
Computer Physics Communications 179 (2008) 777–783
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Implementing peridynamics within a molecular dynamics code

Michael L. Parks a,∗,1, Richard B. Lehoucq a,1, Steven J. Plimpton b,1, Stewart A. Silling c,1

a Applied Mathematics and Applications, Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185, USA
b Scalable Algorithms, Sandia National Laboratories, P.O. Box 5800, MS 1316, Albuquerque, NM 87185, USA
c Multiscale Dynamic Materials Modeling, Sandia National Laboratories, P.O. Box 5800, MS 1322, Albuquerque, NM 87185, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2008
Received in revised form 13 June 2008
Accepted 18 June 2008
Available online 26 June 2008

PACS:
02.70.Ns
02.70.Rr
05.10.-a
31.15.Qg
62.20.Dc
63.20.-e

Keywords:
Multiscale
Molecular dynamics
Peridynamics
Continuum mechanics
Parallel computing

Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties.
In this context, nonlocal means that continuum points separated by a finite distance may exert force
upon each other. A meshless method results when PD is discretized with material behavior approximated
as a collection of interacting particles. This paper describes how PD can be implemented within a
molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds
a computational mechanics capability to an MD code, enabling simulations at mesoscopic or even
macroscopic length and time scales.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Molecular dynamics (MD) suffers from well-known computa-
tional limitations in the length and time scales it can address, even
on large parallel supercomputers. Numerous recent efforts attempt
to coarse-grain MD or to couple it to meso- and macro-scale mod-
els to enable “multiscale” modeling of phenomena such as crack
growth, indentation, flow near surfaces, and heat transfer as de-
scribed in [4,9–11].

The purpose of this paper is to describe how peridynamics [14,
17], a continuum theory, can be implemented within an MD frame-
work so enabling meso-scale and macroscale modeling. As we shall
see, the force interactions that result from discretizing peridynam-
ics (PD) are similar to traditional MD forces, yet have additional
characteristics that must be addressed for an efficient implementa-
tion. Thus, with minor modifications, an MD code can perform PD
calculations. The recent paper [19] explains how PD converges to
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the classical elastic material model assuming that the underlying
deformation is sufficiently smooth. This suggests that a computa-
tional mechanics capability at length scales substantially beyond
those typically associated with MD are realizable within an MD
framework.

The PD theory of continuum mechanics belongs to the class of
microcontinuum theories defined by generalizing the local force
assumption to allow force at a distance (see [1,3] for general dis-
cussions and references) so introducing a length-scale. In the clas-
sical continuum context, “local force” means that only continuum
points in direct contact can exert a force on each other. The force
arises from a stress vector acting at a point on an oriented surface.
In contrast, PD employs an integral operator to sum forces avoid-
ing the use of stress/strain fields in its equation of motion. Instead,
the material behavior in PD is specified by nonlocal force interac-
tions, assumed to be a function of the positions of the continuum
points. No assumption are made on the continuity or differentia-
bility of the displacement field. Because the displacement field is
not assumed even weakly differentiable, PD can be employed for
deformation that does not satisfy the smoothness assumptions of
classical continuum mechanics, e.g., fracture or fragmentation. The
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reader is referred to [2,15,16] for information describing PD2 mod-
eling in several applications at length and timescales up to meters
and seconds, respectively.

When PD is discretized, a meshless method [15] results, where
the material is approximated as a collection of interacting contin-
uum points. Meshless methods such as SPH (Smoothed Particle
Hydrodynamics), EFG (Element Free Galerkin), RKPM (Reproduc-
ing Kernel Particle Method), and XFEM (Extended Finite Element
Method), have received considerable attention from the continuum
mechanics community [8], and are typically formulated by dis-
cretizing the classical equations using a set of nodes. Although a
local force assumption is assumed in the continuum model, a no-
tion of nonlocality is often introduced at the discrete level in an
ad-hoc fashion. In contrast, discretized PD inherits nonlocality be-
cause the continuum PD model is nonlocal.

The remainder of the paper is organized as follows. We first
review PD in Section 2 and its discretization in Section 3. We
have implemented PD in LAMMPS, Sandia National Laboratories’
molecular dynamics code [13]. Details of the implementation are
discussed in Section 4. Finally, Section 5 illustrates the style and
scope of macroscopic simulations such a modified MD code can
then perform.

2. Peridynamics

We briefly review the salient details of peridynamics. The
reader is referred to [14,15,17] for further details. Let a body in
some reference configuration occupy a region B. For any x ∈ B the
PD equation of motion is

ρ(x)ü(x, t) =
∫

B

f(η, ξ)dV x′ + b(x, t), t � 0, (1)

where u(x, t) is the displacement field with initial conditions
u(x,0) = u0(x), u̇(x,0) = u̇0(x). The vector function f(η, ξ) denotes
the force density per unit reference volume exerted on a point
y = x + u(x, t) by the point y′ = x′ + u′ , where u′ = u(x′, t). The
vectors η = u′ − u, and ξ = x′ − x denote the relative displacement
and relative position in the reference configuration, respectively.
Hence y′ − y = ξ + η, gives the current relative position between
x and x′ in the deformed configuration. The vector b(x, t) is the
loading force density, and the mass density is denoted by ρ(x).

We now discuss the properties that a function f should pos-
sess so that linear and angular momentum are conserved. Consider
Ωx ⊂ B and integrate (1) over Ωx to obtain∫
Ωx

ρ(x)ü(x, t)dV x =
∫
Ωx

∫
B/Ωx

f(η, ξ)dV x′ dV x +
∫
Ωx

b(x, t)dV x. (2)

The first term on the right-hand side of (2) represents the inter-
nal force that the material B/Ωx exerts on the material Ωx . This
internal force is nonlocal precisely because the interaction of ma-
terial inside Ωx with material outside Ωx cannot be restricted to
a contact force along the surface of Ωx , in contrast to the classi-
cal theory of continuum mechanics. The derivation of (2) used the
relation∫
Ωx

∫
B

f(η, ξ)dV x′ dV x

=
∫
Ωx

∫
Ωx

f(η, ξ)dV x′ dV x +
∫
Ωx

∫
B/Ωx

f(η, ξ)dV x′ dV x

= 0 +
∫
Ωx

∫
B/Ωx

f(η, ξ)dV x′ dV x,

2 See http://en.wikipedia.org/wiki/Peridynamics.
where the latter equality follows from conservation of linear mo-
mentum. Moreover, the conservation principle also implies that
f(η, ξ) + f(−η,−ξ) = 0.

To consider conservation of angular momentum, take the cross
product of (1) with y and integrate over Ωx to obtain∫
Ωx

y × ρ(x)ü(x, t)dV x =
∫
Ωx

∫
B

y × f(η, ξ)dV x′ dV x

+
∫
Ωx

y × b(x, t)dV x. (3)

The left-hand side of (3) represents the torque about the origin
caused by the material in the domain Ωx . We may write the first
term on the right-hand side as∫
Ωx

∫
B

y × f(η, ξ)dV x′ dV x =
∫
Ωx

∫
Ωx

y × f(η, ξ)dV x′ dV x

+
∫
Ωx

∫
B/Ωx

y × f(η, ξ)dV x′ dV x. (4)

Under the assumption that f(η, ξ) is antisymmetric (from above),
and also that y × f(η, ξ) is antisymmetric, we may conclude that
(y′ − y) × f(η, ξ) = 0, and that∫
Ωx

∫
Ωx

y × f(η, ξ)dV x′ dV x =
∫
Ωx

∫
Ωx

(y′ − y) × f(η, ξ)dV x′ dV x = 0.

This allows us to replace the first term on the right-hand side of
(3) with the rightmost term in (4), and to conclude that f(η, ξ) is
parallel to the current relative position vector y′ − y.

The material behavior is specified by f(η, ξ), which maps the
deformation given by η for a bond ξ to the force density (per unit
volume). For a microelastic material, this map can be derived from
a micropotential Φ . As an example, consider a prototype micro-
elastic material [15] where the potential (per unit volume squared)
is

Φ(η, ξ) = 1

2

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖)2

, (5)

where c/‖ξ‖ > 0 is the stiffness per unit volume squared and ‖ξ‖
is the equilibrium length of the spring. The gradient of (5) gives a
pairwise force density per unit volume function of

f(η, ξ) = ∇ηΦ(η, ξ) = c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖ . (6)

A standard assumption is that for a given material, f(η, ξ) = 0 for
all η when ‖ξ‖ > δ for some δ > 0, the horizon. We denote the
horizon of x by δ(x). We remark that δ(x) is a constitutive param-
eter defined in the reference configuration, and that f(η, δ) may
not be a negligible force. We also denote by H(x) the spherical
neighborhood of x in B with radius δ(x).

The spatial discretization of (2) divides the region B into subdo-
mains Ωx so that B = ⋃

x∈B Ωx where the number of subdomains
is finite. A discrete approximation to the internal force in (2) using
(6) results in∫
Ωx

∫
B/Ωx

f(η, ξ)dV x′ dV x

=
∫
Ωx

∫
H(x)/Ωx

f(η, ξ)dV x′ dV x

≈
∑

x′∈H(x)/Ω

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖ V x′ V x, (7)

x

http://en.wikipedia.org/wiki/Peridynamics
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where V x′ and V x are the volumes associated with Ωx′ and Ωx ,
respectively. Hence, the discretization of PD gives rise to an inter-
acting set of “particles” approximating the behavior of the material
where a particle x is identified with a subdomain Ωx . The resulting
semidiscrete equation of motion can be combined with a velocity-
Verlet time integration scheme for a fully discrete approximation
to the PD equation of motion (1). This correspondence allows PD
to be implemented within an MD framework because of the anal-
ogous computational structure.

The force functions introduced in [14] (and discussed above)
assumes a central force interaction. The recent paper [17] general-
izes central force interactions to those depending upon the force
state, or collective behavior, at y′ and y. This extension of PD al-
lows a continuum generalization of multibody force interactions.
We also remark that an MD notion of a cutoff can be introduced
so that if ‖η + ξ‖ exceeds a prescribed value, the force interaction
is set to zero. The cutoff is defined in the deformed configuration
in contrast to the material parameter δ(x) defined in the reference
configuration.

3. Inter-particle forces used in peridynamics

We now discuss the form of inter-particle forces that result
from a discretization of PD. As an example, we derive forces and
a particle equation of motion for the prototype microelastic brittle
(PMB) material model introduced in [15]. A PMB material spe-
cializes the force interaction of (7) to allow for a bond breaking
mechanism. We also discuss short-range repulsive forces and the
calculation of particle volumes.

3.1. Prototype Microelastic Brittle (PMB) materials

For a PMB material

f(η, ξ) = g(η, ξ)
η + ξ

‖η + ξ‖ , (8a)

g(η, ξ) =
{

cs(t,η, ξ)μ(η, ξ), ‖ξ‖ � δ,

0, ‖ξ‖ > δ,
(8b)

depends upon the bond strain

s(t,η, ξ) = ‖η + ξ‖ − ‖ξ‖
‖ξ‖ ,

and a history-dependent scalar boolean function

μ(t,η, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, s(t′,η, ξ) < min{s0(t′,η, ξ), s0(t′,η′, ξ ′)},
0 � t′ � t,

s0(t,η, ξ) = s00 − αsmin(t,η, ξ),

smin(t) = minξ s(t,η, ξ),

η′ = u(x′′, t) − u(x′, t), ξ ′ = x′′ − x′,
0, otherwise,

(9)

where s0(t,η, ξ) is a critical strain and s00 and α are material-
dependent constants. μ is 1 for an unbroken bond and 0 other-
wise. Although s0(t,η, ξ) is expressed as a property of a particle,
bond breaking must be a symmetric operation for all particles
sharing a bond. That is, particles x and x′ must utilize the same
test when deciding to break their common bond. This can be done
by any method that treats the particles symmetrically. In the def-
inition of μ above, we have chosen to take the minimum of the
two s0 values for particles x and x′ when determining if the bond
between x and x′ should be broken.

We remark that (8) and (9) imply that a PMB material does not
allow “healing”, e.g., once a bond between two particles is bro-
ken, the bond remains broken. The assumption is that once the
underlying material fractures, then the material remains fractured.
This is in contrast to MD where force interactions between atoms
may be zero or non-zero over time. However, material healing
(or lack thereof) depends upon the constitutive relationship f(η, ξ)

and does not represent any intrinsic limitation of PD.

3.2. Short-range forces

In the preceding section, particles interact only through bond
forces. A particle with no bonds becomes a free non-interacting
particle. To prevent subsequent particle overlap, short-range re-
pulsive forces are introduced. We add to the force f in (1) the
following force

fS (η, ξ) = η + ξ

‖η + ξ‖ min

{
0,

cS

δ

(‖η + ξ‖ − dS
)}

, (10a)

dS = min
{

0.9‖x − x′‖,1.35(rS + r′
S )

}
, (10b)

where rS is defined as the node radius. Given a discrete lattice of
particles, we choose rS to be half the lattice constant. Note that
short-range forces are only repulsive, never attractive. The repul-
sive force above may also be replaced by a “hard” potential, e.g.,
‖η + ξ‖−12, the repulsive part of the Lennard-Jones potential.

3.3. The discrete equation of motion

The region defining a peridynamic material is discretized into
particles forming a cubic lattice with lattice constant a, where each
particle i is associated with some volume V i = a3. Recall that xi

and yi denote the reference configuration (initial position) and po-
sition at time t , respectively, of particle i. Further, for any particle
i, let

Fi = {
j
∣∣ ‖x j − xi‖ � δ, j 	= i

}
, (11a)

F S
i = {

j
∣∣ ‖y j − yi‖ � dS , j 	= i

}
, (11b)

where dS is defined in (10b). The former denotes the family of
particles within a distance δ of particle i in the reference con-
figuration, and the latter denotes the family of particles within a
distance dS of particle i in the current configuration.

We explicitly track and store the positions and not the dis-
placements of the particles associated with a discretization of (2)
because ÿ(x, t) = ẍ+ ü(x, t) = ü(x, t). Using (8), (10)–(11) the semi-
discrete peridynamic equation of motion can then be written as

(
ρ(xi)V i

)
ÿn

i =
∑
j∈Fi

f
(
un

j − un
i ,x j − xi

)
Ṽ j V i

+
∑
j∈F S

i

fS
(
un

j − un
i ,x j − xi

)
V j V i + bn

i V i, (12)

where Ṽ j = ν(x j − xi)V j . We introduce the function ν(x j − xi) as
a scale factor on V j for the following reason. Some of the parti-
cles j to which particle i is bonded will be near the boundary of
H(xi) (the sphere of radius δ surrounding particle i). For these in-
teractions only a portion of V j is inside the sphere and the bond
strength should be diminished as a result. The following linear di-
mensionless nodal volume scaling function accounts for this effect:

ν(x − x′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2rS

‖x j − xi‖ + ( δ
2rS

+ 1
2 ),

δ − rS � ‖x j − xi‖ � δ,

1, ‖x j − xi‖ � δ − rS ,

0, otherwise.

(13)

Note that if ‖x j −xi‖ = δ, ν = 0.5, and if ‖x j −xi‖ � δ−rS , ν = 1.0.
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4. Implementation of PD in LAMMPS

We now explain how Eq. (12) was implemented within the
molecular dynamics code LAMMPS [13], an open-source, general-
purpose, massively parallel MD simulator. LAMMPS provides a va-
riety of interatomic potentials for biological and polymer systems,
solid-state materials, and other coarse-grained models, but PD was
the first continuum-level model added to the code. LAMMPS is
well-suited for implementing PD because it is designed to allow
new potentials, boundary conditions, and particle attributes to be
easily added without affecting the code’s operation when non-PD
models are simulated.

From an MD perspective, Eq. (12) can be rewritten succinctly as
a potential for the energy of particle i in the following form

Ui =
∑
j∈F S

i

Φshort-range(u j − ui,x j − xi)

+
∑
j∈Fi

Φbond(u j − ui,x j − xi), (14a)

where

Φshort-range(u j − ui,x j − xi)

=
{ cs

2δ
(‖y j − yi‖ − dS )

2, ‖y j − yi‖ � dS ,

0, otherwise,
(14b)

Φbond(u j − ui,x j − xi)

=
{

Φ(u j − ui,x j − xi), if bond unbroken,

0, otherwise,
(14c)

where Φ(u j − ui,x j − xi) is defined in Eq. (5).
The first term Φshort-range is the short-range potential (derived

from Eq. (10)) that prevents particles from overlapping. When par-
ticles are separated by a distance greater than dS the interaction
is zero. This term is effectively the repulsive portion of a harmonic
spring with equilibrium length dS . Note that this is a much softer
short-range repulsive potential than the ‖x j − xi + u j − ui‖−12 re-
pulsion provided, for example, by a Lennard-Jones interaction [7].
(See [2] for results combining a Lennard-Jones interaction and har-
monic potential.)

The second term Φbond is the cohesive potential for the ma-
terial, summed over all j ∈ Fi particles that are initially within a
distance δ of particle i. This is effectively a list of harmonic “bond”
partners of particle i. Note that the effective bond strength falls
off as the inverse of the initial bond length x j − xi , which can be
seen from Eq. (5), and is also a function of the scaled volume fac-
tor Ṽ j defined in Eq. (12). The bond potential is set to zero once it
stretches beyond a critical length, as discussed for the PMB mate-
rial model in Eqs. (8) and (9). An individual bond is active for all
time t until this occurs. If the bond breaks, it is never again active,
even if the two particles later come close together. However, as ex-
plained at the end of Section 3.1, this is a constitutive assumption
on the material, and bond healing may easily be incorporated.

The critical strain s0 of Eq. (9) is defined on a per-particle basis
and is computed each timestep for testing that particle’s bonds.
To ensure symmetry in bond breaking, if the strain of the bond
between particles i, j exceeds the smaller of s0 for particle i or s0
for particle j, then the bond “breaks”. The bond is deleted from the
lists Fi and F j of bond partners for both particles and contributes
no energy or force to the system for all subsequent timesteps.

As Eq. (14a) implies, the following parameters are input by the
user to define the PD potential for a specific material: ρ , c, s00,
α, and δ. If different particle types represent multiple materials in
a more complex model, each of these parameters can be defined
for each pair of interacting particle types. The functional forms of
Φshort-range and Φbond are specific to the PMB material model of
Section 3. However, PD models for other materials result in poten-
tial functions with similar characteristics: a short-range repulsive
term and a history-dependent cohesive term that can turn off as
large deformations occur.

We now detail how Eq. (14a) was implemented in LAMMPS.
First, a set of consistent units suitable for macroscopic simulations
was needed. LAMMPS allows the user to choose units convenient
for their particular simulations, each of which is implemented as
a handful of conversion factors. These are used when, for ex-
ample, kinetic energy (1/2mv2) is computed with velocities in
Angstroms/fs and the result should be in Kcal/mole (for an atom-
istic simulation). For peridynamic simulations, an “SI” option was
added where energy = Joules, distance = meters, time = seconds,
etc.

LAMMPS operates in parallel in a spatial-decomposition mode
[13], where each processor owns a sub-domain of the overall sim-
ulation box and the particles within the sub-domain. To compute
pairwise or bond forces, a processor communicates with its neigh-
boring processors via distributed-memory message passing (MPI)
to acquire information about nearby “ghost” particles owned by
those processors. To improve the efficiency of the computation of
pairwise forces, LAMMPS uses Verlet neighbor lists [20] that are
recomputed every few timesteps via binning particles on a regu-
lar grid and searching nearby bins to find neighbors [5]. These are
also the timesteps on which particles migrate to new processors
as needed. For peridynamic simulations, Verlet neighbor lists are
used only when computing the family of short-range interacting
particles, F S

i .
Each PD particle stores 4 quantities in addition to the usual

coordinates, velocities, forces, etc. These are the critical strain s0
from Eq. (9), the particle volume V , the particle density ρ , and
the initial position of the particle x0. V is precomputed for each
particle based on the initial problem geometry.

These 4 quantities migrate with particles as they move from
processor to processor. Additionally, the s0 value for each ghost
particle is communicated every timestep, since it is a dynamic
quantity and the breakage criterion for bond i, j depends on the
s0 value of both particles. Similarly, the V value for ghost parti-
cles is needed to scale the bond force between particles i, j. Since
V is a static quantity, it is only communicated on timesteps when
reneighboring is done.

The short-range term in Eq. (14a) is conceptually identical to
standard short-range pair potential computations within an MD
code. In LAMMPS a “half” neighbor list is used to efficiently find
neighboring particles within a distance dS on a given timestep. By
“half” we mean that any interacting pair i, j is only stored once in
the list, either by particle i or by particle j. The forces on particles
i, j are computed for each pair in the list. At the end of the force
computation, forces on ghost particles are communicated back to
the owning processor.

Computation of the bond term in Eq. (14a) requires knowledge
of which bonds are already broken. Thus each particle stores a list
of its bond partners, denoted by Fi in (11a), and flags them as they
break. For each partner, the initial bond distance ‖x j − xi‖ is also
stored, since it is used to calculate bond strength. The bond family
of particles Fi for each particle is computed only once, on the first
timestep of the simulation, based on the initial undeformed state
of the material. The union of Fi over all particles is effectively
a “full” neighbor list where the geometric neighbors of particle i
within a cutoff distance δ are stored. By “full” we mean the in-
teracting pair i, j is stored twice, once by particle i and once by
particle j.

With this information, the bond term in Eq. (14a) can be com-
puted by looping over the particles in Fi for each particle i. The
bond is skipped if it previously broke. If both particles i, j are
owned by the processor, the bond is also skipped if i > j, tak-
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Fig. 1. Cut view of target after impact by a projectile.
ing advantage of Newton’s 3rd law. For active bonds, the bond is
flagged as “broken” if the bond strain s(t,η, ξ) exceeds the current
strain criterion s0 for either particle i or j as defined in (9). While
bond forces are computed, a new strain criterion s0 is also cal-
culated, which will be used to break bonds on the next timestep.
Note that the min operation in (9) implies a loop over all bonds of
particle i. As each bond is calculated, the contribution to the new
s0 of both the i and j particles is accumulated. Thus at the end
of the bond loop, each particle has a new s0, valid for the next
timestep. Since the bond partner list stores all bonds for each par-
ticle owned by a processor, no extra communication is necessary
to generate s0, e.g., due to bonds with ghost particles.

The bond partner list is another particle property that must mi-
grate with particles as they move to new processors. This is done
by packing and unpacking the Fi set of bond neighbors and dis-
tances into a message-passing buffer each time a particle migrates.
During this operation, broken bonds are pruned from the list, so
that a minimal amount of information is communicated.

Once the short-range and bond terms of (14a) have been com-
puted, a final scaling by the volume V i of each particle is ap-
plied. This results in an effective force on each particle that can
be used by a standard MD time integrator (velocity Verlet in the
case of LAMMPS) in the usual way to update particle velocities
and coordinates. For PD models we use a constant NVE integra-
tor. Thermostatting is not used, since temperature is an ill-defined
quantity for macroscopic PD particles. The “pressure” due to PD in-
teractions can be computed via the virial in the usual MD manner,
except that the kinetic energy term contributing to the pressure is
ignored. Alternatively, a precise notion of PD stress has been for-
mulated in [6] and may be used.

5. Numerical experiments

To validate the new additions to LAMMPS against an existing
PD code, EMU [18], the experiment in Section 6 of [15] was per-
formed. Consider the impact of a rigid sphere on a homogeneous
block of brittle material. The sphere has diameter 0.01 m and ve-
locity of 100 m/s directed normal to the surface of the target.
The target material has density ρ = 2200 kg/m3. A PMB material
model is used with k = 14.9 GPa and critical bond strain parame-
ters given by s00 = 0.0005 and α = 0.25. The target was created as
a 3D cubic lattice of particles with lattice constant a = 0.0005 m
and horizon distance δ = 0.0015 m = 3a. The target is a cylinder
of diameter 0.074 m and thickness 0.0025 m, and contains 103,110
particles. Each particle i has volume V i = a3 = 1.25 × 10−10 m3.

The stiffness constant c in the PMB material model was set to

c = 18k

πδ4
= 18(14.9 × 109)

π(1.5 × 10−3)4
≈ 1.6863 × 1022. (15)

The timestep was set to 1.0 × 10−9 seconds.
Fig. 2. Top monolayer of brittle target showing fragmentation.

The projectile used in the LAMMPS simulation was similar, but
not identical to the one used in [15]. The projectile was modeled
as an indenter, exerting a force

F (r) = −ks(r − R)2

on each particle, where ks is a specified force constant, r is the
distance from the particle to the center of the indenter, and R is
the radius of the indenter. The force is repulsive and F (r) = 0 for
r > R . For our problem, the projectile radius was R = 0.05 m and
ks = 1.0 × 1017 (compare with (15) above).

A 200,000 timestep simulation was performed. A sample cut
view of the disk (projectile not shown) appears in Fig. 1, showing
the debris cloud that results from the impact. An image of the top
monolayer of particles at the end of the simulation is illustrated
in Fig. 2, showing fracture of the brittle target. These results agree
qualitatively with EMU, both in the size and shape distributions of
the resulting fragments.

To break symmetries, each particle in the initial lattice was ran-
domly perturbed by a distance no more than 10% of the lattice
constant. These perturbed positions were used as the reference
configuration for each particle. Such random perturbations are rou-
tinely included as a way of incorporating the inherent randomness
in the distribution of defects in real materials. However, these per-
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Fig. 3. Top monolayer of target after impact for different values of δ, and for initially unperturbed and perturbed meshes. For sufficiently large δ, crack growth is arbitrary.
Perturbation of the initial mesh acts only to break symmetry of the solution.
turbations have only a minor effect on crack trajectory, and are not
needed to reproduce crack growth directions as dictated by loading
conditions.

To demonstrate further the effects of symmetry-breaking and
the peridynamic horizon δ upon the solution, we show in Fig. 3
this numerical experiment repeated for several values of δ, where
the initial mesh is either perturbed or unperturbed. Qualitatively,
the results do not depend on regularity of the lattice for large
enough δ. However, a symmetric initial mesh acted upon by a
symmetric projectile produces a symmetric solution, as is re-
quired.
Finally, we compare the serial and parallel performance of PD
within LAMMPS to that of a standard Lennard-Jones (LJ) model. For
the PD calculation, a non-periodic cube of size 2.3 cm on a side
was simulated, using roughly 100,000 particles on a simple cubic
lattice. The same PD material parameters described in the previ-
ous section were used. For the LJ calculation, a 3D periodic cube
with the same number of particles was used to represent a solid.
The LJ cutoff was set to 3σ so that the number of neighbors per
particle roughly matched the number of bond partners per parti-
cle in the PD system. Benchmark runs were performed on a large
Linux cluster built consisting of 3.6 GHz Intel EM64T processors
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Table 1
CPU timings (in seconds) for 10,000 timesteps of 100,000-particle peridynamics
(PD) and Lennard-Jones (LJ) systems

Number of
processors

LJ
(sec)

LJ
speedup

PD
(sec)

PD
speedup

1 4053.0 1.0 17302.6 1.0
2 2157.9 1.9 9028.4 1.9
4 1133.3 3.6 4673.6 3.7
8 587.6 6.9 2413.4 7.2

16 317.7 12.8 1327.9 13.0
32 172.5 23.5 714.6 24.2
64 94.0 43.1 380.2 45.5

and an Infiniband communication network with 230 Mb/sec and
9 μsec bandwidth and latency performance for point-to-point MPI
message passing.

The timing results are presented in Table 1 for runs of 10,000
timesteps each, on processor counts from 1 to 64. The results in-
dicate the PD potential is about four times more expensive to
compute than a LJ potential. Similar parallel scalability for both
models was observed.

6. Conclusions

Peridynamics (PD) is a continuum theory based on a nonlo-
cal force model. We have shown that the inter-particle forces that
result from discretizing PD have a functional form analogous to in-
teratomic potentials commonly used in molecular dynamics (MD).
We have demonstrated that PD can be implemented within an MD
framework. Enhancing an MD code in such a way allows users fa-
miliar with MD to effectively simulate continuum material. The
PD extensions made to the LAMMPS MD package are available for
download from the LAMMPS WWW site http://lammps.sandia.gov.
For more details on using the code, see the user guide [12].

Future work involves computing thermodynamic quantities
such as temperature, computing the PD stress given by [6], im-
plementing the more general PD state theory [17] to go beyond
central force interactions, and the simulation of classical elasticity
given by the results of [19]. The latter capability enables multiscale
simulation because both molecular dynamics and classical elastic-
ity can be performed within LAMMPS.
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