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a b s t r a c t

A lift based wave energy converter, namely, a cycloidal turbine, is investigated. This type of wave energy
converter consists of a shaft with one ormore hydrofoils attached eccentrically at a radius. Themain shaft
is aligned parallel to the wave crests and submerged at a fixed depth. In the two-dimensional limit, i.e.
for large spans of the hydrofoil (or an array of these), the geometry of the converter is suitable for wave
termination of straight crestedAirywaves. Results from two-dimensional potential flow simulations,with
thin hydrofoils modeled as either a point vortex or discrete vortex panel, are presented. The operation of
the cycloidal turbine both as a wave generator as well as a wave-to-shaft energy converter interacting
with a linear Airy wave is demonstrated. The impact on the performance of the converter for design
parameters such as device size, submergence depth, and number of hydrofoils is shown. For optimal
parameter choices, simulation results demonstrate inviscid energy conversion efficiencies of more than
99% of the incoming wave energy to shaft energy. This is achieved using feedback control to synchronize
the rotational rate, blade pitch angle, and phase of the cycloidal wave energy converter to the incoming
wave. While complete termination of the incoming wave is shown, the remainder of the energy is lost to
harmonic waves traveling in the up-wave and down-wave directions.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Among alternative energy sources, wave power is one of the
most abundant sources on Earth. The World Energy Council,
according to Boyle [1], has estimated the world wide annual
amount of wave power energy at 17.5 PWh (Peta Watt hours =

1012 kWh). This is comparable to annual world wide electric
energy consumption, which is currently estimated at 16 PWh.
Thus, wave power has the potential to provide a large portion of
the world’s electric energy needs if it can be tapped efficiently.
Other advantages of wave power include its power density,
predictability, and location. While the power density of both
solar and wind power in typical favorable sites is of the order
of 1 kW m−2 according to Bedart [2], wave power in a typical
North Atlantic wave as considered in this paper (wave height of
H = 3.5 mandperiod of T = 9 s) yields 108 kWm−1 ofwave crest.
As will be shown, a device extending about 40 m in the vertical
direction can extract almost all of this wave power, yielding a
power density of about 2.7 kW m−2, or more than twice that
of wind or solar power. If one considers the theoretical inviscid
conversion limits forwaves andwind,which are 100% forwaves [3]
and 59% for wind [4], the accessible power densities of waves and
wind differ by a factor of more than 4. Furthermore, wave energy
is available on a more consistent basis and can be better predicted
in advance, reducing the need for conventional back up power
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sources. Finally, since a large portion of theworld’s population lives
close to ocean shores, the distance between energy production and
consumption is small, reducing transmission losses. Thus, wave
power is an ideal energy source for efficiently providing renewable
energy to densely populated coastal areas.

Given the attractive features of wave energy as an alternative
energy source, it has received significant attention in the scientific
community over recent times. While a comprehensive review
of all relevant publications would be prohibitively long, the
reader is instead referred to comprehensive reviews published
byMcCormick [5],Mei [6] or,most recently, Cruz [7]. The following
discussion will instead focus only on select sources most pertinent
to the current work.

Relatively few publications investigate the interaction of
hydrofoils with surface waves for the purpose of wave energy
conversion. Wu [8] analyzed the interaction of an oscillating
hydrofoil with waves. He identified by means of variational
calculus optimal oscillating parameters and reported that a net
energy gain can be obtained. Grue et al. [9] explored the possibility
of using energy recovered from waves using an oscillating
hydrofoil as a means of propulsion for a vessel. They investigated
the possible parameter space in detail using linearized potential
flow simulations, and found that, in particular for waves traveling
in the opposite direction to the vessel, a large amount of propulsion
energy can be extracted from the waves. This concept was further
pursued by Isshiki [10], Isshiki andMurakami [11] and Isshiki et al.
[12], resulting in a vessel crossing the Pacific Ocean from Japan to
the island of Hawaii entirely powered by wave energy [13].
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More specifically, for the application of alternative energy,
initial investigations of lift based wave energy conversion by
means of a single hydrofoil were performed at TU Delft as
early as the 1990s, both experimentally by Marburg [14] and
numerically by van Sabben [15]. As noted by Hermans et al. [16],
a major advantage of this approach over traditional wave energy
converters is that the wave energy can be converted directly into
rotational mechanical energy. This initial work demonstrated the
feasibility of the approach, as well as the ability of a cycloidal wave
energy converter (WEC) to self-synchronize with the incoming
wave in terms of rotational phase. However, the conversion
efficiencies found both in the theoreticalwork and thewave tunnel
experiments conducted at TU Delft were very small, of the order of
few percent in experiments, with a theoretical maximum of 15%.
Pinkster andHermans [17] also demonstrated the use of a cycloidal
propeller as a means of detecting wave direction and period with
good accuracy.

The aim of the present work is to extend the numerical work
of Hermans et al. [16] and Pinkster andHermans [17] to investigate
the performance improvements of a cycloidalWEC that operates at
significantly higher blade speeds then the wave-induced velocity.
The impact of all geometric design parameters in terms of the
far-field wave generation and cancellation is explored. Near-field
investigations are used to investigate the impact of different blade
pitch control schemes as well as hydrofoil chord length on energy
conversion efficiency. Additional efficiency improvements using a
multi-bladed converter with positive harmonic wave interactions
are also investigated.

1.1. Wave energy converter geometry

A typical cycloidal WEC, as considered in this paper, is shown
in Fig. 1. It features one or more hydrofoils attached parallel to a
horizontally oriented main shaft at a radius R, rotating clockwise
at angular speed ω, and submerged a depth yc , which is measured
relative to a Cartesian coordinate system with y = 0 being the
undisturbed free surface. The hydrofoils in the 2D simulations in
this paper are assumed to have infinite span in the third dimension,
which in real life can be approximated by having a large aspect
ratio, which is the ratio between chord length and span. They
are also assumed to be aligned parallel with the incident wave
crests. The orientation (pitch) of each hydrofoil may be adjusted
to produce the desired level of circulation Γ . At any point on the
free surface the vertical elevation is η and peak-to-peak amplitude
of the resulting wave field is H . The incoming ocean wave WAiry,
is assumed to travel left to right, and waves generated by the
cycloidal WEC traveling in the direction of the incoming wave
receive a positive index (e.g., W1) and are considered as traveling
down-wave; while waves traveling in the opposite direction are
considered as traveling up-wave and receive a negative index
(e.g.,W−1).

2. Potential flow model

Since a typical wave-induced flow field is well described by
potential flow theory, see for example [18], a logical starting point
to investigate the wave making and cancellation properties of a
cycloidal WEC is to seek a potential flow solution. For an inviscid,
incompressible, and irrotational flow, the governing continuity
equation simplifies to the Laplace equation

∇
2Φ = 0, (1)

where Φ is the velocity potential. Unique solutions to Eq. (1)
are determined by satisfying the appropriate boundary conditions
based on physical considerations. In seeking two-dimensional
Fig. 1. Cycloidal wave energy converter geometry.

solutions it is often convenient to define the complex stream
function in terms of the complex coordinate z = x + iy,

F(z, t) = Φ + iΨ , (2)

whereΨ is the stream function and the complex velocity is defined
by dF/dz = u − iv.

2.1. Point vortex model

The simplest representation of a two-dimensional hydrofoil
correctly representing the flow induced in the far-field is a point
vortex of strength Γ equal to the foil circulation. If the vortex is
in the presence of a free surface it is imperative that appropriate
physical boundary conditions be satisfied on the free surface.
Derivations of the linearized free surface boundary condition can
be found, for example, in [18]. Neglecting higher order terms, the
kinematic boundary condition ensuring the vertical velocity of the
free surface and the fluid are equal is

∂η

∂t
=

∂Φ

∂y
. (3)

The dynamic boundary condition ensuring the pressure on the free
surface is atmospheric is determined from Bernoulli’s equation.
Substituting the free surface elevation for y, and again neglecting
higher order terms results in

η = −1/g
∂Φ

∂t
, (4)

where g = 9.81 ms−2 is the gravity constant. Due to the
linearization, Eq. (4) can be imposed at y = 0. At the up-wave and
down-wave integration boundaries, the waves within the domain
are allowed to leave the domain freely using a non-reflective
boundary condition.

Subject to the above boundary condition, the complex potential
for a vortex moving under a free surface with position c(t) =

x(t) + iy(t) in the complex plane is developed in [19] to be

F(z, t) =
Γ (t)
2π i

ln

z − c(t)
z − c̄(t)


+

g
π i

∫ t

0

∫
∞

0

Γ (τ )
√
gk

e−ik(z−c̄(τ ))

× sin[

gk(t − τ)]dkdτ (5)

with Γ (t) the circulation of the vortex, and k the wave number.
Eq. (5) satisfies both the kinematic and dynamic free surface
boundary conditions at y = 0. The first term is the complex
potential due to the vortex and its mirror image above the surface,
which is necessary to satisfy the kinematic free surface condition.
The second term describes the radiated waves related to the
dynamic free surface condition. It is also important to note that
in Eq. (5) the fluid is assumed to be infinitely deep. While the
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circulation Γ (t) can be described in a time dependent fashion, it
constitutes a numerical model of limited capabilities in terms of
correctly representing an unsteady hydrofoil of time varying angle
of attack. This is because an actual hydrofoil would shed vorticity
into its wake of an amount equal to the change in circulation, and
this is not accounted for in Eq. (5).

In previous work by Hermans et al. [16] and Pinkster and
Hermans [17] a hydrofoil under a free surface was modeled by
numerically integrating Eq. (5) and the results were compared
to steady flow experiments with good agreement. A similar
approach is employed in the current work and Eq. (5) is integrated
using second order time and wave number marching techniques.
Subsequently, Eq. (4) is used to determine the resulting surface
elevation and wave pattern. Using superposition, this approach is
further extended to a WEC with multiple hydrofoils, where the
complex potential of each hydrofoil is represented by Eq. (5). The
total potential is determined from Φtotal =

∑n
i=1 Φi, where n is the

total number of hydrofoils.
For all single vortex simulations the position of the vortex is

prescribed as a function of time. The coordinates for the vortex
moving about the center of rotation (0, yc) with radius R and
frequency ω are

x(t) = R cos(ωt + θ)

y(t) = yc − R sin(ωt + θ). (6)

Thus, the motion of the converter starts with the first (or sole)
blade being in the most down-wave position, and rotation is in
the clockwise direction as shown in Fig. 1. The WEC is assumed
synchronizedwith the incoming Airy wave such thatω = ωAiry. An
arbitrary phase shift θ is introduced, which indicates the relative
phase between an incoming wave and the cycloidal WEC motion.

2.2. Thin hydrofoil model

The singularity of a single point vortex does not represent a
hydrofoil well in the near-field, and therefore it is impossible
to determine important near-field quantities like angle of attack
using the approach outlilned in Section 2.1. In order to analyze the
near-field, onemust resort to a thin hydrofoil panel representation.

The vortex panel representation employed follows the algo-
rithm for an unsteady thin airfoil using the lumped-vortex ele-
ment method described by Katz and Plotkin [20] Chapter 13.10
with modifications to account for the free surface. The governing
continuity equation for the incompressible unsteady flow field in a
body-fixed coordinate system is still represented by Eq. (1) at any
point in time. Thus, a time marching scheme can be implemented
with unsteadiness entering the problem via the hydrofoil surface
boundary condition and wake.

The hydrofoil is divided into a finite number of panels and
a discrete vortex is located at the quarter chord of each panel.
A Neumann boundary condition satisfying no flow penetration
through the hydrofoil surface is satisfied at three-quarters chord
of each panel, according to

(∇ΦB + ∇ΦW + ∇ΦAiry − V0 − Ω × r) · n = 0, (7)

where ΦB is the self-induced perturbation potential, ΦW is the
wake potential, ΦAiry is the potential due to the incoming Airy
wave, V0 is the velocity of the body-fixed origin, r is the body-
fixed position vector, and Ω is the rate of rotation in the body-
fixed coordinate system. Each discrete vortex represented in ΦB
and ΦW is modeled using Eq. (5), ensuring that the free surface
boundary conditions of Eqs. (3) and (4) are satisfied. Note that
for the discrete vortex model the instantaneous Kutta condition is
satisfied implicitly.

At each time step a discrete vortex is added to the hydrofoil
wake such that Kelvin’s condition is satisfied. As recommended
by Katz and Plotkin [20], the vortex is placed along the path
of the hydrofoil’s trailing edge at approximately 0.25l from the
trail edge, where l is the distance traveled within the time step.
Each wake vortex is considered force free and within each time
step is convected by the local velocity, which includes velocity
components induced by the wake, hydrofoil, and incoming Airy
wave. No dissipation of vorticity over time was considered, and
there was no need to implement any vortex core models as the
integration scheme proved stable without them.

The hydrofoil motion is prescribed as a function of time, with
the trajectory of the body-fixed coordinate system located at the
hydrofoil nose defined by Eq. (6). The hydrofoil is also free to
pitch about the body-fixed orgin by an angle α, which is either
prescribed or determined iteratively at each time step such that
a specified circulation is achieved.

2.3. Incoming Airy wave

Linear Airy wave theory is used to investigate the interaction of
the cycloidal WEC and the incoming wave. The velocity potential
for a progressive linear deep ocean wave satisfying the linearized
free surface boundary conditions is given in [18] to be

ΦAiry(x, y, t) =
Hg
2ω

eky sin(kx − ωt), (8)

where H is the peak-to-peak wave amplitude, ω is the wave
frequency and k is thewavenumber. Superposition is again utilized
to determine the total velocity potential.

Airy wave theory can also be used to describe the phase speed
C , group velocity Cg , wavelength λAiry, andwave period T , such that

C = g
TAiry
2π

Cg = C/2

λAiry = CTAiry. (9)

Typically, the WEC will create more than a single plane traveling
wave. The wave height of each generated wave component can
be determined by Fourier analysis. Throughout this paper indices
are used to identify the harmonic wave components and their
traveling direction. As shown in Fig. 1, waves traveling left or in
the up-wave direction receive negative indices, while down-wave
traveling waves receive positive indices. It is possible to determine
the power associated with each wave Pn by employing Airy wave
theory which relates wave power per unit length to wave height
and period by

Pn =
1
8
ρgH2

nCg

=
1

32π
ρg2H2

nTn, (10)

where ρ = 1000 kg m−3 is the density of water. Since the
wave power scales linearly with the wave period T , higher
harmonic waves of the same wave height will contain less energy
in proportion to their period. Also to be noted is a quadratic
relationship between wave energy and wave height H . Based on
wave power, the figure of merit for WEC design becomes the ratio
of the power in the (desired) fundamental wave traveling down-
wave, P1, compared to the power contained in all waves,

P1/Pall =
P1

∞∑
n=−∞

Pn
. (11)

The power ratio will reach a value of one if only the desired
down-wave traveling fundamental wave is created, and zero if no
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Fig. 2. L2 error norm as a function of time step discretization for 1k/kAiry = 31.6
and kmax/kAiry = 75.9.

down-wave traveling fundamental wave is produced. The wave
power analysis is based on energy conservation which is implicit
in the unsteady Bernoulli equation, and a control volume analysis
assuming that all energy leaving or entering at the up-wave and
down-wave boundaries is contained in traveling Airy type waves.
Thus, the power difference at both boundaries is to be provided or
absorbed by the traveling point vortex/vortices.

3. Results

While the actual ocean environment typically consists of waves
with several different periods and wave heights superimposed, in
this initial investigation a sinusoidal, plane Airy wave is assumed.
According to Boyle [1], the North Atlantic often features waves
with a period of T = 9 s andwave lengthλAiry = 126.5 m (asuming
linear Airy wave theory). Based on the sketch in Fig. 1 and
the incident Airy wave, a number of non-dimensional quantities
emerge. The basic size of the WEC is denoted by 2R/λAiry, depth
of submergence by |yc |/λAiry, hydrofoil chord by c/λAiry and wave
height by H/λAiry. It is also convenient for parameter studies to
compare different-sizedWECswhile keeping the distance between
the water surface and the upper point of the cycloidal WEC
trajectory fixed, that is |yc + R|/λAiry = const .

3.1. Convergence study

It is imperative to ensure that the time step and wave
number integration settings are such that the numerical solution
sufficiently converges. Resulting wave patterns for single vortex
simulations were investigated as a function of 1t , 1k, and kmax to
determine appropriate values for each variable. Fig. 2 presents the
L2 error, normalized by the largest down-wave surface elevation
ηmax. Results are shown for fixed axial locations x/λAiry = −8, −1,
1, and 8. The effect of varying 1t is shown for constant 1k/k =

31.6 and kmax/k = 75.9. These plots show a decreasing error as 1t
decreases; also, the errors are larger close to the cycloidal turbine,
indicating the need for increased time resolution in this region.

Similar investigations were conducted for the wave number
increment 1k, and maximum resolved wave number kmax. Based
on these results it was concluded that the required resolutions
for numerical convergence are T/1t = 36, k/1k = 31.6, and
kmax/k = 75.9. The results obtained with these integration param-
eters were compared to a simulation with T/1t = 72, k/1k =

63.2, and kmax/k = 151.8, and both simulations predicted nearly
identical wave patterns, indicating that the chosen settings are suf-
ficient. These values were employed for all simulations presented,
including the thin hydrofoil simulations. Further verification was
performed by comparing data presented byMarburg [14] using the
same simulation parameters, and identical results were obtained.
As a source of validation, Marburg [14] compared single vortex
simulation results to wave tunnel experiments conducted at TU
Delft and found good agreement.
Fig. 3. Water surface–time plot for wave generation by a single vortex cycloidal
WEC with device size 2R/λAiry = 0.3, submergence depth |yc |/λAiry = 0.18, and
circulation Γ T/λ2

Airy = 5.6 × 10−3 . The converter is located at x/λAiry = 0 and
rotation is started at t/T = 0.

3.2. Point vortex model results

Far field results are presented for simulations with each
hydrofoil modeled as a point vortex using the complex potential
given in Eq. (5).

3.2.1. Single-blade wave energy converter
Results from single vortex simulations, representing a single-

bladed cycloidal WEC, are presented in this section. The goal
of these simulations is to investigate the nature of the waves
generated by the cycloidal WEC and to determine optimal values
for radius R, centroid location beneath the water surface yc , and
circulation Γ . The optimal wave pattern generated by the WEC
is one with a fundamental wave traveling down-wave equal in
amplitude (but of opposite phase) to the incoming Airy wave, and
no higher harmonic waves traveling in the up- or down-wave
directions.

Plotted in Fig. 3 is a typical resulting wave pattern as a function
of time. The size of theWEC is 2R/λAiry = 0.3 and the submergence
depth is |yc |/λAiry = 0.18, which (as will be shown in a subsequent
section) avoids generating excessively large harmonicwaves. It can
be seen that the dominant wave amplitudes occur in the down-
wave direction, while the up-wave amplitudes are small. After
several rotations of the WEC the flow becomes periodic in time
and space. However, beyond the fundamental frequency there are
higher harmonic waves generated, as is evident in the disruption
of the wave ridges traveling down-wave.

The time signal and power spectral density (PSD) for the
resulting wave field at x = ±3λAiry are shown in Fig. 4, where T
is the WEC period and TW is the period of each generated wave.
The amplitude of the fundamental wave of period TW/T = 1 is the
most dominant peak in the PSDplot. The down-wave flow field also
features a peak of about half the magnitude of the fundamental
wave at TW/T = 0.5, which is responsible for the disruption in
the wave ridges shown in Fig. 3. To evaluate the performance of
the cycloidal WECs, the fundamental and harmonic wave heights
determined from the PSD analysis are used.

To determine the effect of varying the cycloidal WEC radius on
the resultingwavepatterns, simulationswere completedwith con-
stant circulation Γ T/λ2

Airy = 5.6 × 10−3, and minimum submer-
gence |yc + R|/λAiry = 0.015. These results are shown in Fig. 5,
where H1,2,3 and H−1,−2,−3 are the wave heights of the funda-
mental and next two harmonic waves traveling in the down- and
up-wave directions respectively. Wave amplitudes are based on
PSD analysis at x = ±3λAiry, initiated at t/T = 30 after the start
of the WEC. Also shown are the corresponding powers for each
wave P1,2,3,−1,−2,−3, which have been normalized by themaximum
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Fig. 4. Surface elevation (left) and power spectral density (right) for a cycloidal WEC of size 2R/λAiry = 0.3, submergence depth |yc |/λAiry = 0.18, and circulation
Γ T/λ2

Airy = 5.6 × 10−3 . All waves are evaluated at x = ±3λAiry and time t/T = 30 after the start of the cycloidal WEC.
Fig. 5. Wave height (top) and power (bottom) as a function of device size for a minimum submergence |yc + R|/λAiry = 0.015 and circulation Γ T/λ2
Airy = 5.6 × 10−3 . All

waves are evaluated at x = ±3λAiry and t/T = 30 after the start of the cycloidal WEC.
power of the down-wave traveling fundamental wave, P1max. Ins-
pection of the down-wave traveling wave heights reveals maxima
for all three waves when the hydrofoil speed and resulting wave
speed are equal (i.e., ωR = C assuming Airy wave theory). For the
fundamental wave this corresponds with 2R/λAiry = 1/π , which is
the optimal device size for wave generation. It is also important to
note that the amplitude of the second and third harmonic waves is
significant with maximum values similar to the fundamental har-
monic. As a result, the optimal efficiency does not coincidewith the
optimal device size forwave generation andhas a relatively limited
bandwith with power ratios near unity for 0.5 ≤ 2R/λAiry ≤ 0.75.

To determine the effect of submergence depth on the resulting
wave field, the previous analysis was repeated for a constant de-
vice size of 2R/λAiry = 0.30 and circulationΓ T/λ2

Airy = 5.6×10−3,
with varying submergence depth |yc |/λAiry. Resulting wave ampli-
tudes and corresponding powers are shown in Fig. 6. All down-
wave travelingwaves showdecreasing amplitudeswith increasing
submergence depth. But importantly, the second and third har-
monic down-wave amplitudes decrease at much faster rates then
the fundamental harmonic. As a consequence, the power ratio
improves with increasing submergence depth and asymptotically
reaches a value of one at |yc |/λ ≥ 0.255. However, for this sub-
mergence the fundamental down-wave amplitude has decreased
by more than 40% and the corresponding power has decreased by
approximately 65%.

The prescribed circulation affects the necessary hydrofoil size
and/or angle of attack. The previous results were obtained for
a constant vortex circulation of Γ T/λ2

Airy = 5.6 × 10−3, and the
influence of varying Γ on the resulting wave amplitudes is shown
in Fig. 7. The resulting wave heights scale linearly with Γ and
this applies equally to all waves generated. This behavior is
expectedbased on inspection of the governing equation (5), but has
important implications forwave cancellation. Since a linear change
in circulation causes a linear change in wave amplitude, the wave
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Fig. 6. Wave height (left) and power (right) as a function of submergence depth |yc |/λAiry for a device size 2R/λ = 0.30 and circulation Γ T/λ2
Airy = 5.6 × 10−3 . All waves

are evaluated at ±3λ and t/T = 30 after the start of the cycloidal WEC.
Fig. 7. Wave heights as a function of circulation Γ .

energy converter can be easily adjusted to different wave heights
by changing the circulation. Physically, this can be accomplished
by adjusting the hydrofoil pitch and will not cause any change in
conversion efficiency because all waves are scaled equally.

While the results presented so far clearly demonstrate the
feasibility of using a cycloidal turbine to create a single direction
traveling wave suitable for wave cancellation, the optimal design
size determined by the bandwidth of the peak power ratio poses
real world engineering problems when canceling deep ocean
waves with wave lengths of the order of 100 m. This design
challenge is addressed by improving the power ratio for smaller
device sizes by considering a WEC with multiple hydrofoils.

3.2.2. Multi-blade wave energy converter
Using the theory of superposition is it possible to represent

a multi-bladed cycloidal WEC. Results are shown in this section
for simulations with two vortices (each representing an individual
hydrofoil) of equal but opposite circulation and spaced 180° apart.
The exact configuration is shown in the sketch of Fig. 1.

Plotted in Fig. 8 are the resulting wave patterns at x = 3λAiry for
a muti-blade WEC with a device size 2R/λAiry = 0.3, submergence
depth |yc |/λAiry = 0.18 and circulation Γ T/λ2

Airy = ±5.6 × 10−3.
The fundamental wave amplitudes from each vortex combine
to produce a wave with twice the amplitude of each vortex
separately. More importantly, the second harmonic waves from
each vortex cancel. Inspection of the phase spectra (not shown)
indicates that these waves are exactly out of phase; consequently,
no second harmonic waves are present in the total wave field.

The impact of the two-blade arrangement on the power ratio
and generated wave heights as a function of device size is shown
in Fig. 9. The power ratio distribution is now near unity for
Fig. 8. Superposition of waves from two vortices with equal and opposite
circulation and 180° of phase shift.Waves are evaluated at x = 3λAiry for aWECwith
device size 2R/λAiry = 0.3, submergence depth |yc |/λAiry = 0.18 and circulation
Γ T/λ2

Airy = ±5.6 × 10−3 .

device sizes ranging from 0.2 ≤ 2R/λAiry ≤ 1.0. For example, at
2R/λAiry = 0.20 the power ratio has been increased from 0.60
for the single-blade arrangement with similar input parameters
(i.e., Fig. 5) to 0.94 for the two-blade arrangement.

The results presented in Fig. 9 can also be used to determine
the range of wave lengths or, conversely, wave periods for which a
wave energy converter of a fixed size is able to interact efficiently
with incoming waves. Since the power ratio is now flat and close
to unity for device size ranging from 0.2 ≤ 2R/λ ≤ 1.0, one could,
for example, design a WEC of this type to efficiently interact with
waves that differ in wave length by approximately a factor of five.
For example, a WEC with R = 20 m can efficiently interact with
wave lengths between 40m ≤ λ ≤ 200m,which is typical of deep
ocean waves. While the WEC will still be able to extract a portion
of the energy for waves outside of this design range, the efficiency
will be reduced. This dynamic range should suffice for most wave
climates found in actual deep ocean settings, negating the need to
design a WEC with a variable radius which, while feasible, would
add complexity to the design.

Fig. 10 shows the resulting wave heights and the corresponding
wave powers as a function of submergence depth for the
fundamental and harmonic waves traveling in both the up- and
down-wave directions. While the decrease in fundamental wave
amplitude is similar to that observed in the single vortex case
shown in Fig. 6, the power ratio is now flat and close to unity for
all submergence depths. This is due to the lack of any significant
harmonic waves traveling in either direction; the only harmonic
of detectable amplitude is the wave H3, which does not carry
any significant energy. Most notable is the absence of the second
harmonic wave H2.
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Fig. 9. Wave height (left) and power (right) as a function of device size 2R/λAiry for a two-bladed WEC with 180° of phase shift with circulation Γ T/λ2
Airy = ±5.6 × 10−3

and minimum submergence |yc + R|/λAiry = 0.015. All waves are evaluated at x = ±3λAiry at time t/T = 30 after the start of the cycloidal WEC.
Fig. 10. Wave height (left) and power (right) as a function of submergence depth |yc |/λAiry for a two-bladedWECmodeled at two point vortices with 180° of phase shift for
a device size 2R/λAiry = 0.30 and circulation Γ T/λ2

Airy = ±5.6 × 10−3 . All waves are evaluated at x = ±3λAiry at time t/T = 30 after the start of the cycloidal WEC.
3.2.3. Wave cancellation
Superposition is used to investigate the interaction between

a multi-blade WEC and an incoming Airy wave. To achieve wave
cancellation, the wave generated by the WEC needs to match the
incoming wave amplitude and period, while being exactly out of
phase. The following linear feedback laws achieve this:

δ(t) = ωt + θ

Γ = kΓ HAiry, (12)

where δ(t) is the angle of the cycloidal WEC main shaft, and θ
is a constant phase shift between the wave motion and the WEC
rotational angle. The fixed amplitude feedback gain kΓ is adjusted
such that the amplitude of the fundamentalwaveH1 created by the
WEC matches that of the incoming Airy wave exactly.

Results for a WEC of device size 2R/λAiry = 0.3, minimum sub-
mergence depth |yc +R|/λAiry = 0.015 and circulation Γ T/λ2

Airy =

±5.6×10−3, interactingwith an incoming Airywave of period T =

9 s and wave height HAiry = 1.98 m are shown in Figs. 11 and 12.
The incoming wave height was empirically matched to be equal to
the generated wave height, resulting in kΓ = 5.05. Fig. 11 demon-
strates the impact of phase shift between the incoming wave and
theWEC rotational angle on the resultingwave field.Wave heights
for the fundamental waves traveling in the up- and down-wave
directions, H1 and H−1, and the down-wave harmonic H3 are plot-
ted separately as a function of θ . Note that these are the only
waves of any significant amplitude present in the combined wave
field. The optimal phase, θ = 10°, corresponds to a fundamen-
tal down-wave height H1 = 0, indicating that all of the incoming
wave has been canceled by theWEC. The down-wave fundamental
amplitude shows a strong linear relationship for feedback phases
above and below the optimal angle, while there there is very little
impact on H−1 and H3. Thus, small phase shifts will cause major
Fig. 11. Wave heights versus wave phase for a multi-bladed WEC with device size
2R/λAiry = 0.3,minimumsubmergence depth |yc+R|/λAiry = 0.015 and circulation
Γ T/λ2

Airy = ±5.6×10−3 , and an incoming Airywavewith period T = 9 s andwave
height HAiry = 1.98 m. All waves are evaluated at x = ±3λAiry at time t/T = 30
after the start of the cycloidal wave energy converter.

losses in conversion efficiency making a phase-locked feedback
system mandatory for efficient conversion. The resulting down-
wave surface elevation at x = 3λAiry as a function of time is
shown in Fig. 12 for the optimal feedback phase θ = 10°. After
15 revolutions of theWEC the fundamental down-wave amplitude
is approximately zero, but higher harmonic waves (most promi-
nently H3) are still present.

3.3. Thin hydrofoil model results

While simulation with hydrofoils modeled as single point
vortices provides far-field estimates of the wave field created by
the cycloidalWEC, a detailed investigation of the flow field near the
hydrofoils is not possible. To estimate near-field properties, such



S.G. Siegel et al. / Applied Ocean Research 33 (2011) 110–119 117
Fig. 12. Surface elevation at x = 3λAiry for a feedback phase of θ = 10◦ between a
multi-bladed WEC with device size 2R/λAiry = 0.3, minimum submergence depth
|yc + R|/λAiry = 0.015 and circulation Γ T/λ2

Airy = ±5.6 × 10−3 , and an incoming
Airy wave with period T = 9 s and wave height HAiry = 1.98 m.

Fig. 13. Pitch angle and circulation for thin hydrofoil simulations. The hydrofoil
has a chord c/λAiry = 0.03, device size 2R/λAiry = 0.5, and minimum submergence
|yc+R|/λAiry = 0.03. For the constant circulation simulationΓ T/λ2

Airy = 5.6×10−3

and for the constant pitch simulation α = 7.4°.

as hydrofoil pitch angles and chord length, the hydrofoil must be
modeled using a vortex panel distribution.

3.3.1. Wave generation
An important initial step to validate the thin hydrofoil panel

code is to compare far-field wave patterns created by the vortex
panel simulations to the results obtained from single vortex
simulations. When the hydrofoil chord is small relative to the
fundamental wave length (i.e., c/λAiry ≪ 1), the results from both
simulations are identical.

An advantage of the vortex panel simulations is that hydro-
foil pitch cycles necessary to obtain the desired circulation can be
estimated. Plotted in Fig. 13 is the resulting pitch cycle for a con-
stant circulation simulation for a hydrofoil with a chord c/λAiry =

0.003, device size 2R/λAiry = 0.5, minimum submergence |yc +

R|/λAiry = 0.03, and circulation Γ T/λ2
Airy = 5.6 × 10−3. The

resulting mean pitch angle is α = 7.4° with maximum variations
over one cycle of less than ±0.5°. This indicates that the wave-
induced flow direction and magnitude do not vary significantly as
the hydrofoil travels on its circular path. Also plotted in Fig. 13 is
the circulation variation when the pitch angle is held constant at
α = 7.4°. The resulting mean circulation is Γ T/λ2

Airy = 5.6 ×

10−3 with maximum variations of ±5.6 × 10−4. These circulation
fluctuations increase the fundamental wave amplitude traveling
up-wave, reducing the maximum efficiency of theWEC. Thus, pre-
cise feed-back pitch control is necessary to achievemaximumWEC
efficiency.

Modeling the cycloidal WEC blades as thin hydrofoils also
allows one to investigate the impact of hydrofoil chord length
on the generated wave field. Plotted in Fig. 14 is the variation of
Fig. 14. Impact of chord length on wave generation. Wave amplitudes are
evaluated at x = ±3λAiry for a WEC with device size 2R/λAiry = 0.5, minimum
submergence |yc + R|/λAiry = 0.03, and circulation Γ T/λ2

Airy = 5.6 × 10−3 .

Fig. 15. Water surface–time plot for wave cancellation of an incoming Airy wave
with period T = 9 s and wave height HAiry = 0.8 m using a single-blade WEC
modeled as a vortex panel distribution with device size 2R/λAiry = 0.5, minimum
submergence |yc + R|/λAiry = 0.03, circulation Γ T/λ2

Airy = 5.6 × 10−3 , and chord
c/λAiry = 0.03.

wave amplitude with hydrofoil chord for a device size 2R/λAiry =

0.5, minimum submergence |yc + R|/λAiry = 0.03, and constant
circulation Γ T/λ2

Airy = 5.6 × 10−3. The fundamental down-wave
amplitude, H1, increases nonlinearly with increasing hydrofoil
chord, while the down-wave harmonic, H2, and fundamental
up-wave harmonic, H−1, remain nearly constant. This increase in
wave height is attributed to the fact that a larger hydrofoil near
the surface will more effectively alter the surface elevation and
thus generate a larger wave for a given circulation. This is a general
sizing trend that has been observed for pressure force or buoyancy
drivenWECs and is reported in the literature, see for example [21].
It also applies to the hydrofoil-basedwave energy conversion, both
in terms of the overall converter size investigated in the previous
sections, but also as seen in Fig. 14 for the hydrofoil chord length.

3.3.2. Wave cancellation
Linear superposition is again applied to investigate the

interactions of the incoming Airy wave and a single-blade WEC
modeled as a thin hydrofoil. Plotted in Fig. 15 is the resulting
wave pattern as a function of space and time for a single-blade
WEC of size 2R/λAiry = 0.5, minimum submergence |yc +

R|/λAiry = 0.03, circulation Γ T/λ2
Airy = 5.6 × 10−3 and chord

c/λ = 0.03, and an incoming Airy wave of period T = 9 s
and wave height HAiry = 0.8 m. Up-wave of the converter the
incoming wave amplitude is unchanged at all times, indicating
that no waves of any significant amplitude were generated by the
WEC in the up-wave direction that interfere destructively with the
incoming wave. Down-wave of the converter, the incoming Airy
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Fig. 16. Flow geometry and hydrodynamic forces.

wave is entirely canceled by the WEC’s fundamental harmonic,
H1. However, as expected, because only a single-blade converter
is considered, higher harmonic waves (most prominently H2) are
still present. Importantly, an investigation of the velocity field in
the vicinity of the hydrofoil showed that the blade inflow velocity
remained relatively constant throughout the trajectory. Thus, by
operating the cycloidal WEC in sync with the incoming wave the
fluctuating velocity field is rectified to achieve an almost constant
inflow at the blade. From a two-dimensional perspective, the blade
experiences both velocity and force components that are steady in
time. Consequently, the torque and shaft power produced are also
constant in time,which is an important consideration for generator
design.

3.3.3. Hydrofoil sizing and impact of flow viscosity
The previous section demonstrated that for a typical cycloidal

WEC operating at a fixed phase relative to an incoming wave, the
wave-induced flow velocitymagnitude and direction are relatively
constant with respect to the hydrofoil. This finding is used to
develop a first principles estimate of the effect that viscosity has
on device performance.

Fig. 16 shows the induced velocity components and the
resulting hydrodynamic lift and drag forces. The wave-induced
flow velocity UW is assumed have constant magnitude and is
oriented radially outward as the hydrofoil rotates. As illustrated
in Fig. 16, the component of lift force tangential to the path of the
hydrofoil, LT , is responsible for the production of torque and thus
shaft power, while the tangential drag force, DT , acts to reduce the
shaft torque. Thus the viscous losses can be estimated by the ratio
of DT/LT , which is a function of the lift to drag force ratio, wave
velocity UW , and hydrofoil rotational velocity Urot according to
DT/LT = D/L(Urot/UW ). It is immediately evident that as the speed
ratio Urot/UW is increased the lift vector becomes more aligned
with the radial direction and thus the tangential component of the
lift vector is decreased. In addition, the tangential component of
drag increases. However, for small speed ratios the lift produced
is reduced quadratically to the relative flow speed U , even though
the geometric conditions for torque production are improved.

4. Dimensional results

While the performance of the cycloidal wave energy in non-
dimensional quantities was presented throughout this text, it is
helpful to report at least one typical design result in dimensional
form. For this we will consider the North Atlantic wave introduced
in Section 3 (i.e., T = 9 s) with wave height H = 3.5 m and en-
ergy PAiry = 108 kWm−1. For such an incoming wave the optimal
device size is R ≈ 20 m, and the incoming wave is entirely can-
celed using two hydrofoils each producing a constant circulation
of Γ ≈ 17 m2/s. Assuming a realistic lift coefficient of cl = 0.75,
a hydrofoil chord of c ≈ 3.25 m is required to achieve this circula-
tion. The induced velocity ratio is Urot/UW ≈ 11; thus, assuming a
lift to drag ratio L/D = 40 yields an estimate of the tangential drag
to lift ratio DT/LT ≈ 0.275, indicating that just under 30% of the
wave energy is lost to hydrofoil drag. Consequently, an estimate of
the available shaft power would be Ps ≈ 77 kWm−1, and a blade
span of only S = 13 mwould thus yield 1 MW of shaft power after
subtracting the viscous losses.

5. Conclusions

The well known cycloidal turbine can be used both as an
efficient wave maker, as well as a wave termination device when
synchronized to an incoming wave by means of feedback control.
Inviscid two-dimensional simulation results for cycloidal WECs
featuring both a single hydrofoil as well as two hydrofoils spaced
180° apart are presented. The hydrofoils of the WEC are modeled
either as a point vortex, or as a thin hydrofoil using a vortex panel
distribution. Both simulations capture the waves produced in the
far-field with good accuracy. However, thin hydrofoil simulations
enable the investigation of necessary pitch control schemes and
hydrofoil chord length.

5.1. Wave generation

For wave generation, it is possible to create a single Airy
type wave that only travels in one direction, with no wave
being generated in the other direction. The direction of travel is
controlled by the rotation direction, while the wave height varies
linearly with hydrofoil circulation. For a single-blade WEC the
resulting wave field was decomposed into the fundamental wave
traveling up-wave and two higher harmonics traveling both up-
and down-wave. The optimal device radius was determined to be
2R/λAiry = 1/π , corresponding to an exact match between the
hydrofoil rotational velocity and the wave speed of the generated
wave. A significant improvement in the wave field was achieved
using a WEC with two hydrofoils spaced 180° apart with equal
but opposite circulation. For this configuration, the harmonicwave
of twice the fundamental frequency was reduced to negligible
amplitudes, resulting in a significantly improved wave field for
wave termination applications.

5.2. Wave cancellation

The single-sided wave generated by the cycloidal WEC is
perfectly suited to extract energy from an incoming plane Airy
wave. In order to achieve this, the motion of the WEC needs to
be synchronized in frequency and phase locked to the incoming
wave, and the circulation of the converter’s hydrofoils needs
to be adjusted to produce a wave of matching amplitude by
means of feedback flow control. If this is accomplished, in the
two-dimensional inviscid limit, more than 99% of the incoming
wave energy can be extracted from the wave achieving wave
termination. The hydrofoil in this situation experiences an almost
constant inflow throughout the rotation of the converter, resulting
in almost constant torque and thus shaft power. The WEC thus
functions as a fluid dynamic rectification device when considering
the moving reference frame of the rotating hydrofoil, while the
reactive force at the main shaft is changing direction through 360°
for each revolution.
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