present epoch.
A total of 1296 particles were integrated about the L4 point
in a 6 × 6 × 6 × 6 array with initial semimajor axes from
3 × 10−5 AU � δa � 4 × 10−5 AU in steps of 0.2 × 10−5 AU,
initial longitudes from 58.6◦ � |δλ| � 61.1◦ in steps of 0.3◦,
initial eccentricity 0.07 � e � 0.09 in steps of 0.004 and initial
perigee angles, � , from 263◦ to 273◦ in steps of 2◦. The ini-
tial positions and velocities of the Moon with respect to Earth
were same as in the main integrations, so apart from the test
particle grid, the only thing that changed was the initial posi-
tion and velocity of the Sun in the 4-body problem. There were
143 survivors out of 1296 particles after 100 Myr. Thus, larger
but constant eccentricity of the Earth’s heliocentric orbit, within
the range forced by the planets, does not completely destabilize
the Earth–Moon triangular Lagrangian points.

Our final pair of numerical experiments compared the evo-
lution in the restricted 4-body problem with that including the
same objects but adding an artificial growth in the Sun’s eccen-
tricity about the Earth. The initial particles were the same as
(a)

Fig. 4. Lifetimes of test particles beginning on moderately inclined orbits near the L5 trailing Lagrangian point of the Earth–Moon system are displayed as a function
of initial particle position. The plots represent the results of a six-dimensional survey in initial δa (difference between the semimajor axis of the particle and that
of the Moon), δλ (mean longitude with respect to the Moon), e (eccentricity), � (longitude of periapse), i (inclination), Ω (longitude of the particle’s ascending
node relative to the Earth–Moon line of nodes) phase space. For each value of a and λ, the circles represent results for the initial eccentricities shown by the color
bar at the right. The diameter of the circle is proportional to the logarithm of the lifetime (in years) of the longest-surviving particle with initial coordinates given
(among the several particles with differing � , i, and Ω that were simulated) in our integrations that included the Moon, the Sun and all eight planets. The small
and large concentric circles below the color bar represent lifetimes of 1000 and 106 years, respectively. Panel (a) shows results from our coarsest grid that contained
12,000 particles, and the following panels show progressively finer grids in the region (denoted by dashed line boxes) of the longest-lived particles.
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(b)

(c)

Fig. 4. (continued)
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Fig. 5. Lifetimes of test particles beginning on highly inclined orbits near the L4 leading Lagrangian point of the Earth–Moon system are displayed as a function
of initial particle position. The plots represent the results of a six-dimensional survey in initial δa (difference between the semimajor axis of the particle and that of
the Moon), δλ (mean longitude with respect to the Moon), e (eccentricity), � (longitude of periapse), i (inclination), Ω (longitude of the particle’s ascending node
relative to the Earth–Moon line of nodes) phase space. For each value of a and λ, the circles represent results for the initial eccentricities shown by the color bar at
the right. The diameter of the circle is proportional to the logarithm of the lifetime (in years) of the longest-surviving particle with initial coordinates given (among
the several particles with differing � , i, and Ω that were simulated) in our integrations that included the Moon, the Sun and all eight planets. The small and large
concentric circles below the color bar represent lifetimes of 1000 and 106 years, respectively.

Fig. 6. The colored curves in the top panel show the fraction of particles remaining as a function of time for the run with the smallest grid (longest lifetime region)
near the L4 point (the same runs as presented in Figs. 1d and 3c) for each value of i � 8◦ studied. The curve in the middle panel shows the fraction of particles
remaining as a function of time for the runs i � 30◦ near the L4 point (the run presented in Fig. 5), displayed on a logarithmic scale because of the rapid early
depletion. The red and blue curves in the bottom panel show, respectively, the eccentricity and sine of the inclination of Earth’s orbit about the Sun on the same time
scale. The correlation between these plots shows the effects of changes in Earth’s heliocentric orbit on particle survival. Note that particles are lost more rapidly
when the Earth’s orbital eccentricity is increasing towards a high value.
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Fig. 7. Results of the integrations comparing particle survival lifetimes in the
restricted 4-body problem with and without artificial increases in the eccentric-
ity of the Earth–Sun orbit. The dashed curves in each plot show the run with e

artificially excited, while the solid curves are without this acceleration.

those used in the highest resolution planar grid for the main
integrations about the L4 point (see line 4 in Table 1 and
Fig. 1d). In one of the two runs, the eccentricity of the Sun
was changed by applying a small acceleration at each step of
the form dv/dt = 2(r · v)/(r2τ)r, where r · v is the dot product
of the radius and velocity vectors, with τ set equal to 106 years.
All of the particles in this run were lost within 830,000 years,
whereas almost half of the particles in the integration without
artificial acceleration were still in the vicinity of the L4 point
at that time (Fig. 7). This suggests that (planet-induced, in the
physical problem) variations in the eccentricity of the Earth–
Sun orbit, rather than any particular value of this eccentricity or
direct planetary perturbations, are responsible for destabilizing
the Earth–Moon triangular Lagrangian points.

3. Conclusions

The results of our eight planet numerical integrations pre-
sented above provide extremely strong evidence that all but
possibly a trivially small fraction of orbits near the Earth–Moon
triangular Lagrangian points are unstable on geologically short
timescales.1 Thus, it is not surprising that no natural satellites
have been detected in these regions; indeed, if any small, unde-
tected debris is in these dynamical regions, it almost certainly
was placed there within the geologically recent past by non-
gravitational processes such as collisions, cometary outgassing,
the Yarkovsky effect or other electromagnetic forces. Moreover,
our results imply that the lack of objects observed at the Earth–
Moon Lagrangian points cannot be used to constrain the origin
or very long term evolution of the Solar System.
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