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Abstract--Recent theoretical advances in the mathematical treatment of geometric interface motion make 
more tractable the theory of a wide variety of materials science problems where the interface velocity is not 
controlled by long-range-diffusion. Among the interface motion problems that can be modelled as 
geometric are certain types of phase changes, crystal growth, domain growth, grain growth, ion beam and 
chemical etching, and coherency stress driven interface migration. We provide an introduction to nine 
mathematical methods for solving such problems, give the limits of applicability of the methods, and 
discuss the relations among them theoretically and their uses in computation. Comparisons of some of 
them are made by displaying how the same physical problems are treated in the various applicable 
methods. 

R6sum&--Des progr~s th~oriques r6cents dans le traitement math~matique du mouvement de l'interface 
gdom~trique rendent plus abordable la th6orie d'un grand nombre de probl6mes de science des mat6riaux 
oti la vitesse de l'interface n'est pas contr616e par la diffusion fi longue distance. Parmi les probl~mes 
de mouvement d'interface qui peuvent atre mod61is6s d'une mani~re g6om6trique il y a certains types 
de transitions de phases, de croissance cristalline, de croissance de domaines, de croissance de grains, de 
corrosion par bombardement ionique et de corrosion chimique et de migration de l'interface pilot6e par 
la contrainte de coh6rence. Nous donnons une introduction relative fi neuf m~thodes math6matiques pour 
r6soudre de tels probl~mes; nous donnons les limites d'appliction de ces m6thodes et nous discutons d'une 
mani6re th6orique les relations entre celles-ci ainsi que leurs utilisations dans los calculs. Des comparaisons 
entre certaines de ces m6thodes sont effectu~es en montrant comment les m~mes probldmes physiques sont 
traitfis par les diff~rentes m6thodes applicables. 

Zusammenfassung--Neuere theoretische Fortschritte in der mathematischen Behandlung geometrischer 
Grenzflfichenbewegungen machen die Theorie einer grol3en Vielzahl yon werkstoffwissenschaftlichen 
Problemen, in denen die Grenzfl/ichengeschwindigkeit nicht gesteuert ist von weitreichender Diffusion, 
traktabler, Unter den als geometrisch zu behandelnden Problemen der Grenzfl/ichenbewegung fallen 
gewisse Typen yon Phasen/inderungen, Kristallwachstum, Domfinenwachstum, Kornwachstum, Ionen- 
strahl- und chemische Atzung und durch Kohfirenzspannungen angetriebene Grenzfl/ichenwanderung. 
Wir legen eine Einf/ihrung in neun mathematische Methoden zur L6sung dieser Probleme vor, beschreiben 
die Anwendungsgrenzen dieser Methoden und diskutieren die Zusammenh/inge zwischen ihnen theoretisch 
und die N/itzlichkeit bei Computerrechnungen. Einige werden miteinander verglichen, indem dieselben 
physikalischen Probleme mit den verschiedenen anwendbaren Methoden behandelt werden. 

1. INTRODUCTION 

There have been considerable recent theoretical 
advances in certain mathematical  problems of  sur- 
face motion,  those that are called geometric [1-33]. 
(See the Glossary in the Appendix for all italicized 
words.) Geometric means that the normal velocity v 
of  the surface depends only on the position and local 
shape of  the surface. The velocity can also depend 
on the values that field variables, such as temperature 
and concentration, take on the surface if these 
values are not  modified by diffusion, but it cannot 
depend on variables away from the surface, such as 
concentrat ion gradients created by surface mot ion 
and modified by diffusion in the bulk. For  example, 
in a geometric surface mot ion problem, v might 

depend only on the direction of  the local normal  n 
and/or  the local components  of  the curvature, which 
are given by the spatial derivatives of  n; v could also 
depend on position and thus the local microstructure 
or fixed temperature field. In geometric surface 
mot ion problems, v can depend on time implicitly 
through the time dependence of  the temperature and 
concentration; an explicit dependence on time is also 
allowed mathematically. 

Geometr ic  crystal growth is a very active area 
of  theoretical and computat ional  research, and a 
fast-moving field. We have attempted to provide 
an introduction to nine mathematical  methods for 
solving such problems, say what relations that are 
between them theoretically, and compare some of  
them by displaying how the same physical problems 
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are treated in the various applicable methods. This 
survey has been aimed primarily towards materials 
scientists and physicists interested in the problem 
of interface motion. As we described in a previous 
paper [2] and below, there are many examples in 
materials science where surface or interface motion 
can be simplified to fit a geometric model. This paper 
is not intended to be an outline of mathematical 
proofs, nor a statement of precise mathematical 
results, nor even a preparation for proving further 
mathematical results. For  these, one must go to the 
original papers. 

In geometric models of interface motion we 
will usually take v to depend on a thermodynamic 
driving force that is the free energy decrease (per 
unit magnitude volume change) if the surface were 
to move to increase the volume of the phase 
behind it. This driving force has two components, 
a weighted mean curvature (wmc) that expresses 
the decrease in the integral of  the specific surface 
free energy y and a volume phase change part f~. 
It is convenient to define a non-negative mobility 
function M as the ratio of v to driving force, so 
that 

v = M ( ~  + wmc). 

Because the sign of v must be such that the 
free energy decreases, M must be non-negative, but 
otherwise M, fl, and wmc can be complicated func- 
tions of all the remaining factors that enter into 
the geometric problem [13], including factors like 
temperature, orientation and microstructure. Since 
v need not depend linearly on the driving force, 
M can even depend on v itself. Most of the recent 
mathematical progress has been in the linear response 
case where 

v = M(x, t, n)[~(x, t) + wmc(x,  t)] 

The various forms that wmc can take are summar- 
ized in the companion paper [34] and are also 
given as needed in the descriptions of various formu- 
lations in Sections 2 and 3. If we want a model that 
ignores curvature, we can accomplish this by setting 
the surface free energy ~ equal to zero on all unit 
vectors. 

There are many examples in materials science 
where surface or interface motion can be simplified 
to fit a geometric model. (We use the word "surface" 
to denote an interface between crystals including 
crystals of the same phase but different crystallo- 
graphic orientations as well as one between a crystal 
and a fluid.) Interface-controlled crystal growth 
or dissolution, chemical and ion etching, domain 
and grain growth, liquid film migration, diffusion- 
induced grain boundary motion, eutectic growth, 
cellular precipitation, and discontinuous coarsening 
are examples of  such phenomena. Two dimensional 
examples are dislocation motion on a slip plane, and 
spreading of new layers during growth of a facetted 
crystal. 

Complications which can make these processes 
non-geometric include temperature and/or concen- 
tration profiles that depend on the motion, as 
in diffusion controlled crystal and dendrite growth. 
Certain diffusion problems, however, can be formu- 
lated as geometric. In these a local steady state in 
the framework of the moving surface leads to gradi- 
ents that are constant in time, and therefore a v that 
is also independent of time. The velocity may be a 
function of n and its gradients. Eutectic growth can 
be an example, in which the phases grow as parallel 
lamella or rods in which the spacings and the diffu- 
sion profiles ahead of the interfaces become constant; 
the average velocity of the corrugated two-phase 
growth front is constant in time, but may depend on 
the average orientation of the surface. In coherency 
stress driven processes, such as liquid film migration 
and diffusion-induced grain boundary migration, 
there is a steady state diffusion field ahead of the 
interface. Cellular precipitation and eutectoid growth 
can also be steady-state diffusion processes, in which 
the diffusion field creates both the necessary fluxes for 
the separation of the elements into the two phases, 
and the coherency stresses that may also be a factor 
in the driving force for surface migration. 

When the rate of crystal growth or dissolution 
is said to be controlled by interface processes, inter- 
face motion is so slow that the diffusion of mass 
or heat has little or no effect on the kinetics [35], 
or else there is nothing to diffuse away (as in 
phase-antiphase boundary migration [36, 37]). The 
rate v is then entirely controlled by molecular pro- 
cesses at the interface, and these in turn depend on 
the local structure of the interface via its crystallo- 
graphic orientation and components of curvature 
[36-43]. 

Growth usually also depends on the local supersat- 
uration or undercooling, but in this limit of slow 
growth, changes in gradients in temperature and 
composition are assumed to have a negligible effect 
on v. The matrix can be taken to be uniformly 
undercooled or supersaturated, and then growth is a 
function only of the local geometry and can therefore 
be cast in terms of a geometric model. It is also 
possible for crystal growth to remain geometric in an 
imposed temperature field and to have the velocity 
depend on the local temperature, provided that the 
local temperature is not affected by the growth 
(examples are presented elsewhere [2]). The classical 
problem of crystal growth by diffusion of heat or 
mass is not geometric, because the velocity depends 
on the normal component of the gradients of 
temperature or concentration at the surface, and 
diffusion changes those gradients. However, there 
are geometric "toy" problems designed to capture 
some features of dendritic crystal growth, that 
do not depend on diffusion fields [46, 47]. In the 
screw-dislocation-catalyzed crystal growth problem, 
one cannot make the velocity depend on dislocation 
density. One must either assume that dislocations 
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are there in the density range where their density 
can effectively be ignored [45] or--with a different 
growth law, two-dimensional nucleation of new 
layers [48-50]--that they are not there at all. 

In the chemical etching of an inhomogeneous 
microstructure, the situation can be well modelled as 
a geometric problem, even if v depends on the 
position of the surface relative to the structure being 
etched and on the local orientation of the surface, but 
not if the composition of the etchant changes signifi- 
cantly near the surface as a result of the etching 
process and this change slows the rate of etching. In 
ion beam etching, the erosion depends on the orien- 
tation of the surface relative to the beam and is thus 
geometric if there is no initial undercutting and one 
can ignore the effects of back-scattering [51, 52, 53]. 
In cellular precipitation and discontinuous coarsen- 
ing [54], grain boundaries sweep through a micro- 
structure with velocities that depend on orientation, 
curvature, and local structure, but not on any 
factors away from the boundary. In grain or domain 
growth, the rate of interface motion is directly 
related to the reduction in interfacial energy resulting 
from the motion and is thus geometric [53-60]. The 
process may depend on orientation because both 
the interfacial mobility and energy may depend 
on orientation. In the coherency-stress-driven liquid 
film migration [62-64], v depends on orientation of 
the liquid film relative to the two abutting solids and 
their surface compositions. It is controlled by diffu- 
sion through the liquid film, but the rate is indepen- 
dent of the range of the diffusion into the solid. 
Liquid film migration is an example where a diffusion 
problem can be recast as a geometric problem if 
the diffusion distance, which is the film thickness, 
remains constant. In diffusion-induced grain bound- 
ary motion in a thin foil, the problem becomes 
two-dimensional and geometric provided that the foil 
is thin enough that diffusion gradients normal to the 
foil can be neglected [62]. Similarly, if we ignore the 
effect of the stress field of the moving dislocation on 
itself, dislocation glide motion on a slip plane will be 
geometric because it governed by local orientation 
and curvature and the local imposed stress field 
[65-67]. This is so even if a dislocation encounters 
obstacles to motion, for example, when the slip plane 
is inhomogeneous, as in a precipitation hardened 
structure [68-70]. 

In problems where there are more than two grains 
or phases, junctions of moving surfaces can occur. 
The motion of these junctions creates special 
problems that are only now being examined for 
geometrical problems [15, 17]. Multiphase or multi- 
grain junctions occur in grain growth and in phase 
transformations, such as eutectoids, in which there 
are more than two phases [17, 18]. An early study of 
the motion of Czochralski crystal growth [71-73] 
has led to empirical specifications for controlling 
the crystal-melt-vapor trijunction motion to ensure 
crystals of uniform diameter. 

In evaluating equation (1) we have taken the fl to 
be positive when there is a bulk free energy decrease 
for motion of the surface in direction n. If we have 
one fluid growing into another fluid, with the normal 
in the direction of growth, then fl is the same as the 
AP of Gibbs [74]. Note that fl will be positive and 
wmc will be negative for a convex crystal growing into 
an undercooled melt, because the total surface free 
energy is increasing and the bulk free energy is 
decreasing. 

Associated to a given function on unit vectors, 
whether it be the surface free energy per unit area 
7 or the mobility M, is a convex set which we call 
the Wulf f  shape for that function, and which we will 
denote by W~ if it is obtained from M and by W if 
it is obtained from 7 

W = {x:x.n ~< 7(n) for every unit vector n} 

and 

W~ = {x:x.n ~< M(n) for every unit vector n}. 

(If M depends on x and t, then we would have a W~ 
for each x and t.) It is a theorem that W i s  the 
equilibrium single crystal shape, in that it has the 
least surface energy for the volume it contains 
[38, 75, 76], and that when M is independent of 
everything but n, W~ is the limiting growth shape 
[2, 11, 43] (and the shape that grows most slowly 
among all crystals of the same volume, when that 
volume is large enough that surface energy effects can 
be ignored). 

For any function defined in unit vectors n (and 
perhaps other variables), we will often extend its 
definition to all vectors p = rn(r ~> 0) by requiring 
positive homogeneity of degree one. That is, we will 
define 

and 

~,, (r n) = r~, (n) 

M(rn) = rM(n) 

for r ~>0. 
We note here that there are many other relation- 

ships between 7 and W (and equivalently, in this 
paragraph, between M and W~) [77-80]. For 
example, when ~ is a convex Junction, it is a norm 
and has a dual norm, and W is the unit ball of that 
dual norm. Also, when 7 is differentiable as well as 
convex, the vector V~,(n) is the point on the boundary 
of W with exterior unit normal n (and conversely). 
When ~ is not differentiable but is still convex, then 
every vector in the subgradient of y at n is a point on 
the boundary of W with normal n and conversely. 
When 7 is non-convex, the plot of all the points which 
are Vy(n) or in the subgradient of ~ at n for some 
n, contains W and additionally perhaps "ears" at 
edges or corners of W [80]. For example, see W~ with 
its additional "ears" in Fig. l(a) of Section 4 for 
the anisotropic M of that section. Nonconvexity 
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of the mobility function M, and resulting "ears" on 
Woo, are possible and significant for growth problem; 
nonconvexity of 7 tends to be less significant because 
of the possibility of having varifold, or infinitesimally 
corrugated, surfaces. 

The formulations of  surface motion problems lead 
to partial differential equations (PDEs) or, when 
W is a polyhedron and the surface is composed of 
plane segments, to systems of ordinary differential 
equations (ODEs) that are directly related to the 
physical growth law. The solutions to these equations 
track the position of the surface. Methods for treating 
geometric crystal growth can be divided roughly into 
two groups, direct ones where the motion of the 
interface is explicitly considered, and indirect ones 
where the interface at each time is the level set of a 
function defined on space-time and is only moved 
implicitly by the dependence of the whole function on 
time. In the indirect cases, the functions sometimes 
have an artificial quality, except on the crystal sur- 
face, but in spite of this apparent complication, these 
methods often have advantages in terms of character- 
izing the solutions independent of parametrization. 
In the special case where the normal velocity does 
not depend on the curvatures of the surface, the 
function can (but need not) be given the meaning of 
time less the "arrival time" of the crystal at a point, 
altering the problem to finding level sets of the 
arrival time. (As will be noted in Section 2.4, the 
arrival time is not always that of the minimum-time 
path when non-convex velocity functions are used, 
but that is immaterial here.) For  some indirect 
methods, the formulation is modified, so that unphys- 
ical factors are brought in to facilitate the compu- 
tation or theory; for these, it must be shown that the 
solutions converge to those of the correct geometric 
problem. Computer programs have been written to 
implement many of these methods, both direct and 
indirect. All of these methods are intended to solve 
the same types of surface motion problems and where 
applicable should give the same results. However, 
there are certain conditions for the application of 
each method. Some are valid only if v is not depen- 
dent on curvature, for then the PDE is first order. 
Some are valid if the dependence of v on n and/or 
its derivatives satisfy certain continuity conditions, 
such as that the function be C 2 (see Glossary). 
Some methods are only valid for a single crystal 
embedded in a matrix; others can deal with more than 
two phases and junctions of surfaces. Whether or 
not M or ), are convex functions can be important. 
It should be noted that no nucleation is allowed in 
these problems: all deal only with the motion of 
pre-existing interfaces. 

In order to understand the indirect methods, con- 
sider u to be a real-valued function of space and time 
that takes on a particular value (such as zero) along 
the crystal surface at each time. The motion of  
the surface is then tracked by following the motion 
of a "level set" (e.g. the zero set) of u. If  u is any 

differentiable function of x and t, then for fixed x and 
t and small Ax and At, 

u(x + Ax, t + At) ~ u(x, t) + Vu .Ax + u,At. 

Here Vu is the spatial gradient of u, i.e. 
VU --'~ (0U/0Xl,  0U/0X2, (~U/OX3) , and ut = &u/Ot. If x 
is on the level set of u at time t [e.g. u(x, t) = 0] and 
x + A x  is on the level set at time t + A t ,  then 
u(x + Ax, t, + At) = u(x, t), and so 

- V u  .Ax 

At ~ ut. 

Now + Vu is automatically normal to level sets of u, 
so if we take Ax to be a multiple U of - Vu/J Vu I, then 
the limit V of U/At as At goes to zero is the normal 
velocity of the level set, measured relative to the 
direction of decreasing u, for this particular u, x, and 
t. Thus we have 

v = u,/lVul. 

This is always true, for any u, since it is just a 
geometric statement. If the normal velocity is 
specified for physical reasons, we can substitute that 
velocity for V (assuming that we choose the initial 
values of u so that the normal vector n is in the 
direction of decreasing u, so n = - V u / I V u l )  and 
obtain a partial differential equation for u. That is, 
if we are given a normal velocity as a function v 
of position x, time t, and normal direction n, a 
PDE in which every level set moves by that normal 
velocity is 

Ou/Ot - ]Vu Iv(x,t, - Vu/lVu l) = 0. 

Such an equation is a Hamilton-Jacobi equation [5]. 
When curvature is included, the PDE is a second 
order non-linear equation of the form 

Ou/Ot - [Vu [v(x, t, - Vu/[Vu [, V( - [Vu  [)) = 0 

where v depends on the derivatives of Vu/lVu[ only 
in the directions perpendicular to Vu/IVu]. Since 
d iv( -Vu/[  Vu [) (the divergence of the normal vector) 
is the mean curvature of the level surface, motion by 
mean curvature is an example which can be put into 
this context, as 

Ou/Ot = - [ V u  I d i v ( -  Vu/I Vu I). 

There are, in addition, two formulations that are 
not geometric, but their solutions approximate in 
some sense the solutions to a geometric problem. 
In the phase field method described in the next 
section, the PDE describes a function in all space 
that is supposed to have physical significance, namely 
the extent to which that part of space is in one 
particular phase; in certain limits, the motion of 
level surfaces of its solution reduces to a geometric 
problem. Order-disorder transformation problems 
and Monte Carlo simulations of a Q-state Potts 
model on a lattice give rise to surface formation and 
motions that also appear to mimic those of  geometric 
problems, but exactly what continuous model this 
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discrete model approximates is far from known at 
this point. 

In the next section we will summarize these two 
methods which are not strictly geometric as well as 
the seven that are formulated as geometric methods. 
We will examine the advantages of each method, 
when it is applicable, and when methods are equival- 
ent. It will be seen that no method is applicable for 
all the problems that can be solved. 

In the third section, several methods (crystalline, 
characteristics, level sets) will be described in greater 
detail, and in the fourth section simple examples will 
be used to illustrate the methods. In the fifth section, 
various computational schemes will be surveyed. In 
the discussion section, a variety of open problems are 
collected. A glossary of mathematical terms is pre- 
sented in an appendix. In the paper following this 
one, we summarize all the various forms in which 
the mean curvature or weighted mean curvature is 
written, and indicate why they are mathematically 
equivalent (although not equally useful in all 
situations). 

2.  S U M M A R Y  O F  N I N E  M E T H O D S  FOR 
GEOMETRIC CRYSTAL GROWTH 

Nine methods are described briefly below for doing 
motion of surfaces where the normal velocity is given 
by 

v = M(n) [f~(x, t) + wmc] 

where M and f~ are given functions. All of the 
direct methods being given before all of the indirect 
methods, and the order otherwise is approximately 
historical. For  each of them, the least restrictive 
conditions that the mathematics requires are usually 
given, even though there might not be any physical 
situation which naturally imposes those conditions. 

2. I. The nine methods 

2.1.1. Mapping o f  a f i xed  manifold (like a circle or 
line in the plane or a sphere or plane in 3-space) 
(direct). The direct formulation is to solve for the 
family of mappings ft (parametrizations) such that 

(d/dt)ft(p) = nM(n) [~ + (al xl + a2 K2)], 

where xl and x2 are the principal curvatures of the 
surface at x = ft(P) (the curvatures are taken to be 
negative for a convex body oriented so that its normal 
vector points outward) and ai = ~2/~p2~, where p~ is 
the variable in the direction of the ith principal 
curvature and y is assumed to have been defined on 
all vectors (otherwise, differentiation with respect to 
spherical coordinates produces extra terms; see the 
companion paper [34]). 

This is the classical approach for motion by mean 
curvature, adopted by many including Mullins 
[57,58], Gage and Hamilton [81], Gage [82,83], 
Grayson [84], Huisken [85, 86], Ecker [87, 88], Hass 
and Scott [89], Angenent [90,91], and Gurtin [13] 

(although Angenent and Gurtin rotate everything by 
90 degrees, and use the inward-pointing rather than 
exterior normal). Short time existence in this mapping 
formulation follows from the work of Ladyzhenskaya 
[92]. This approach should also be amenable to the 
case where v does not depend linearly on driving force 
(which is equivalent to an M that depends on v), 
although little attention has been directed to that 
case. Also several computational models are built on 
this idea, including those of Brakke [93], Dziuk [94], 
etc. For  curves in 2-d, Frost  [95] has done extensive 
simulation of grain growth. 

Problems with the mapping approach include the 
difficulty of handling topological changes (e.g. a 
dumbbell pinching off at its neck, or a crystal shrink- 
ing to zero size), in particular due to the formation 
of singularities in the flow [97]. A philosophical 
problem is the fact that something "non-canonical" 
has been introduced by the parametrization which 
is inherent in the mapping approach; the solution 
to geometric motion depends only on the shape and 
not on how the shape is parametrized. Also there is 
a question about what to do at corners and edges 
in the initial surface, which are places where neither 
the normal nor both curvatures are defined, so that 
the motion law above cannot be directly applied. 
In this case, there are often a number of possible 
surface evolutions that obey the given motion law on 
their smooth parts; one of these possibilities is often 
some obvious type of extension of the smooth parts 
until they meet. For  example, if one has isotropic 
and curvature-independent normal growth (M = 1, 

= 0), an intial cube might be thought to grow by 
simple expansion of the cube. However, this type of 
growth is not stable, in that a slight smoothing of the 
corner, or even introduction of one additional facet, 
would result in dramatically different growth. Similar 
problems can arise in decisions of how to handle 
7 and M that are not C 2 or are nonconvex. We apply 
in this paper the physical criterion that the growth 
should be stable under continuous perturbations; the 
reasons for making any other choice ought to be 
explicitly delineated. Which criteria are physically 
reasonable is a question that needs experimental 
investigation. 

2.1.2. Brakke 's  formulation [3] (direct, sort oJJ. 
Brakke, in a very important but difficult early paper, 
developed a theory of motion of varifolds by mean 
curvature that is a weak formulation in terms of 
smooth test functions. One observes that if S, is a 
family of smooth surfaces moving by any velocity 
v, and if q~ is a smooth non-negative function which 
is nonzero on a closed and bounded region in R 3, 
then 

df, fs - -  - ~ t , - h  dt ~b da = v "Vq~ da da 
t t t 

(here da refers to integration with respect to surface 
measure). Therefore, Brakke defines a family of 
varifolds S,, with associated measures [[ S, II and mean 
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curvature vector fields h as defined by Allard [98], 
to be moving by their mean curvature if for each 
such smooth test function q~ 

~d l lS ,  II = h.VckdllS, II- d~h.hdllStl] 

whenever the mean curvature vector field h has 

f h'hdll S, II 

finite (and is - o o  when it is not finite). This context 
allows the presence of triple junctions, point junc- 
tions, and the like as part of the general varifold 
definition. Brakke proved general existence results 
in this context, by a complicated process involving 
time steps going to zero and two different types 
of motions per step, but he obtained only partial 
regularity results and no one else has been able to 
improve them; there is also no uniqueness in this 
framework. 

When the initial surface is smooth and without 
self-intersections, Brakke showed that for some inter- 
val of time, the motion is unique and the surface 
stays smooth without intersection. Under these 
conditions the method solves the classical direct 
formulation. 

The method works well for more than two phases, 
accomplishing topological changes when needed. It 
assumes the surface energy is the same on all inter- 
faces and has no additional driving force f~ due to 
phase change. 

Several people are currently studying Brakke's 
paper, trying to relate other approaches to his 
approach and to prove more about the behavior of 
his motion. 

2.1.3. "Crystalline" method [12, 16-19] (direct). 
The crystalline method works if the surface free 
energy ~ and the mobility M are each given on the 
same finite set of unit vectors, essentially those which 
become the normals of  the Wulff shape W for 
the surface energy, and with the value of M on all 
other directions being determined by its values on 
these directions via M(ant  + bn 2 + cn3) = aM(hi)  + 
bM(n2) + cM(n3) if facets with orientations nl, n2, 
and n3 meet at a corner of W and a, b and c are 
non-negative numbers. The fact that the given set of  
unit vectors are to be the normals of W implies that 
the values of y on all other directions are at least those 
determined by its values on the given finite set, so that 
?(an1 + bn2 + cn3) 1> a)'(nl) + bT(n2) + q ( n  3) under 
the same conditions as above. 

This method converts the PDE problem into a 
system of ordinary differential equations (ODEs) for 
the distances of the plane segments from some fixed 
origin 

d&/dt = M(n/) [f~ + wmc(i )] 

where wmc (i) stands for the weighted mean curvature 
for the ith plane segment in this crystalline context 
(it is defined in Section 3.2 and explained and related 

to the other expressions for wmc in the following 
paper [34]). These equations can be solved numeri- 
cally (and sometimes analytically). The method can 
handle fixed boundaries and multiple grains or phases 
(with the same or different surface energies and 
mobilities for different types of interfaces). Like the 
mapping approach, this method should be applicable 
to the case where v does not depend linearly on 
driving force, although no results have been pub- 
lished in that case. Both theory and computer pro- 
grams have been fairly extensively developed in the 
2-dimensional case; the full three dimensional case 
is only partially investigated and programmed at 
this point. The extent to which the motion for an 
arbitrary ? and M can be approximated by this 
type of  polyhedral motion is also currently under 
investigation. In fact, Roberts [96] developed the 
same method, in the case of simple closed curves, 
purely for the purpose of approximating motion of 
curves by curvature. The method does use a type of 
parametrization of the surface, but one that is natural 
in that it just lists the normals and distances of the 
facets together with their adjacencies. 

2.1.4. Least time method [15, 99, I00] (indirecO. 
If  7 = 0 and M is a convex function of the normal 
direction n, and if it and fl are constant or Lipschitz 
functions of  x and t, then the time z at which the 
interface reaches x is the minimum time of travel over 
all rectifiable paths (see glossary) from the initial 
crystal interface to x, where the time to travel along 
a path is the integral of 1/]Vv[n(x)][ along the path, 
n(x) being chosen so that Vv[n(x)] is in the direction 
of the tangent to the path at x. It gives the same 
results for convex M as the method of characteristics 
when there are only two phases, since a characteristic 
is a minimum time path, except that it applies ad- 
ditionally to surfaces which are not pieeewise C ~. This 
formulation of the problem is also applicable for 
more than two phases (which means there are three 
or more types of surfaces, with different velocity 
functions, which can meet along multiple-junction 
curves or points), giving unique evolutions of the 
various interfaces under physically realistic assump- 
tions on the different velocity functions and for most 
initial data [15]. To work with non-convex mobility 
and single interfaces, one must go to a game-theory 
type minimax problem for the time [99] instead of just 
minimizing time over all paths. The minimax charac- 
terization is not unique, but this one seems appropri- 
ate since it gives the viscosity solution (described in 
Section 7 below) and the viscosity solution satisfies 
the type of stability described at the end of method 
(1) above. 

No minimax time formulation has been made for 
non-convex velocity functions where there are more 
than two phases, and no minimum or minimax time 
formulation can be made with a velocity that depends 
on curvature. But within its scope, the minimum 
time approach does provide proofs of existence and 
uniqueness of solutions, and it does enable one to 
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verify whether particular evolutions satisfy the given 
growth law. 

2.1.5. Method of characteristics [2, 40-42, 101, 102] 
(indirect). This method applies when the normal 
growth rate v is a given function of position x, 
time t and exterior unit  normal  n but  not  a 
function of curvature. We thus take 7 = 0 and 
v(x, t, n) = f~(x, t )M(x,  t, n). The general implicit 
PDE is then the first order equation 

~u/~t - IVu Iv(x,t, - Vu/Wu I) = 0. 

As before, it is convenient to extend M (and thereby 
v) to be a function on all vectors so that 
v(x, t, rn) = rv(t, x, n) for all r > 0. The equation then 
simplifies to 

8u/at - v(x, t, - Vu) = 0. 

We can give u a physical meaning if we assume 
u(t, x) can be written as t - z ( x )  when v is positive 
and as z ( x ) -  t when v is negative; z(x) is thus the 
arrival time of the crystal surface at the point x. Here 
the exterior normal n of the crystal surface is 
___ Vz / I Vz I, a unit  normal  in the direction of increas- 
ing z for growth of that crystal and in the opposite 
direction for its dissolution. The general implicit 
equation then becomes the non-linear,  first-order 
PDE 

v(x, z, Vz) = 1 

when v is positive, and when v is negative it becomes 

v(x, 3, - Vz) = - 1 

or equivalently 

z3(x, z, Vz) = 1, 

where 6(x, t, p ) =  - v ( x ,  t , -  p). (Note that in order 
to use this arrival-time reformulation of the problem, 
special at tention has to be paid to places where 
v =0.) 

First order PDEs can often be solved by the 
method of characteristics (see 3.1 below). This 
method can accommodate discontinuities in the 
slope, i.e. corners and edges, whose appearance 
results from shocks, and the rounding of corners and 
edges with the appearance of a range of new orien- 
tations, through the use of fans of characteristics. The 
method works for a velocity v which is a piecewise C 2 
function of normal  direction and otherwise is either 
constant  or is a C 2 function of position x and time 
t. (In particular, v is not allowed to depend on any 
curvatures.) The method of characteristics is useful 
primarily for simple initial shapes and for computing 
solutions by hand; many features of crystal growth 
with such a given velocity can be understood by this 
method. 

2.1.6. Regularization, by addition of smoothing 
(non-physical) term to equation (implicit). Examples 
are adding e times the Laplacian Au of u for first 
order PDE or fourth order elliptic term to second 
order PDE [103]. Consequences of adding a fourth 

order elliptic term have not  yet been investigated; in 
particular it is not known whether it converges to 
what we want for nonconvex M and nonzero Y. 

2.1.7. Viscosity solutions [1, 4-9, 11, 104-109] 
(indirect). As stated previously, one would like to 
look at level sets of the PDE 

u , -  IVu Iv(t, - Vu/lVu I,V(Vu/IVu I)) = 0 

where the dependence on V(Vu/IVul) satisfies certain 
conditions. Problems occur when Vu = 0 or u is not  
C 2 (one cannot  take second derivatives of a function 
that is not  C2), so that this equation must be 
interpreted in some weak sense when singularities 
might develop or be present initially in the interface. 
There are various definitions of weak solutions for 
different types of PDE. A viscosity solution of the 
PDE for geometric crystal growth is a particular type 
of weak solution that embodies the principle of 
barriers; one in effect sandwiches the surface between 
smooth surfaces whose behavior one can compute 
with the original PDE. The function u here has no 
particular physical meaning and its only purpose is to 
define the crystal surface at each time t; the crystal 
surface at time t is the level set consisting of the points 
x where u(x, t) = 0 (a "contour  line" on the graph of 
u as a function o f x  at a particular time t). One might 
want to make u be t - r ( x )  as before, but  there are 
several reasons not  to require this, the most import- 
ant being that almost certainly such a u would not  
satisfy the PDE for (x, t) such that u(x, t) :/: 0. Also, 
the answer for all time would be incorporated in the 
values of the function u at t = 0, in that the crystal 
surface at time T would be the level set u(x, 0) = T, 
so that one would need to know the solution for all 
time as part of the initial data. Finally, it is difficult 
to allow for z to be "multiple-valued" when the 
interface passes back and forth through a point 
several times, as will often happen. 

If v depends on weighted mean curvature, then 
the surface energy function 7 must be C 2 and convex. 
At our present state of knowledge any dependencies 
on position x must be continuous,  but  this might be 
an artefact of  the current state of the theory. Under  
hypotheses to be discussed in a later section, there is 
one and only one viscosity solution for any continu- 
ous initial data, even for u whose level sets have 
corners and edges. Because of this, the method 
is useful for constructing mathematical proofs about  
various properties of the motion for initial values of 
u such that level sets have corners and edges. It is also 
useful for computer calculations, even in the case 
where we take 7 -= 0, as it is often easier to handle 
topological changes by determining level sets of a 
function than by tracking characteristics and trying 
to find and follow shocks. The cost is that one must 
calculate u on all of  space-time when one is only 
interested in the set where u is zero. However, the 
solution is not  reasonable physically when there are 
more than two phases, or in situations where physi- 
cally correct notions of motion by mean curvature do 
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not depend continuously on the initial data, such as 
is the case in Fig. 5 of Section 4. In all these 
situations, the viscosity solutions seem to "develop an 
interior" [99]. This means that the set on which u = 0 
at time t is not just a "contour line" (or surface) but 
expands to fill a whole two-dimensional region in the 
plane (or 3-dimensional region in 3-space); see 
Fig. 5(e) in Section 4. Some type of vector-valued 
function u is probably needed in the multiple-phase 
case, but such a theory has not yet been developed. 
Osher [110], working with Bence, has begun to 
explore computationally the use of a vector-valued 
u, and preliminary results are comparable to those of 
Taylor [15]. When f ~ = 0  and there are only two 
phases, the level set approach gives the same sol- 
utions as the least time (or minimax time) approach 
[99]. It appears that this method cannot be extended 
to apply to the case where the dependence of v on 
driving force is not linear. 

2.1.8. Phase fieM methods [21-28, 35, 36] (indirect). 
Here the interface is defined by a level set of a 
solution to the PDE 

u, = eAu + (1/e) f  (u) 

wheref is  the derivative of a double-well potential, Au 
denotes the Laplacian of u in the x coordinates, and 
u is an "order parameter" that is used to track the 
position of  the interface (the narrow region where 
u changes from its value at one of the wells to its value 
at the other well). This type of equation, called 
a reaction-diffusion equation, does not fit the geo- 
metric hypotheses for the type of PDE considered 
here. However, when the curvatures of the level 
surfaces are small, solutions to this equation are 
approximately solutions to the equation of the 
preceding method 

u, = I VuI[C + ediv(Vu/lVu I)] 

where C is related to the difference in depths of the 
wells. Such results were found by Cahn and Allen for 
the first equation with equal depth wells, and this 
equation has been investigated fairly extensively 
[36, 37]. A related equation is the Cahn-Hill iard 
equation 

u, = A[ f  (u) +Au]  

which has conservation of u (since Sut = 0 if the 
boundary of the region can be ignored). As stated, the 
reaction diffusion equation applies only to isotropic 
motion including a mean curvature component, 
although anisotropic analogues have been con- 
structed by letting e depend on Vu/IVu I. Rubenstein 
and coworkers [23, 24] did formal asymptotics to 
show convergence to motion by mean curvature. 
Bronsard and Kohn [21,22] proved convergence 
rigorously in the radially symmetric case. Recently 
Evans, Soner and Souganidis [111] have shown rigor- 
ously that the limits of the phase field solution as 
goes to zero is the same as the viscosity solution of 
the indirect formulation, when f~ = 0 and y and M are 

isotropic and when the viscosity solution does 
not develop an interior. In order to apply the 
phase field method to situations with more than two 
phases, it would be necessary to introduce more order 
parameters. For  a description of the phase field 
approach including diffusion of heat and all of its 
limits, see the survey paper of Caginalp [28]. This 
method looks very promising for computation when 
diffusion fields must be included [112], but there are 
pitfalls that must be recognized, including numerical 
ones mentioned by Osher [110] and analytical ones, 
such as that the ad hoc way of introducing anisotropy 
by making e be a function of Vu changes the order of 
the equation. 

2.1.9. Order-disorder transformations and Monte 
Carlo simulations via a Q-state Potts model on a 
lattice [59, 60, 113-119]. This method is most like 
a direct method but since it deals with a lattice of 
points, there is actually no surface and no normal 
direction and no curvature. 

Initially a "state variable", which is an integer q 
between 1 and Q, is assigned to each point in a lattice. 
The energy of a lattice site is usually taken to be the 
total number of nearest neighbor pairs with differing 
states; sometimes the energy is taken as a weighted 
sum, depending on the states of the site and its 
neighbors, and sometimes second nearest neighbors 
as well as nearest neighbors are considered. All points 
with the same state variable q can be thought of as 
being crystalline regions with the same structure, so 
that a "grain" is a region where all the lattice points 
have the same value of q. 

At each time step, one picks a point of the lattice 
at random and a state, and has the point change to 
that state with a probability of 1 if the energy remains 
the same or decreases (due to the effect of the 
neighbors), and with a probability that depends 
on the temperature (and is zero if the temperature is 
at absolute zero) if the energy is increased. Volume 
conservation can be imposed by picking pairs of 
points and interchanging their types if it is not 
disadvantageous energetically, although this takes 
one even further from the realm of geometric 
motion. 

Either as part of the initial configuration, or as 
a result of the very early stages of the simulation, 
points of the same type cluster into a number of 
regions. The interfaces are then defined to be the 
boundaries between those regions. (One could make 
this precise by assigning to each point its closed 
Voronoi cell--the region which is closer to that lattice 
point than to any other lattice poin t - -and then 
taking the union of all the Voronoi cells whose 
centers have state q as being the region of state q, and 
consider the interfaces to be the union of all the 
boundaries of the regions; however, the local struc- 
ture of those boundaries determined by the cell 
shapes is not really relevant.) 

"Steps" on these boundaries can be considered to 
be at lattice points that can change from one state 
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to another with no net energy change. (In 3-d, this 
is better described as a kink on a step.) At absolute 
zero temperature, all changes occur only at the 
boundaries, and the motion is a random walk 
of "steps" limited to be between adjacent "steps," 
together with the irreversible energy-decreasing 
change of a point from one state to another, when 
an "up" step annihilates a "down" step or a "step" 
disappears at a triple junction, perhaps with the 
creation of a new "step". 

It is not at all clear what continuous model this 
discrete model approximates. It is a stochastic motion 
whereas the rest of this paper is about deterministic 
models. The model does reduce energy monotoni- 
cally, and the energy is associated with the bound- 
aries. In fact, a standard way to compute surface 
energy in crystals is by counting bonds cut to 
make a surface, and since the Potts model is a bond- 
counting model, there is a specific surface energy 7 
associated with it, and the energy of the Potts model 
lattice is the total surface energy. At absolute zero 
temperature, one can compute that the Wulff shape 
associated with y is a polygon in 2-d (a polyhedron 
in 3-d), and 7 is convex. For  example, the Wulff shape 
for a 2-d triangular lattice is a hexagon, if one looks 
only at nearest neighbors in determining the energy, 
or a regular dodecagon, if one assigns the same 
energy to first and second nearest neighbors. How- 
ever, it seems far beyond either the theory or the 
experimental evidence to conclude that the motion 
is motion by mean or weighted mean curvature. 
The most one can say seems to be that in 2-d when 
Q = 2, the area of a region of one type surrounded 
by a region of the other type has been observed to 
decrease linearly with time, and for large Q, the 
energy, which is a measure of the length of the 
boundaries, is observed to vary with the negative 
one-half power of t after an initial transient and until 
the grain size approaches the computational grid size. 
Also, for nearly zero slopes where all steps are of the 

same type (up or down), if the random walk of steps 
gives a density of steps which satisfies the diffusion 
equation [114] then the motion is approximately 
motion by curvature since the integral of the diffusion 
equation is approximately the motion by curvature 
equation (since the density of steps gives the slope of 
the interface). 

2.2. Relationships, in the two phase case (in particular, 
no triple junctions) 

The relationships among methods discussed in 
this and the following section are summarzied in 
Table 1. 

When ~, = 0 and the solutions are smooth surfaces, 
methods (!) (classical mapping), (4) (least time), (5) 
(characteristics), (6) (regularization) and (7) (level set) 
are applicable and all are equivalent. (See Lions [103] 
for the equivalence of (6) and (7) with (4).) Note, 
however, that non-smooth solutions (i.e. surfaces 
with corners and edges) can quickly develop, even 
with smooth initial surface. 

When 7 = 0, M is convex, and solutions are not 
smooth, methods (4-7) are applicable and equivalent 
(again, see Lions [103]). In the 2-d case where W~ is 
a polygon and the initial surface is polygonal with 
each facet parallel to a face of W~, then (3) (crys- 
talline) also applies and is equivalent to these; the 3-d 
case has not been investigated. When 7 = 0 and M is 
non-convex, methods (4), (6) and (7) are applicable 
and equivalent, although one has to use the minimax 
approach in place of least time in (4) [99]. When one 
can tell which characteristics to use, (5) is also 
applicable and equivalent ([2], [4] and [5]). Again, 
in the 2-d case where the solutions ought to be 
polygonal, method (3) applies. 

When t~ = 0, M and ~ are isotropic, and solutions 
are smooth surfaces, methods (1), (2) (Brakke's vari- 
fold), (7) and (8) (phase field) are applicable and 
equivalent. (9) is often used, but it actually introduces 
some anisotropy due to the lattice, and its behavior 

Table 1. Theory  

Initial Multiple Topological 
Method surface 7 (n) M (n) fl (x, t) grains? changes? 

Mapping 
- - s t a n d a r d  Smooth C 4'~ and C 2"~ C 2"~ No Difficult 

strictly convex 
- - A n g e n e n t  Smooth,  curves a C 2"~ Lip. Ind. of  x No Difficult 

Lip. in t 
Brakke's  varifold Rectifiable varifold Isotropic Isotropic ~- 0 Yes Automat ic  
Crystalline Facetted, curves d Crystalline Any compatible c d Yes Easy 

with 7 
Least time Rectifiable -~ 0 Convex c d Yes Automat ic  b 
Characteristics Piecewise C 2 ==-- 0 Piecewise C 2c Piecewise C 2 Yes Difficult to find and 

track shocks 
Regularization C 2 ==- 0 C o C O No Automat ic  
Viscosity C o C 2 and C O C O No Automat ic  

strictly convex 
Phase field C 2 Isotropic d Isotropic d c 0 No  Automat ic  
Q-state Potts Anything on lattice Relevance unclear Isotropic ~ Yes Automat ic  

Note: C o is continuous; " c "  is constant;  " L i p "  is Lipschitz. C "'~ refers to a type of  differentiability (Holder) 
weaker  than C "+~. 

aCan handle some corners compatible with ~,. 
bAutomatic  only because of  definition of  least t ime method.  
Clncomplete results for nonconvex M. 
dBelieve that these restrictions are not essential to the method.  

that is stronger than C" but 



1452 TAYLOR et al.: OVERVIEW NO. 98--1 

is less understood theoretically. When [2 -= 0, M and 
are isotropic, and solutions are not always smooth 

surfaces, methods (2), (7) and (8) are applicable. 
There are serious questions here about whether the 
solutions of (7) can develop an interior. When they do 
not do so, then (7) and (8) are equivalent [111]. When 
they do, it is strongly suspected that the solutions of 
(2) are non-unique. Again (9) is used. When fl :~ 0 
and M and V are anisotropic and solutions are 
smooth surfaces, then methods (1) and (7) are 
applicable and equivalent. 

When [ 2 ~ 0 ,  M and 7 are anisotropic, and 
solutions are not known to be always smooth 
surfaces, then method (7) is applicable when 7 is C 2 
and strictly convex, and method (3) is applicable 
when W is a polyhedron (again, the method is 
primarily 2-d at this point; the 3-d case is only 
partly worked out). It is strongly suspected that 
these two methods can be used to approximate each 
other in some way. Method (1) has been extended 
to work for limited times [12]. In method (9), an 
anisotropy in y leading to polyhedral W occurs at 
zero temperature, but the motion obtained is almost 
certainly not motion by the appropriate weighted 
mean curvature. 

2.3. Relationships, three or more phases or grains 

When ~ - 0 and M is convex, methods (4) and (5) 
are applicable and equivalent (with the proper 
interpretations). Method (3) is applicable (in 2-d, at 
least) if W~ is polyhedral and the initial surface 
is polyhedral. 

When [ 2 -  0 and M and V are isotropic, only (2) 
really applies. Method (9) has been used, primarily in 
2-d (though some 3-d computations have been made), 
although again it introduces some anisotropies and is 
not well understood theoretically. Several computer 
schemes based on method (1) in 2-d [93,95] and 
3-d [93] exist, but there is at present little theory 
to accompany them. 

In 2-d, when W is a polygon and the initial 
curves are polygonal, method (3) is applicable (theor- 
etically and computationally), though whether the 
variational formulation used is "correct" might be 
debatable, and solutions have not been shown to 
be unique. 

3. ELABORATIONS ON THREE OF 
THE METHODS 

3.1. The method o f  characteristics 

The method of characteristics applies when the 
normal velocity of the surface is given as a piecewise 
C 2 function v of position x, time t, and unit normal 
direction n, but not of any curvatures. This method 
is indirect; the surface at time t is the set of points 
x such that u (x , t )=  0 (i.e. the zero-level set), where 
u satisfies the PDE 

Ou/Ot = I Vu Iv(x, t, -- Vu/[ Vu [). 

We again extend v by positive homogeneity o f  degree 
one to be a function on all vectors p rather than just 
unit vectors n, so that the equation becomes 

~u/Ot -- v(x, t, -- Vu) = 0. 

As noted in Section 2, if one can set 
u = _+[ t -  z(x)], then z is the arrival time of the 
surface at x (the time at which the surface passes 
through the point x). We choose the sign so that the 
oriented unit normal to the crystal surface is in 
the direction -Vu ,  and thus choose it to be the sign 
of v. It is possible to define this time z uniquely if 
v is always of one sign, and often to define it locally 
for short intervals of time even if v changes sign. Note 
that Vz (x)/[ Vz (x) l is the unit normal in the direction 
in which the crystal interface is moving and is thus 
n(x) (the outward unit normal of the crystal) if 
the crystal is growing and - n ( x )  if the crystal is 
shrinking. We can assume that v is non-negative by 
replacing it by - v ( x ,  t , -  n) where necessary, and 
the equation becomes 

F(x, z, Vz) - v (x, z, Vz) - 1 = 0. 

The main advantages of this formulation over the 
u formulation are that it deals with a physically 
meaningful quantity, the arrival time, rather than 
the abstract quantity u, and that the characteristics 
track the motion of points on the surface as shown 
below. 

The theory of first order PDE (see, for example, 
John [101]) asserts (under conditions of smoothness 
of the given function F(x, z, p) in all its variables 
and of the initial data to be specified shortly) that 
the initial value problem can be solved by the 
use of curves called characteristics. These curves, 
parametrized by some variable s and thus written as 
x(s) [and with z = z(x(s)) and Vz[x(s)] = p(s) at x(s)], 
emanate from each point in the initial surface and are 
determined by the following set of seven ordinary 
differential equations 

(l)  dxi/ds = 8F/Opi for i = 1, 2, 3 
[i.e. dx/ds = VpF(x,T,p)] 

(2) dz /ds = Y,~piOF/ap, [i.e. dz /ds = p'VpF(x,z,p)] 

(3) dpi/ds = - O F / ~ x ~ - p f / O z  for each i 
[i.e. dp/ds = -Vx  F - pSF/&]. 

Because p.VpF = p.Vpv = v(p) = 1,(2) above will 
always reduce to dz/ds = 1 for this crystal growth 
problem, and so the parameter s along the character- 
istics can be taken to be the arrival time z. Note that 
since only derivatives of F appear in these equations, 
we can replace F b y  v in the above equations. Ifv does 
not depend explicitly on x, then (3) becomes 

(3') dln(p,)/ds = - OvlOz 

(unless p~ is initially 0, in which case pi stays 0 for 
all time on that characteristic) for each i. Since lnp~ 
has the same derivative for each i (or p~ = 0), we 
conclude that the ratios of the p~ are constant along 
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characteristics when the velocity does not  depend 
explicitly on position, and thus that the normal 
n = P/I P l to the crystal stays constant  along charac- 
teristics in this case (though p may change in magni- 
tude). Thus in this no-spacial-dependence case, a 
characteristic is the trajectory of a point with a given 
normal  as the crystal grows. (Such is not  the case 
when v depends on x, as a temperature-gradient 
example demonstrates [2].) 

If v does not  explicitly depend on either the arrival 
time z or spacial position x, then (3) becomes 

(3") dp/ds = O, which says that p as well as n = p/IPl 
is constant  along characteristics, 

and (1) becomes 

(l") dx/ds = Vpv, which says that characteristics 
are straight lines of the form 

x = x 0 + tVv(no) 

for t /> 0, where x(t) is on the surface of the crystal 
at time t. [Here Vv(no) means that we are evaluating 
the gradient at no, not  that we are taking any kind of 
surface gradient. Note that Vv is constant  in radial 
directions.] 

The crystal shape at time t is the locus of all the 
points x(t) on all the characteristics from initial 
points x0, as long as these characteristics do not  cross. 
When v depends only on n and not  x or t, if we follow 
an element of surface of a given orientation n, it 
will travel with constant  velocity, here given by 
Vv(n). Since the plot of  n/v(n) is the level set v(p) = 1 
for the function v(p), and since p-Vv(p) = v(p), this is 
equivalent to Frank 's  result [40], which said that the 
element moves in the direction n'  of  the normal to the 
polar plot of the slowness vectors n/v(n) and with 
a speed given by v(n)/(n-n').  The gradient of v as 
a function of p turns out to be of central importance 
in this model. It is similarly of central importance 
(and called ~ [79,80]) in determing equilibrium 
shapes of curved surfaces with anisotropic surface 
free energy ? (n). We can apply some of the known 
relations between 7, its gradient, and its Wulff shape 
W. A summary of results relating v(n),v(p),Vv and 
W~ are given in the Appendix of our earlier paper [2]. 
The relationship between v and W~ has been well- 
studied, especially in the case where v is a convex 
function (which is equivalent to that plot being 
convex) (see, for example, Refs [77, 78]). Cahn and 
Hoffman [80] rediscovered many of these results for 
the case when v is interpreted as a surface energy 
function ?. When v is a convex function, v is the 
support function of its W~, and W~ is the plot of  Vv. 
Note that if x is a boundary  point  of W~ and the 
plane with normal  n through x is a support plane of 
Wo~, then x . n  = v(n) when v is convex. One can 
regard I,V~ itself as the plot of  nw(n) for some 
function w defined on unit  vectors and then extend 
w by w ( r n ) =  rw(n). This can be written as 

w(x) = v*(x) = sup {p.x - v(p)}. 
P 

The mapping v ~ w  = v* is called the Fenchel Trans- 
form (or Legendre Transform when v is differentiable); 
the Fenchel transform of w = v* takes one back to v. 
Thus the "Wulff  shape" for the function w is the plot 
of  n/v(n); Frank refers to this plot as the pedal of W~ 
[41]. 

When v is not a convex function, the plot of  Vv 
(interpreted as above) coincides with the surface of 
its W~ except for additional "ears" at corners and/or 
edges of Wo~ (as is the case for a surface energy 
function ~, and its Wulff shape W). 

3.1.1. The question of  regularity: shocks and fans. 
We see that there are several ways in which the 
construction of solutions via characteristics can 
fail to cover cases we would like to consider. The 
first is that we want crystal growth to be determined 
for all positive time (including when characteristics 
cross). The second is that we want to consider 
growth velocities v that may be continuous with 
respect to normal direction but  not  have a continuous 
gradient. (As we will see, such discontinuities in the 
gradient of v do occur at facet orientations of W~ .) 
The third is that we want to be able to use initial 
shapes with corners and edges. These issues are 
resolved by the use of shocks and fans, provided 
we assume that both our initial surface and v are 
continuous everywhere and piecewise C 2 (i.e. first 
and second derivatives are piecewise continuous).  
We describe their use below; also see Haberman 's  
undergraduate-level textbook exposition of shocks 
and fans [102]. 

A shock occurs when two or more character- 
istics arrive at the same point at the same time. 
Thus the need for introducing shocks can be 
detected by plotting all characteristics as if they 
extended for all time, and seeing where character- 
istics cross. All characteristics encountering a shock 
are terminated, and give no information about  future 
growth. A shock results in a discontinuity, in this 
casea in Vv and in n as well, and thus gives rise to 
a corner or an edge on the crystal surface. The 
jump condition at a shock is determined from 
the physics of the problem, not  the PDE; here 
the physics requires that the crystal surface [as 
determined by the points x(t) the characteristics 
reach at time t] be continuous,  and (provided v is 
positive) that once the crystal has grown past a 
point, that point should remain part of the crystal. 
(Sethian [4, 5] formulated this condition for flame 
propagation as "once burned, stays burned.")  Differ- 
entially, our shock condition at a point x along 
a shock between normals n~ and n~ is, in two 
dimensions, that 

dx/dt  = s~t~ + Vv(p~) = s~t~ + Vv(p~) 

where t~ is a unit  tangent vector to the ct surface and 
is thus perpendicular to p~, ta is defined similarly for 
the fl surface, and s~ and s~ are numbers determined 
by solving the vector equation (which is a system of 
two linear equations in those two variables). [In the 
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special case where each gradient vector lies in the 
other surface's tangent half plane, this becomes 

dx/dt = Vv(pp) + Vv(p~).] 

In three dimensions, at a point in an edge of a 
growing crystal we have three naturally defined tan- 
gent vectors, one along that edge and the other two 
perpendicular to it and into the two surfaces meeting 
along that edge. The equation for dx/dt is similar to 
the above, except there are two s ' s  for the • side and 
two for the fl side. The three dimensional vector 
equation thus yields three linear equations in four 
unknowns, but the extra degree of freedom corre- 
sponds to the fact that one has a shock surface rather 
than a shock line emanating from an edge, and the 
degree of freedom is in the direction of the tangent 
line to the edge. At  a corner where three surfaces 
meet, there are six s ' s  and two three-dimensional 
vector equations, yielding six equations in six 
unknowns, and thus a differential equation for the 
propagation of the corner. If  a comer with more than 
three surfaces is to propagate, then special relations 
must exist among the v(n)s in order to enable a 
solution to the equations to exist; this can happen in 
crystals because of their symmetry. (In order for such 
a shock to form with more than three surfaces related 
by symmetry, there must be appropriate symmetry in 
the initial crystal shape as well.) Note that shocks 
in particular appear when a nonconvex crystal grows 
so that two different portions of surfaces come into 
contact and merge, changing the topology of the 
surface. At that instant, the shock starts from the 
contact point and spreads out all around it. If contact 
occurs on a whole piece of surface at a given time 
(so that that piece of surface is instantly annihiliated), 
then all the characteristics going into that piece of 
surface from both sides terminate. (Mathematically, 
the crystal surface itself is assigned to the crystal--the 
region which grows when v > 0- - ra ther  than the 
complementary region, in order that if contact occurs 
on a whole piece of surface, that portion automati- 
cally disappears into the interior of the crystal.) 
Similarly, all remaining characteristics collide and 
terminate at the instant that a hole in a crystal (or a 
dissolving crystal) disappears. 

If there is a point on the crystal with normal no 
and v has a discontinuous gradient at no, then in 
place of Vv one uses all the convex combinations of 
the limits of Vv(n) as the normals n approach no-- 
i.e. all the vectors in the subgradient of v at no. 
Thus a whole "fan" of  characteristics leaves such 
a point. An example in which this happens is where 
Vcub~ (n) = Inl[ + In2[ q- In3[ and where the initial sur- 
face is a sphere. The fans result in facets developing 
along the coordinate axes. In situations where a facet 
already exists with direction no where Vv is discon- 
tinuous, then there are fans of  characteristics emitted 
from each point in the facet, and fans from neighbor- 
ing points in the facet cross each other. It is as if there 
is a whole continuum of shocks. (In fact, it is even 

worse than that--each individual characteristic need 
not be determined by the initial choice of element of 
the subgradient but can make any choice at any later 
point along the characteristic, so that the set of all 
characteristics from a point includes the set of all 
Lipschitz paths with their tangent rays at each point 
being some element of the appropriate subgradient.) 
However, they all in fact give the same two items of 
information: the facet is moving forward at velocity 
v(no), and is spreading out no further than the rate 
allowed by the outer characteristics of the fans. 
It may well spread out much less than that due to 
shocks at the edges of the facet--in fact, the entire fan 
might be cut off by a shock, and will be, if v is a 
convex function and if the surface near the point with 
normal no is not convex. 

Another place that fans of characteristics are used 
is at points on the initial surface where there are 
corners or edges such that the limiting normal direc- 
tions as the corner or edge is approached do not all 
have the same value of Vv. Here there are often 
several ways that the surface can evolve while still 
satisfying the PDE at the regular points. For 
example, suppose that v is isotropic with value 1 in 
all directions, and suppose that the initial shape is 
a cube. An evolution that apparently satisfies the 
equation of motion is for the cube to simply expand 
in size with time, resulting in the edges moving at 
a net velocity of x/2 and the comers at a net 
velocity of if3. However, if the corners were slightly 
rounded initially, the rounded portions would grow 
with velocity 1, not ~/3, and this appears to be the 
most physically realistic solution, since it is stable 
under perturbations. It is also the solution that 
one gets by putting in a fan of characteristics at each 
edge and comer, using all the values of n[-= Vv(n)] 
which are omitted at that edge or comer. This, 
however, is an issue that needs to be settled by 
experiment. 

If  v is a convex function, then at nonconvex comers 
and edges these fans will be immediately cut off by 
shocks (and so need not have been introduced at all), 
while they will definitely be required at convex 
corners and edges in order to determine the growth 
via characteristics. But when v is not a convex 
function, which is quite possible physically, the 
situation is more complicated, and the use of 
characteristics can fail to give a unique solution. 
For  example, as described in Section 4 below, if 
v(n) = (1 + ~) ([nil + [nzl + [n3D - ~max{lnll,ln2l,ln3l} 
for some ~ > 0, then a concave corner formed by 
planes with normals (1, 0, 0), (0, 1, 0) and (0, 0, 1) 
would satisfy the evolution equation on its regular 
parts if the three plane segments just translated, each 
with velocity 1, via use of the fans of characteristics 
from each point in each segment; shocks would form 
at the pairwise intersections of the segments. There 
are several other solutions, however. In particular, if 
fans of characteristics are introduced for the omitted 
values of Vv at the edges and comers, then one could 
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form a different set of shocks involving these direc- 
tions as well, and get an evolution which put in 
facets with normals (1, 1,0), (1, 0, 1) and (0, 1, 1), 
growing with normal velocity x/2 + ~, along the 
edges and an additional facet with normal (1, 1, 1) 
growing with normal velocity ~/3 + 2~ from the 
corner. Again, the appropriate condition to use 
when solutions are non-unique seems to be that a 
solution be stable under perturbations (in the sense 
that a perturbation to such a solution will not 
grow without bound). In the above case, this 
condition would produce the latter evolution. This, 
however, is again an issue that needs to be settled by 
experiment. 

Here is a procedure to determine the growth from 
at least some corners x0 of the initial surface Co, 
using characteristics, in such a way that the stability 
condition is satisfied. Look at the tangent cone (the set 
of all the rays from x0 tangent to Co) at a point 
x0 which is on an edge or in a corner of Co. This 
tangent cone is composed of pieces of planes. (Any 
curved portion of the tangent cone would entail 
infinite curvature at x0, violating our piecewise C 2 
hypothesis.) For each y in the tangent cone such that 
there is a normal ny to the tangent cone at y, 
plot y 4- tVv(ny) for t = 1. At each point y in an edge 
or corner of the tangent surface, plot y +  tVv(n) 
for t = 1 and all n omitted at that edge or corner. 
Note the similarity to Huygens' wavefront construc- 
tion [100]. The resulting surface will be continuous, 
because we use the subgradient where Vv is discon- 
tinuous, but it may be self-intersecting. Now at 
convex portions of the tangent cone, discard all the 
fan characteristics whose directions come from con- 
cave portions of the plot of Vv, and at concave 
portions of the tangent cone, discard all the fan 
characteristics whose directions come from convex 
portions of the plot of Vv. From the remaining 
characteristics, the inner envelope is taken for convex 
comers and the outer envelope for concave corners. 
At saddle-shaped corners things are more compli- 
cated. If only three plane segments meet at such a 
corner, and if the evolution produces no new orien- 
tations along the edges, then no new orientations 
need be introduced at the corner itself--the charac- 
teristics to be used are those which result in a 
translation of the corner. Somewhat more generally, 
for any saddle-shaped comer there are directions in 
which the surface bends in a convex manner and 
directions in which it bends in a concave manner. 
One need keep characteristics for omitted directions 
at that corner only if v is convex in the directions 
in which the surface is convex and is concave in 
the directions in which the surface is concave. A 
major advantage of the formulation of the problem 
in terms of viscosity solutions rather than character- 
istics is that one is guaranteed the existence of a 
unique solution; furthermore, this solution satisfies 
the stability condition. Also, the computational 
methods based on this viscosity-solution formulation 
AM 40/7--B 

automatically find it. One need not specify the details 
of the shocks and fans when working with viscosity 
solutions. 

In our previous paper [2], many examples were 
given of the use of characteristics, including their use 
in a fixed temperature gradient and with velocity 
functions that change sign (and hence are zero 
in places). Also, several physical situations were 
discussed where the method of characteristics can 
be used, including discontinuous coarsening and 
diffusion-induced recrystallization. But beware--in 
our previous paper [2] we guessed that the stability 
shock condition might be equivalent to the con- 
dition that the crystal grow as fast as possible, subject 
to continuity. This is incorrect; it is possible that 
at a sharp convex comer which cuts off two corners 
and an intervening smooth region of the plot of 
Vv, a fast growth shape could form using a shock 
between characteristics from the outer parts of the 
two corners, whereas the stable growth pattern would 
be the slower one using two shocks and the fan of 
characteristics corresponding to the smooth omitted 
region. 

3.2. Level sets of viscosity solutions of certain PDEs 

We discuss here the method of viscosity solutions 
of PDEs of the form 

u , -  IVu IM(-Vu/IVul)  

u(x,0) = a(x) 

where 7 is C 2 and strictly convex [and extended by 
7(p) =lplr(p/tpl) to non-unit vectors]. This is the 
form that our basic velocity equation takes when it is 
put in the general indirect formulation for the normal 
velocity. All of the minus signs are there because we 
are following the convention as in Section 1 that u 
be positive on the "inside" region and also taking the 
normal of that region to be the exterior normal, so 
that n = -Vu / IVu  I. 

As stated in Sections 1 and 2, the function u here 
has no particular physical meaning and its only 
purpose is to define the crystal surface at time t as the 
level set u(x, t) = 0. The function a which specifies the 
initial values is chosen so that the zero level set of a 
is the crystal surface at time t = 0. 

Note that if the PDE is satisfied by u, it is 
also satisfied by w = f ( u )  for any differentiable func- 
tion f, since ~w/~t =f'(u)~u/~t and Vw =f'(u)Vu. 
Furthermore, u and f ( u )  describe the same crystal 
growth if f is strictly increasing (or decreasing), 
in the sense that for any constant c, 

{x: u(x, t ) =  c} = {x:f(u(x, t)) =f (c )} .  

If one only wishes to track one level set, e.g. u = 0, 
then one can specify u(x, 0 ) = a ( x )  for any con- 
tinuous function a(x) such that the set of points x 
where a(x) = 0 is the desired initial surface. There are 



1456 TAYLOR et al.: OVERVIEW NO. 98--1 

infinitely many choices of function a(x) which satisfy 
a(x) = 0 precisely on the crystal surface at time t = 0. 
Nevertheless, it is a theorem that all choices of 
continuous a with a(x) = 0 on just the given initial 
surface will produce the same sets {x:u(x, t ) =  0} at 
all subsequent times t (assuming that [2 = 0; for 
non-zero [ ,  one must also specify where a > 0 and 
where a < 0). It is not clear whether one can choose 
a(x) to have any physical meaning off the zero set at 
time t = 0 apart from determining the set where it is 
zero, in such a way that u(x, t) continues to have that 
meaning at later times; however, in terms just of 
computing the crystal growth, there would not be any 
advantage in making such a choice even if there were 
one. [One might like to have a(x) be the time at which 
the crystal surface first passes x, but among other 
problems that would require knowing the solution for 
all time at time t = 0, instead of using the PDE to find 
the solution.] 

There are advantages to writing the equation in this 
form, in addition to that of obtaining a single 
equation which is valid for positive, negative or zero 
velocity. A significant one from the point of view of 
writing proofs is that one doesn't have to worry 
separately about the problems caused by non- 
smoothness, either of the mobility function M or 
of the initial surface or of the surfaces which develop 
at later times. The definition of the viscosity solution 
enables one to prove existence and uniqueness of 
solutions for all times. It also turns out (as we will 
show below) that for the motion of a single interface 
by a prescribed velocity as a function of normal 
direction alone, the concept of the "viscosity 
solution" to the PDE above is precisely the one we 
want. For  example, the method of characteristics, 
applicable only when 7 - 0 ,  can give multiple 
solutions for corners and edges. That definition of the 
viscosity solution enables one to find which particular 
evolution of a given corner is the correct one. This 
is demonstrated below in Section 4 for several 
examples. 

Furthermore, in this case of ~ - 0, the viscosity- 
solution definition enables one to check fairly easily 
whether a particular evolution of a given corner is the 
correct one, when multiple solutions are given by the 
method of characteristics, as we shall demonstrate 
later. 

Viscosity solutions have certain advantages over 
the other methods. For  example, in case ~ is 
not everywhere zero, the method of characteristics is 
not applicable (the equation may be quasilinear and 
parabolic, but it is degenerate elliptic), and singular- 
ities such as develop when necks pinch off cannot be 
handled through the classical mapping approach. 
Since the level-set-of-a-function approach still works 
and the viscosity solution is also the physically 
reasonable one except in the presence of certain types 
of junctions of pieces of surface, this method is 
particularly powerful. (It may be that if such 
junctions are not part of the initial data, then they 

never occur at later times, although no-one has yet 
succeeded in proving this.) 

Another advantage to the level-set-of-a-function 
formulation is that it lends itself to numerical calcu- 
lation. In fact, a way to obtain numerical solutions 
(whether by tracking the surface or by solving for 
a global u) to the problem where v is a function 
of normal direction alone is to add to the PDE 
a curvature-dependent term times e [6]. Solutions to 
the modified problem do not develop shocks except 
as a result of topological changes. There is a large 
overhead to writing the PDE in terms of u for such 
computations, as one must compute u(x, t) for all 
x, t even though one cares only about the set of points 
x at time t where u(x, t ) =  0. Still, it can be much 
simpler than trying to determine where shocks occur 
and how to track them, especially when the topology 
of the crystal changes (e.g. necks break off or form, 
holes close off or form, etc.). 

There are some corresponding disadvantages to 
thinking about the problem of solving 

Ou/gt -- v(x, t, -- Vu) = 0 

rather than 

1 - [ v ( x ,  z ,  + V z ) I  = 0.  

One is that the solution becomes something much 
more abstract than easily-visualized characteristics. 
In fact, there are no general results that say that 
the result is a surface at each time. In particular, 
it is known that sometimes the surface (the set 
where u = 0) can smear out over a whole region [7] 
(see the example at the end of Section 4). (There is 
another formulation [11], where one looks just at 
boundaries of sets; this formulation avoids the 
spread-out regions but loses uniqueness.) Another 
disadvantage, as mentioned above, is that one must 
compute information that is really unnecessary, i.e. 
the values of u where u is non-zero. The most 
fundamental problem occurs, however, when one 
wants to consider three or more regions, so that there 
are three or more types of surfaces, each moving with 
some velocity, and at least one triple junction where 
all three phases meet. One would have to go to a PDE 
with vector values to produce a physically realistic 
solution in this case. 

We now proceed to define viscosity solutions of 
certain PDE, following [1]. The type of PDE we 
consider is 

Ou/Ot + F(t, x, Vu, V2u) = 0 

where VZu means the Hessian matrix of second 
partial derivatives of u in the spatial variables, and 
F is required to be geometric and degenerate elliptic. 
It has been shown that F being degenerate elliptic 
and geometric (more specifically, strongly geometric 
[105]) implies that the normal velocity v of the level 
sets of u comes from geometric interface evolution, 
so that it is a function of t,x,n and the gradient of n 
[105]. 
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Our case of interest can be written in this way if ~, 
is C 2 and strictly convex, with 

F(t, x, p, X )  = IPlM(x,  t, - P/IPl) 

x {f~(x, t) + trace[A(p/lPl)X/IPl]}. 

Here A (p) is the matrix of second derivatives of 7. 
Note that when V is isotropic, A is the identity 
matrix and the term involving A is the divergence of 
the normal  vector, which is the mean curvature. 
For  anisotropic V, that term is the weighted mean 
curvature. (See the following paper.) 

For  a degenerate elliptic PDE with a geometric F, 
a cont inuous function u is defined to be a viscosity 
subsolution of 

Ou/Ot + F(t, x, Vu, V2u) = 0 

if for each (xo, t0) with t 0 > 0  and each twice- 
differentiable test function ~b(x, t) satisfying 

u(x, t) - q~(x, t) ~< u(x0, t0) - q~(x0, to) 

for all x, t, it holds that 

ath (x0, to) + F[x0, to, V~b(x0, t0),V2~b(x0, to)] ~< 0 
Ot 

and u is a viscosity supersolution if whenever 

u(x, t) - ~(x,  t)/> u(x0, to) - tk (Xo, to) 

for all x, t, then 

d0 
Ot  (x0, to) + F[x0, to, Vq~(Xo, t0),VZt~(x0, to)]/> 0 

u is defined to be a viscosity solution if it is both 
a viscosity subsolution and a viscosity supersolution 
of that PDE. (To handle possible problems at p = 0, 
a slightly more elaborate definition actually needs to 
be used [1].) 

To understand intuitively what viscosity solutions 
are, first note that if the solution u is twice differen- 
tiable, it can itself be used as a test function ~b, for 
both the subsolution test and the supersolution test, 
and thus u itself must satisfy the PDE. Thus the only 
purpose of viscosity solutions is to make sense of 
what it means for u to satisfy the PDE when u cannot  
be differentiated and plugged into the equation. In 
particular when there are corners and edges in the 
level set u = 0, one cannot  check that u is a solution 
by putting it in the PDE. 

Built into the definition is the idea of "barriers," 
in that smooth solutions which are initially com- 
pletely "behind" [resp., " in front of"] the surface, 
and which remain behind [resp., in front of] at one 
point for later times, in fact remain behind [resp., 
in front of] everywhere for later times. They thus 
embody the idea of being stable to perturbations. An 
odd fact is that if we were to replace the PDE by its 
negative, then the PDE remains the same, but  the 
viscosity solutions would change. The reason is that 
the viscosity solution picks out one solution among 
many possibilities when there is non-smoothness,  and 

since it picks one that "goes farthest" when the 
equation is written one way, it will not  necessarily go 
farthest when it is written in another way. Thus the 
way the equation is written when the problem is 
formulated is crucial to get the physically desired 
solution. 

An apparent disadvantage of using viscosity solu- 
tions is that the definition itself seems quite round- 
about  and awkward, but in practice it is often 
relatively easy to use for disproofs and even proofs, 
provided one can find a way to deal with "every test 
function." While a single counterexample to either the 
sub- or supersolution test is sufficient to prove that u 
is not  a solution, often the non-existence of a suitable 
test function is a complete and easy test. Note that 
there are NO continuously differentiable functions 
which agree with u on a corner or edge of the cube 
and which are bounded above by u in a neighborhood 
of such a corner. Thus at the corner, u automatically 
passes the supersolution test. In fact, any comer or 
edge in a level set will automatically pass either the 
subsolution or the supersolution test (or both, for a 
saddle-shaped corner); this is one of the major advan- 
tages of the viscosity solution approach [1]. 

In most cases of interest here, it is sufficient, 
according to a theorem of [10], to do the tests 
with just linear comparison functions. Specifically, 
u is a viscosity solution of a first-order PDE 
G[y, u(y), Du(y)] = 0 [for us, y = (x, t), Du(y) = 
(Vu, u,), and G = u, - v(x, t, Vu)] if and only if 

G[y, u(y), p] ~< 0 Vy, Vp~D+ u(y) 

and 

G[y, u(y), p]/> 0 Vy, V p ~ D -  u(y) 

where D+u(y0) is the set of all p such that 

lim sup [u (y) - u (Y0) - P" (Y - Y0)] I Y - Y01 - l ~< 0 
Y~YO 

and D-u(yo)  is the set of all p such that 

lim inf  [u ( y )  - u (Yo) - P" (Y - Yo)] I Y - Yo I - 1/> O. 
Y~YO 

Here lim sup means the largest possible limit to 
any subsequence and lim inf means the smallest 
possible limit; even if a sequence doesn't  converge, 
it always has a lim sup and a lim inf (which may be 
infinite). 

What  that says is that for a first order PDE only 
the first-order behavior matters. When the velocity 
does not  depend on the derivative of the normal 
vectors, we need really look only at once-differen- 
tiable comparison functions. Where linear functions 
satisfy the appropriate inequality, it is sufficient to 
use them; higher order terms will contribute nothing 
meaningful to the tests. Thus we really have to 
concern ourselves only with corners and edges, and 
only in the directions for which a linear comparison 
function can be constructed. (There is also a similar 
reformulation in terms of "jets" for second order 
PDEs.) 
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Examples of the use of viscosity solutions are in 
Section 4. 

3.3. Crystalline method 

The crystalline method converts the PDE problem 
of the mapping method [method (1)] into the system 
of ordinary differential equations (ODEs) stated 
below. These equations can easily be solved numeri- 
cally (and sometimes analytically). The method can 
handle fixed boundaries and multiple grains or phases 
and changes of topology [17]. 

It applies if one assumes that the surface energy 
and the mobility M are each given only on a certain 

common finite set of normal directions {n,}, and that 
when the Wulff construction is performed using these 
values of ), to get W, each plane x . n , = y ( n , )  inter- 
sects W in a complete facet, a complete edge, or 
just a comer. Similar restrictions need not be made on 
the values of M(n,).  

Alternatively, one can have ~ and M be defined on 
all vectors, provided there exists a set {n,} such that 
the value of ~, on these vectors satisfies the above 
conditions and the W computed from the values of 7 
on these vectors is the same as that computed using 
the values of V on all vectors, and provided that for 
each unit vector n not in {n,}, M(n) is precisely the 
value determined by linear interpolation between 
the values of  M on the pair (in 3-d, usually triple) of 
vectors in {n,} nearest n with n in their span. We 
require this compatibility condition in order that 
a segment with a normal not in the {n,} set moves 
with the same mobility whether or not it is considered 
as an infinitesimally corrugated varifold. 

The crystalline method is therefore applicable for 
a material such that the Wulff shape is a polyhedron. 
Although the word "crystalline" is used here, there 
are of course many crystalline substances whose 
Wulff shapes are not polyhedra. Also, the crystalline 
method should be a useful tool for approximation for 
arbitrary 7. 

The set of vectors {n~} form the vertices of an 
n-diagram [120, 121] on the unit sphere. When two 
vertices are normals of adjacent facets, there is a 
tie-line (great circle segment) between vertices in the 
n-diagram and these tie-lines divide the sphere up 
into regions. Any n, in the specified set whose plane 
intersects W only in an edge is in the tie-line corre- 
sponding to that edge, and any that intersects W 
only in a corner is in the tie region corresponding to 
that corner. 

The type of initial data that is easiest to handle is a 
polygonal surface where the normal of each facet is 
in the set {n,}, and where adjacent facets correspond 
to vertices on a single tie line in the n-diagram with 
no intervening vertices, and (in 3-d) three plane 
segments meet at each corner, and if that corner 
is convex or concave rather than saddle-shaped, 
then there are no vertices inside the triangle of the 
n-diagram formed by those three vertices. Such a 
surface will be called a good surface. 

We consider first the case that 7 -  0. Then the 
motion of a good surface is determined by translating 
the segments of the surface the appropriate distances 
along their normals, extending or truncating them so 
that they maintain the same combinatorial structure. 
That is, if s / is  the distance of the plane containing 
segment Si from the origin and n/is its normal, the 
growth law is just 

dsi/dt = tiM(n/) 

for each i; this trivially integrates to 

s/(t) = s,(O) + tf~M(n/). 

Coordinates of corners are determined by solving the 
appropriate set of simultaneous linear equations. The 
only time the structure can change is when segments, 
or portions of segments, are squeezed out by the 
growth of their neighbors or when different portions 
of surface collide; this makes shocks form, in the 
language of characteristics. Checking for such events 
is relatively simple, given the finiteness of everything, 
so the computational disadvantages of having to find 
and track shocks are greatly ameliorated in this case. 
Motion with V -  0 is thus the same as would be 
predicted by the use of characteristics with this 
velocity t iM, but it can be computed in a much 
simpler fashion. In case ~, ~ 0, weighted mean curva- 
ture can be defined for polyhedral surfaces, not by 
differentiating but by going back to the idea that, 
for 2-dimensional surfaces, the mean curvature is the 
rate of decrease of surface energy with respect to 
volume under deformations (small pushes) of the 
surface. (For 1-dimensional curves in the plane, it is 
the rate of decrease of line energy with respect to area 
under deformation [34].) For a good surface, one 
computes, as in Gibbs, that the weighted mean 
curvature of segment S/(having normal hi) should be 
defined to be 

1 
area(S/) j~i t~ijfijlij 

where l~ is the length of the intersection of segment 
S/ and Sj (and is thus 0 if those segments are not 
adjacent in the interface), flu is 1 or - 1, depending on 
whether the type of the S / -  Sj edge is regular (like 
that in W) or inverse (like that in the central inversion 
of W), and f~j is a numerical factor determined by 
the geometry of IV, namely 

f/: = [7(nj) -- c,j7 (n,)]/x/1 -- c/2j 

where cij=ni'nj. In 2-d, Area(S/) is replaced by 
length (Si) , li: disappears, and the sum Zj&,yf,.j has 
only two terms and can be simplified to a/A(n/), 
where A(n/) is the length of the segment in the Wulff 
shape W with normal n/, and cr i is 1 if both ends 
of the segment are of regular type, - 1 if both ends 
are inverse type, and 0 if the ends have different 
types. 

Thus in 2-d and with the assumption that the initial 
surface is good, motion by weighted mean curvature 
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(with the velocity additionally weighted by mobility) 
simply consists of moving line segments according 
to 

o'iA(ni) 
dsl/dt = - g (n i )  - -  

length(St) 

and the general law for geometric growth becomes 

ds /d t  = g (n i )  I ~  - aiA(nt) 1 
length(Si)_]" 

The same combinatorial structure is maintained 
until a segment is reduced to zero length or collides 
with another segment. For motion by weighted mean 
curvature alone (fl = 0), such reduction to zero length 
occur only in the merging of the two adjoining line 
segments to one or in the total disappearance of a 
curve due to all edges becoming of zero length at 
once. But collisions can occur, if f2 4=0, or if 
M(n) ~ M ( - n ) ,  or if the Wulff shape does not have 
a center of symmetry. The resulting cancellation and 
separation into two curves usually leads to bad 
corners (i.e. ones whose normal directions are not 
adjacent in the Wulff shape, and which are thus not 
locally minimizing). Also, if ? = 0, line segments can 
shrink to zero length without the whole curve dis- 
appearing. (And, as a mathematical aside, the initial 
curve might cross over itself--which is of course 
impossible for a crystal surface or grain boundary--  
and then individual loops of a curve can shrink to 
zero size without the rest of the curve disappearing.) 
Since bad corners usually form at all such times, 
it is important to know how to evolve them. Fortu- 
nately, it turns out that if the missing orientations 
are inserted with "infinitesimal" length at such bad 
corners, then there is a unique evolution of these 
segments, and it can be found computationally to any 
desired degree of accuracy. 

In 3-d with 7 ~ 0, one needs somewhat more than 
just that all edges and corners are good, because 
plane segments which are "monkey saddles" (with 
three up-and-down waves around them, rather than 
the two of a standard saddle) or which have two 
adjacent convex corners can split and because extra 
facets may need to be introduced along edges with 
adjacent convex corners. The precise determination 
of when such splittings and introduction of new facets 
is necessary is still being investigated. However, once 
all necessary facets have been introduced, the motion 
is again just by moving plane segments while keeping 
the same combinatorial structure, according to the 
law 

ds i / d t=  M ( n i ) [ ~ - / ~ i f i j f : l i / a r e a ( S i ) ]  • 

Again, one has to detect and treat the cases of 
collisions and facets shrinking to zero width. 

Since one can always approximate a smooth W by 
a polyhedron and a smooth surface by a polygonal 
one, this crystalline method should be usable for 
all surfaces and surface energy functions, but the 

nature of that approximation is just beginning to be 
investigated. 

To extend the definition of motion by crystalline 
curvature to the case where there are junctions of 
three or more curves, one recasts the problem as a 
variational problem as described in the following 
paper [34]. First, for a polygonal curve, if we let hi 
be the rate at which facet Si is to move (so that 
dst/dt = hi) and let li be the length of facet St, then 
the variational problem, to first order in At, is to 
maximize 

At ~ (illihi - triA(nt)hi), 
i 

the decrease in total free energy due to moving at that 
velocity for time At, subject to 

~, [hiAt / M (ni)]hil i = constant 
i 

which says that the integral of the driving force over 
the region swept out by the motion is a prescribed 
constant. (If no motion can decrease the total free 
energy to first order, then this is a stationary point 
of the flow, and one simply sets hi = 0 for all i.) 
Using a Lagrange multiplier 2, one obtains that for 
each i 

f~l t -- triA(ni) = 22hilt/M(nt). 

If one chooses the constant so that 2 = ½ and solves 
for the his, one obtains 

hi= M(ni)(f l  triA(ni)) 

as desired. Note that the constant is constant only for 
the variational formulation at a particular time; it can 
and does change with time to maintain 2 = ½. In fact, 
since it is the Lagrange multiplier and not the con- 
stant which is naturally prescribed, one is really 
maximizing the combined quantity 

At ~ [l)lih t - triA(nt)ht] - (1/2)~ [hiAt /M(nt)]hfli. 
i i 

Such an explicit formula for steepest descent in terms 
of l i ,a ,  etc. uniquely determines the motion. 

For triple junctions, one adds the condition that 
the three segments continue to meet (e.g. if segments 
1,2,3 form a triple junction, then there exists a point 
p such that n fp  = hl for i = 1,2,3); the formula for 
computing the net change in surface free energy 
also now depends on the new intersection point p. 
Because it may be advantageous to add a new 
infinitesimal line segment at a triple junction, one 
has to do the maximization over all possible such 
additions of line segments; the best addition may well 
be a segment which is a varifold, having a normal 
which is not in the set {n, }. Luckily for computational 
purposes, the correct varifold solution can be 
closely approximated by using small segments of 
alternating orientations which are in {n,}. This 
variational approach should give the same result 
when 7 = 0 as the use of characteristics or the least 
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time formulation [15], and unpublished work of 
Taylor shows that this is true. 

4. EXAMPLES OF USE OF THE VARIOUS 
METHODS 

In this section we examine how a variety of 
simple problems would be solved by more than 
one method. By comparing the list of conditions 
under which various methods apply (2.1.1), one can 
see that no problem can be solved by all methods. 
In particular, the direct mapping theory  cannot 
be used for polyhedral initial surfaces. These 
simple problems are contrived in that the solutions 
can be found "by hand." They serve to illustrate 
the various methods, and show that the methods 
differ enormously in ease of  use but on typical 
problems give identical results. The only case in 
which different results are known to arise when two 
different methods apply is exemplified by motion by 
mean curvature with a non-embedded initial surface 
such as a figure 8 curve in 2-d; this case is briefly 
discussed at the end. 

4. I. Isotropic constant normal growth from a cube 
(~,-  0) 

In the isotropic normal growth case, with no 
curvature dependence, the normal velocity is 
v = Mf~, with M independent of n. We arbitrarily 
take M = 1 and l) = + 1, so that v = 1 corresponds 
to growth in the direction of n and v = - 1  corre- 
sponds to shrinking (which is growth in the direction 
of - n ) .  We demonstrate several methods with an 
initial shape which is a cube, oriented so that the unit 
normal vectors point outward. Note that the growth 
of a cube by simply scaling it, so that it expands 
linearly in time while remaining a cube, appears to 
satisfy the requirements of being a solution: it has the 
property that at each point on the surface at each 
time t, the normal velocity is 1. The problem is that 
there is no particular physical or mathematical justifi- 
cation for just extending the sides until they meet. 
This "solution" also does not satisfy the criterion of 
being stable under perturbation (here, rounding its 
corners) and it is not the solution that any of our 
methods will produce. 

4.1.1. Characteristics. In this isotropic case, VM(p) 
evaluated at n is equal to n, which is 1 in magnitude 
and parallel to n. The limiting outward growth form 
Wo~ is a unit sphere; any starting finite shape growing 
outward will eventually tend to a sphere. With v = 1, 
the faces of  the initial cube will grow by translation 
without an area increase, the fans on edges and 
corners will round the edges into growing cylinders, 
and the eight comers will grow octants of spheres. 
After a large enough elapsed time the comer spherical 
pieces will dominate, so that it will look like a sphere, 
but in fact at each time t the surface will consist of  
eight spherical pieces (each of radius t) with different 
centers (the comers of the original cube), and there 

will be cylindrical strips (of radius t) separating the 
eight octants, with six flat facets of side length 2 
joining the flat sides of the cylindrical strips. 

With v = - 1 ,  all the characteristics (including 
the fans) point inward from the surface instead 
of outward, and they cross to create shocks at 
the comers and edges. These shocks at time t go 
through the corners and edges of a cube with 
vertices [__+(1 - t), + (1 - t), + (1 - t)], and thus the 
crystal at time 0 < t < 1 is that cube of side length 
2(1 -- t). 

In general, corners and edges that are convex in the 
growth direction become rounded through the fans 
that originate at them, while corners and edges 
growing in the concave direction remain sharp; the 
fans are continually cut off by the shocks. 

Since characteristics are least-travel-time paths 
from their initial point, and since the shock condition 
is to use the characteristic that first reaches a point, 
the least-time solution is that given by characteristics. 
Alternatively, one can directly look for least-travel 
time paths to demonstrate that a given evolution 
is indeed the correct solution. 

4.1.2. Viscosity solution. We next demonstrate that 
the cube growing from an initial cube is not a 
viscosity solution of  the appropriate Hamilton-Jacobi 
equation, whereas the shrinking cube is a viscosity 
solution. 

The PDE for u is written as u , - v l V u l =  0 (and 
must not be written as - ut + v I Vu I = 0; this is one of 
the peculiarities of  viscosity solutions, as noted in 
section 2.5). We will set up u so that u is positive 
inside the crystal, which we will take to be the inside 
of the cube. A cube, with edges parallel to the 
coordinate axes and with initial size 1, growing or 
shrinking with unit velocity on each face is the zero 
set of the function 

u(x, t) = vt + 1 - max{Ixll,lx21, Ix31} 

where v = 1 for the growing cube and v = - 1 for the 
shrinking cube for t ~< 1; we will restrict ourselves to 
such u. 

We first test whether u is a viscosity supersolution. 
As noted before, there are no continuously differen- 
tiable functions which agree with u on a comer or 
edge of the cube and which are bounded above by u in 
a neighborhood of  such a comer. Thus at the corners 
and edges of the cube, u automatically passes the 
supersolution test. 

Let us do supersolution tests for points (x0, to) 
[with x0 = (x~0, x20, x30)] such that x0 is on a face, but 
not on a comer or edge, of the growing or shrinking 
cube at time to; for these x0, u(x0 , to)=0,  since the 
cube surface is the zero set of u at time to. Without 
loss of  generality we choose points on the first 
quadrant of the (100) face that are not at a comer or 
edge; in particular, we assume x~0 > x20 ~ x30 ~ 0. 
Therefore x~0 = 1 + Vto (where v = 1 in the growing 
case and v = -  1 in the shrinking case). We use 
comparison functions from inside whose zero level 
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sets are concentric spheres, tangent to the cube at Xo 
at time t o, and growing with normal velocity v, and all 
centered at (X~o - e, x20, x30), where e = 1 + Vto - x20 
is the distance from the nearest edge. This is to ensure 
that the sphere will stay inside the cube. A q~ whose 
level set satisfies these requirements is 

~b(x, t) = e + v ( t  - to) - Ix - (Xlo - e, X2o, X3o)l. 

Then 

u - ~b = (1 - e + Vto - max{Ixl l, Ix21, Ix31 }) 

+ I x  - (xl0 - e, x20, xs0) l />  0 

[This result, which simply says that the sphere stays 
inside the cube, is obtained analytically by using the 
fact that the magnitude of any vector is greater than 
or equal to that of  any of its components;  hence, 
under our assumptions, 

I x  - (x~0 - ~, x20 ,  x30) l  

/> max{ I xl - x20 l, Ix2 - x201, Ix3 - x301}  

>i max{ Ix11 - x20, Ix21 - x20, I x3l - x30 } 

~>max{ Ixl I, Ix21, Ixsl} - X2o.] 

The viscosity supersolution test with 4~ is then 
whether ~b,-IV4,1 ~> 0 at x0, to, and it is. One has 
to test with a//q~ such that 

(u - q~) (x, t)/> (u - q~)(x0, to) 

for all x, t, but  in fact, as noted in Section 3.2, the 
above q~ is sufficiently general for this first-order 
equation to show that u is a viscosity supersolution. 

We now test whether u is a viscosity subsolution. 
We look first at the corners; by symmetry we need 
only look at the (1,1,1) corner (the corner in the first 
octant). For  any a, b with 0 < a < 1 - b < 1, let 

t k ( x ,  t )  = 1 + v t  - -  [ a x  I + b x  2 + (1 - -  a - -  b ) x 3 ] .  

Then 

(u - 40(x, t) = - m a x {  Ixll, Ix2l, Ix3l} 

+ axl  + bx2 + (1 - a - -  b ) x  3 <~ 0 

with equality when x 3 = x 2 = x ~  =lx~ l - - t ha t  is, at 
the first octant corner of the cube, as desired. In the 
growing case, we have 

4~t-IV4~ I = 1 - I ( a , b ,  1 - a  - b ) l  > 0  

which is the wrong inequality; for the shrinking cube, 
we have 

~b,+lV~b[ = - 1  + l ( a , b ,  1 - a - b ) l ~ < 0  

which is the required inequality. Thus the u whose 
zero level sets correspond to a cube scaling by 
the factor 1 + vt is not  a viscosity solution for 
positive unit  normal  velocity but  is still in contention 
to be a viscosity solution for negative unit  normal  
velocity. 

To complete the verification that u with v = - 1  
is a subsolution, we use similar linear barrier tests 

along the edges [~b(x, t )  = 1 - t - ax l  - (1 - a)x2] 

and faces [4~(x, t) = 1 - t - x l ] ,  obtaining again that 
u -~b  ~<0 and q~,+ IV4~I ~< 0. 

4.1.3. Crys tal l ine  me thod .  The crystalline method 
does not  directly apply to the isotropic case; one can 
only use it to approximate solutions. Here one might 
take W~ to be a convex polygon approximating a 
sphere, with M(n~)= 1 for every normal n~ to that 
polygon, and take M to be a convex function. 

For  v = 1, at time 0, facets of all the orientations 
n~ that are missing are inserted, at distance 
st(0) = (1, 1, 1)'nt. Then each of these is moved at 
normal velocity 1 (ds i /d t  = 1). We consider separ- 
ately the two special cases where (1) the coordinate 
directions are normals of W~, and there are three 
families of edges around W~ (called zones), the edges 
in each family being parallel to one of the coordinate 
axes, and (2) the coordinate axes are perpendicular to 
neither edges nor  facets of W.~, and no edge is 
parallel to the coordinate axes. 

In case (1) with v = 1, the facets of the cube move 
outward at normal velocity 1 (expanding somewhat 
in size), facetted cylinders appear along the edges 
corresponding to the appropriate quarter circles from 
the n-diagram, and "octants" of all other directions 
from W~ appear in the comers. 

In case (2) with v = 1, the facets of the cube 
translate outward at velocity a + b + c  which is 
slighly greater than 1, where a, b, c, are the co- 
efficients of the expansion of the facet normal in 
terms of the neighboring normals of W~. "Octants"  
of Wo~ appear in the corners, with the facets moving 
at velocity 1. The original facets keep their original 
size (if M were chosen to be nonconvex, then the 
original facets would move faster than a + b + c and 
would eventually be consumed by the facets at the 
outside of the octants at the corners). 

For  v = - 1, facets from W~ are again provision- 
ally introduced at the corners and along the edges of 
the cube, but they do not grow; rather, they are cut 
off by the motion of the original eight facets. These 
eight facets grow inward, at unit  velocity in case (1) 
and at velocity a + b + c in case (2), until the cube is 
completely consumed. 

4.2. Aniso tropic  norma l  g rowth  f r o m  a cube (T = O) 

Here we chose any ct > 0, write n = (n I , n 2 , n3), and 
define the velocity to be 

Ma(nl ,  n2, n3) = (1 + ~)(Inl l  + Inzl + I n31) 

- ~  m a x {  lnl l , lnzl , ln3] } 

for the growing crystal and to be the negative of this 
for the shrinking one. Note that M~ = 1 on the (100) 
faces (the faces perpendicular to the coordinate axes), 
and that M,  is nonconvex (but would be convex if 

= 0). A plot of  all the vectors in all the subgradients 
of M,  for ct = 0.8 is in Fig. l(a). 

4.2.1. Character is t ics .  Note that VM~ is constant  
[it is (1, +__ (1 + ct), ___ (1 + ct)) in each of the four 
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squares intersect each other along line segments 
where two of the coordinates have absolute value 
1 + vt, but  extend past those line segments. F rom the 
points on the edge between (1, 1, 1) and (1, 1, - 1) of 
the original cube, there are fans of characteristics 
which at time t fill out  all the points in the rectangle 
with corners (1 +vt ,  1 +v t (1  + ~ ) ,  +[1 + t(1 + ~ ) ] )  
and (1 + vt(1 + ct), 1 + vt, ___[1 + t(1 + ~)]), and simi- 
larly for the other eleven edges of the original cube. 
Finally, from the comer (1, 1, 1), there is a fan of 
characteristics which at time t fills out the triangle 
with vertices (1 + vt, 1 + vt(1 + a), 1 + vt(1 + ct)), 
( l + v t ( l + a ) , l + v t ,  l + v t ( l + ~ ) ) ,  ( l + v t ( l + a ) ,  
1 + vt(1 + or), 1 + vt), with a similar statement hold- 
ing for the other seven comers of the original 
cube. 

(a) 

(a) 

(b) 

Fig. 1. (a) The plot of all vectors in the subgradient of the 
M~ of the text is a cube with "ears." (b) With this M=, the 
union of the characteristics emanating outward during 
growth from an initial cube traces out a shape with self- 
intersections and reentrant corners. A (1 I0) section (through 
the origin) of the points reached by these characteristics 
at time t = 0.2 (with a = 0.8) is shown. Creating the appro- 
priate shocks leaves only a growing cube, whose faces are 
the cube faces shown, meeting with sharp comers and edges 

hidden under the to-be-discarded "ears." 

open regions of the sphere where nl > In2[ and 
n I > [rt3[ but  n 2 5 0  #//3]. Thus there are character- 
istics from all points in the cube face with x~ = 1 
which have all directions in the convex hull of  those 
four directions, and at time t the union of all 
these characteristics goes through all the points in 
the square with corners ( l + v t ,  + [ l + t ( l + ~ ) ] ,  
+[1 + t(1 + ~)]). A similar statement holds for the 
other five facets of the original cube. See Fig. l(b) for 
v = l  and Fig. 2(a) for v = - - l .  Note that these 

Fig. 2. With the M= of the text, the union of the character- 
istics emanating inward during shrinking from an original 
cube also have self-intersections and reentrant comers. 
(a) A (110) section (through the origin) of the points reached 
by these characteristics at time t = 0.2 is shown (~ = 0.8). 
(b) Multiple shocks form, leaving part of the "ears" in the 

combined form shown. 
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We note that there must  be shocks emanat ing from 
the original corners and edges of the cube, whether 
v = l or v = - 1 ,  but  the shocks are quite different 
in the two cases. When v = 1, the shock condit ion 
of stability to perturbation produces a single shock 
from each edge, cutting off all the "ears" and 
leaving a growing cube. But these characteristics 
are not cut off when v = - 1. Rather, there are two 
shock surfaces emanat ing from each edge, allowing 
facets with normals such as (1,1,0) to grow [with 
normal velocity - ( x / 2 + ~ / ~ / 2 ) ] ,  and three shock 
surfaces emanat ing from each corner, allowing 
facets with normals ( + 1 ,  +1 ,  ___1) to grow [with 
normal velocity - ( x / 3  +2~t/~/3) and vertices such 
as ( l - t ( l + a ) , l - t ( l + ~ ) , l - t ) ] .  Initially the 
shrinking form will be a combined form, shown 
in Fig. 2(b), with (100), (110) and (111) facets; 
at later times the (100) will disappear first when 
the shock surfaces from different edges hit each 
other and form new shocks, and then the (110) 
facets will disappear when the shocks from different 
corners hit each other. The final form will be an 
octahedron. 

4.2.2. Viscosity solution. We now show that for 
this Ms, the growing cube is a viscosity solution, but 
the shrinking cube is not. 

For  this level-set-of-a-function approach, the 
growing and shrinking cubes are given by the same 
functions u as in the isotropic case above, and so are 
the comparison functions 4~. Again, the crucial test is 
with the linear comparison functions 

~b(x, t) = 1 + vt - [ax L + bx  2 q- (1 - a - b)x3] 

for any a, b with 0 < a < 1 - b < l, and with v being 
l in the growing case and - 1 in the shrinking case. 
Again we have that for this ~b, u - ¢(x,  t) ~< 0 for all 
(x, t). We compute that 

¢ , -  M ~ ( -  V~b) = 1 -- {(1 + ~) 

× [a + b  +(1  - a  - b ) ] -  eta} = - ~ ( 1  - a ) ~ < 0  

in the growing case and 

~ b , + M ~ ( - V q ~ ) = - l + ( l + ~ )  

× [a + b  +(1  - a  - b ) - c t a ]  =ct(1 - a ) > ~ 0  

in the shrinking case. Thus for this anisotropic 
velocity, the growing cube is a viscosity solution but  
the shrinking one is not, as is the case as determined 
by characteristics. [If one wishes to check that the 
comparison function 

~b(x, t) = e + v( t  - to) + Ix - -  (Xl0 - -  e,  x20 , X30)I 

(for e = min{1 + vt o -- x20,1 + vto -- x30}) satisfies the 
supersolution test, it is important  to note that 
~b t - M~(V¢) need be at least zero only at the single 
point (x0, to), and it is indeed zero there.] Note that 
when ~t = 0, M~ is convex, and both the growing and 
shrinking cubes are solutions, as determined either 
by the viscosity solutions here or the method of 
characteristics on the other PDE. 

4.2.3. Crystalline method.  The polyhedral growth 
model under the assumption that ct = 0 is particularly 
simple: W~ is a cube, no new facets are to be 
introduced, and facets simply translate at unit  
velocity (i.e. ds i /d t  = 1 or - 1 ) .  

When ~ is non-zero, new facets of orientation 
(1, 1,0), ( - 1 ,  1, 0), etc. are introduced along the 
appropriate edges and new facets of orientation 
(1, 1, 1) etc. are introduced at the appropriate cor- 
ners. When the velocity is positive (outward growth), 
these are cut off and do not  appear in the surface. 
When the velocity is negative (inward growth, i.e. 
shrinking of the compact region), these new facets 
grow in size. 

4.3. Saddle-shaped corners, isotropic normal  growth 

(~=_o) 
Now consider the saddle-shaped, re-entrant corner 

such as is formed by a box on a floor. For  example, 
at time t = 0, let the corner be the union of the three 
planar pieces 

{(xl, x2, 0): either xl t> 0 or x 2 >/0} 

{(xl, 0, x3): both xl >/0 and x 3 >/0} 

{(0, x2, x3): both x2 I> 0 and x 3/> 0}, 

oriented so that the normals are (0, 0, 1), (0, 1, 0) and 
(1, 0, 0) respectively. 

If the velocity is 1 on all normal directions, then 
this surface at a later time t is asserted to be the union 
of three planar pieces and a cylinder 

[001] 

( ( X l ,  X2,  t): either x 1 ~ t or x2 ~> t 

or [both x 2 + x~ >/t 2 and min(xt ,  x2) ]/> 0} 

[010] 

[lOO] 

{(x I , t, x3): xl ~> t, x3/> t} 

{(t, x2, x3): X 2 ~ l,  X 3 ~ t}  

a (001)  cylinder 

{(x,, x2, x3): x~ + x~ = t 2, x3 > / t }  

This surface is shown in Fig. 3. 
4.3.1. Characteristics. With characteristics, one 

must  introduce fans along all the slope discontinuities 
of the original surface, and there are shocks emanat- 
ing from the points of slope discontinuity in the 
x3 = 0 plane. The condit ion of earliest arrival of a 
characteristic determining when a point enters the 
crystal (and that once in it, it stays in it) is sufficient 
to determine the shock condition, since the isotropic 
mobility function is convex. 

4.3.2. Viscosity solutions. We construct 

u(x, t) = t - z(x) 

where ~ (x) is the time t at which the point x satisfies 
each of the above set of  equations [in this case, z(x) 
is also the distance from x to the initial surface if x 
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is in front of the surface, and the negative of that 
distance if x is behind the surface]. Wherever this 
function u is smooth, which is on the set in space-time 
apart  from the union of 

{(xl, x2, x3, t): x t = t, X 2 ~ 0 ,  X 3 ~--- t} 

((Xl, x2, x3, t): X 1 ~ 0 ,  X 2 = t ,  X 3 ~- t }  

{(xl, x2, x3, t): x~ + x 2 = t 2, min(xl ,  x2) i> 0, x3 = t} 

we know we can show that u passes both the sub- 
solution and the supersolution test. On that set where 
u has discontinuous first derivatives, one can use one 
linear function barrier from behind [t0(x, t) = t - x3] 
plus cylindrical barriers from behind [one being 
to(x, t) = t - x/x~ + x~] to see that it must move at 
least that fast (i.e. u passes the supersolution test 
there). From in front, however, there are no functions 
which are suitable test functions in the definition, and 
therefore u automatically passes the subsolution 
test there. 

4.4. Saddle-shaped corners, anisotropic normal growth 
(~=-0)  

With the highly anisotropic velocity and non-  
convex M~, we get a different type of growth. The 
surface at time t is asserted to be the union of the 
five planar  pieces 

[0011 

{(xl ,x2 ,t): either xl >f t(1 + a) or x2 t> t(1 + ~t)} 

[010] 

[100] 

{(xl ,t ,x3): Xl ~< t and x 3 I> t ( l  + ~)} 

{(t, x2, x3): x2 ~< t and x 3/> t(1 + ~t)} 

[101] 

{(x~ ,x 2 ,x3): xl + x3 = t(2 + ct), 

xt >~ t, x2 >~ t, x2 <~ Xl } 

[011] 

{(xl, x2, Xa): x2 + x3 = t(2 + ~t), 

x2 ~ t, X3~ t, xl ~ x2 } 

In  particular, there is no [111] facet. This surface is 
shown in Fig. 4. 

4.4. I. Characteristics. It is more difficult to see how 
to use characteristics for a saddle-shaped initial sur- 
face and a non-convex velocity function, in that it is 
not  as obvious what the shock condit ion of stability 
to perturbat ion produces at the corner itself. 

We see that there are characteristics from the 
vertical (convex) edge which cannot  be used to con- 
struct a continuous solution and must be eliminated 
by the shock condition, and so the vertical edge 
continues to be just  the intersection of [100] and 
[110] planes at distance t. Some of the characteristics 
along the horizontal (concave) edges do survive, 

Fig. 3. During isotropic normal growth from a saddle- 
shaped corner, the corner disappears, the convex edge is 
rounded, while the concave edges remain sharp. The par- 
tially hidden surface is the initial corner; the surface in front 

is one after a period of growth. 

producing growing facets of orientation [101] and 
[011] between the horizontal and vertical facets. 
At the corner itself, the "missing orientations" are all 
those in the open spherical triangle with vertices 
(1, 0, 0), (0, 1, 0), (0, 0, 1) and thus the fan of charac- 
teristics from the corner at time t fills out the triangle 
with vertices 

t(1, 1 + ~t, 1 + ct), t(1 + ct, 1, 1 + ~t), t(1 + ct, 1 + ~t, 1). 

One of the edges of this triangle lies in the plane 
x3 = t, but  the points on the other two edges of the 
triangle connect to characteristics from the vertical 
edge which project beyond what can be connected to 
the growing vertical quarter-planes. Thus the triangu- 
lar fan of characteristics from the corner contributes 
nothing, and the characteristics from the horizontal 
edges near the corner cross so that the result after the 
shock is that the [101] and [011] facets terminate at 
their intersection. 

This is in fact the typical situation, as one can 
see perhaps more easily from the viscosity solution 
approach below: saddle-shaped corners where 

Fig. 4. During anisotropic normal growth, with the M r of 
the text, from a saddle-shaped corner, the comer splits into 
two corners, the convex edge remains sharp, while the 

concave edges are truncated by (101) and (011) facets. 
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initially three facets meet produce no new orien- 
tat ions at the corners themselves on growth; instead, 
the evolving corner is that  which results from inter- 
sections of  the moving original surfaces and the new 
surfaces which can be shown to form along the edges 
through 2-d applications of  characteristics. 

4.4.2. Viscosi ty  solutions.  Again,  we can use any 
families of  smooth comparison surfaces from behind, 
except on the two non-horizontal  lines of  slope 
discontinuity, to show that  u satisfies the super- 
solution test there, and families of  smooth compari-  
son surfaces from in front, except on the horizontal  
lines of  discontinuity, to show it satisfies the sub- 
solution test there. Again, on the excepted lines of  
slope discontinuity, the relevant test is satisfied auto- 
matically, since there are N O  appropr ia te  comparison 
functions. 

Note  in part icular  that  there cannot  be a plane 
segment in the (111) direction, since it would have 
to be in the plane containing t(1 + 2ct/3)(1, 1, 1) (by 
barriers from both behind and in front), and the only 
point  in that  plane allowed by barriers from in front 
is the point  t(1 + ~, 1 + ct, 1) (which is in the surface). 
Also note that  at each time t > 0 there is a point,  
(t, t, t(1 + ~)) with a saddle-shaped neighborhood,  
where four planar  pieces meet. Comparisons cannot  
be made from either side at  these points, and thus 
they automatical ly satisfy both the subsolution and 
the supersolution tests there. 

4.4.3. Crystal l ine  method.  In the crystalline method 
with ~ positive, one again introduces extra facets at 
time 0, ones with normals  (1, 0, 1) and (0, 1, 1) along 
the edges in the plane x3 = 0 and one with normal  
(1, 1, 0) along the vertical edge; one addit ionally adds 
a facet with normal  (1, 1, 1) at the origin (the initial 
distance of each of  these facets is zero). Each facet 
is now translated with the appropr ia te  velocity; the 
facet with normal  (1, 1, 0) is squeezed out  and does 
not appear,  but the facets with normals  (1, 0, 1) and 
(0, 1, 1) grow. The facet with normal  (1, 1, 1) just  fails 
to grow or be squeezed out, moving along right at the 
intersection point  of the facets with normals  (0, 0, 1), 
(1, 0, 1) and (0, 1, 1). 

4.5. M o t i o n  o f  a sphere by  mean  curvature  (f2 = O) 

The sphere is a simple case where an explicit 
closed-form solution to the PDE with given initial 
data  exists; other cases are rare. 

4.5. I. Direc t  mapping.  For  mot ion  of  a sphere with 
initial radius r0 by mean curvature,  we can use 
method 1 (the direct mapping of  a unit sphere) with 
f(x, t) = r ( t )x  for each x in the unit  sphere, to get the 
differential equation 

dr /d t  = - 2 /r  

so that  r ( t )  = ~ o  - 4t. 
4.5.2. Viscos i ty  solution.  In the level-set-of-a-func- 

t ion approach,  we can check that  

u(x, t) = r 2 -  Ix] 2 -  4t 

is a solution of  the PDE 

u, = [ V u  I d i v ( V u / I V u l )  

with initial condit ion 

u ( x ,  0)  = r0 2 -  Ixl 2 

(which is 0 when Ixl = r0). We see that  u = 0 when 
Ixl  = ~/r02 - 4t, and so we get the same mot ion as for 
the direct method (as we must). 

If  instead we took the initial condit ion to be 
w ( x ,  0)  = r0 - Ixl, which also is 0 when Ix l = r0, then  
we can write w = f ( u )  where f ( u ) = r 0 -  rx/~-02-u 
can be found from the two different initial 
functions. Hence the solution would be w(x, t ) =  
r0 - x /4 t  + Ix 12. It might be difficult to discover this 
solution w directly, but  the solution u was found 
easily in this case by knowing that  one seeks u as a 
function of  r = [xl and t alone, and that  Vu/I  Vul will 
be - x / I x  I, which has divergence 2/r. The PDE thus 
becomes u , =  l u r l ( - 2 / r ) =  2u~/r, and the change of 
variables s = r2/4 simplifies it further to u, = us, with 
an obvious solution of  u = c - s - t = c - r2/4 - t 

for some constant  c and therefore with initial data  
u(r, 0 ) =  c - r 2 / 4 .  Therefore c must be r2o/4, and 
other solutions can be found as above by finding 
the function that  takes one initial data  function into 
the other. 

4.6. M o t i o n  o f  W by crystal l ine curvature (f2 = O) 

In the polyhedral  case, if W is a polyhedron with 
each facet at unit distance from the origin [so that  
v(ni) = 1 for each of  the facet orientations], and if the 
initial surface is r0 W, then the surface at time t under 
mot ion by crystalline weighted mean curvature_(_with 
mobil i ty M = 1 on each facet) is just ~ 0 2 -  4t W. 
If  7 is not  the same on each facet orientation, then 
W shrinks homothetically only if the mobil i ty is 
propor t ional  to 7 [19]. 

We show this as follows. Suppose that  there 
is a solution which is a scaled version of  W, 
with scale factor p( t ) .  Then s i ( t ) = p ( t ) y ( n ~ ) ,  

Area(Si) = p(t)2A~, and l0 = p ( t ) L g ,  where A~ is the 
area of  the facet with normal  n i in W and L U is the 
length of  the edge in W between facets with normals  
n~ and nj. We plug these values into the ODE for si 

1 
ds~/dt = - M (ni) - -  ~ 5 ~ f l ~  

Area(S,)  j 

and obtain 

zZf,  L y ( n , ) d p ( t ) / d t  = - [ 1 / p ( t ) ] M ( n , )  A, j 

which says 

(1/2)dp 2/dt = - [M(n,)/y (n,)](1/h,) ~. f.L~ 
J 

= - - 2 M ( n i ) / y ( n i ) .  

The left-hand side does not  depend on i, and there- 
fore, in order for this scaled solution to exist, it is 
necessary and sufficient that  M(n~)/y(n~) not  depend 
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on / - - i . e ,  that M be proportional to y. If we assume 
that M = ~ (which is the case in particular when y and 
M are both 1 on each facet of W), then the equation 
above has the solution 

p(t) = ~ 0 - -  4t. 

We have thus found one solution to the system of 
ODE with the given initial conditions, and by unique- 
ness it is the only one. 

Note that when y is 1 on every facet, W itself is 
circumscribed about a unit sphere, and W moving by 
weighted mean curvature remains circumscribed 
about that sphere moving by mean curvature. This is 
true for any Wwhose facets are all unit distance from 
the origin, whether regular polyhedra or not. The 
sphere is in fact a special case of W shrinking 
homothetically, since the surface of the Wulff shape 
for the function which is 1 on every unit vector is the 
unit sphere. 

If we wished to approximate motion of a sphere by 
mean curvature by motion by crystalline curvature, 
we could take W to be a polyhedral approximation 
to a sphere, with each facet at distance 1 from the 
origin. We could then circumscribe W itself about 
the unit sphere, and put a scaled version of W inside 
the unit sphere. The smaller version would shrink 
more rapidly (and not stay inscribed, if it were 
originally), but by choosing closer and closer 
approximations to the sphere, one could make the 
factor r 2 be as close to 1 as we wish, and therefore 
have the distance beween the inscribed and 
circumscribed polyhedra stay as small as we wish. 

4. 7. Motion of  a figure-8 by weighted mean curvature 
(n -o )  

This is an example of a configuration with a 
self-intersection where four curves meet. There is not 
one unique motion by weighted mean curvature for 
this curve; rather, the motion depends on how the set 
of points is interpreted. Different methods interpret 
the intersection point differently and give different 
results. Thus this curve is representative of the only 
cases known in which different results are known to 
arise when different methods apply. 

4. 7.1. Crystalline approach (and other mapping 
approaches). In this approach, which evolution occurs 
depends on how the curve is presented. If  it is 
presented as two curves happening to overlap on one 
point, the curves shrink independently [Fig. 5(b)]. 
If  it is presented as one draws a figure-8, so that one 
loop has a counterclockwise orientation and the other 
a clockwise orientation, it evolves as a figure-8 until 
it shrinks the smaller loop to zero; it then adds an 
infinitesimal segment at the resulting sharp corner, 
moves it rapidly, and shrinks the remaining loop 
[Fig. 5(d)]. If it is presented as one large curve pinched 
together in the middle, then the pinches straighten 
out, the curve becomes convex, and finishes by 
shrinking to a point [Fig. 5(a)]. If it is presented 
as two overlapping triple points, then it separates 

the triple points and shrinks as a double-bubble 
[Fig. 5(c)], as seen in a video [18]. 

In addition Fig. 5 demonstrates some other aspects 
of motion by crystalline curvature. Here W is a 
regular octagon, while the initial shape is a joining of 
two hexagons (for no reason other than the choice of 
the authors; the choice of octagonal initial shapes 
might be more "natural," given the octagonal Wulff 
shape, but it would illustrate fewer properties of 
crystalline motion). The two horizontal sides of each 
hexagon are parallel to facets of the Wulff shape; all 
other sides are not parallel to facets of the Wulff 
shape and they immediately become varifolds. (The 
fact that they are varifolds is not apparent in the 
figure, since they are drawn as actual varifolds rather 
than as finite-scale corrugations approximating vari- 
folds.) The remaining facets of the octagons appear 
immediately at all corners and begin moving [the 
crossing in Fig. 5(d) is not a corner]. Note that the 
varifolds don't  move; they have zero weighted curva- 
ture. The varifolds shrink rapidly to zero length by 
the encroachment of the adjoining octagonal facets; 
it is the octagonal facets which move. Note in 
Fig. 5(a) that the velocities of the horizontal facets on 
the right drop to zero when the varifolds on their left 
are consumed. These facets then are bounded by a 
regular and inverse corner and have zero crystalline 
curvature. The facets to the left of these facets stop 
moving for the same reason. Note also the abrupt 
changes in velocities of the facets neighboring the 
right horizontal facets when these horizontal facets 
have shrunk to zero. The inverse corner disappears, 
the facets merge and their lengths are combined. 
Crystalline curvature, and hence velocity, is inversely 
proportional to the length of a facet. Rather crude 
numerical techniques are used to handle the infinite 
velocities at which the inserted octagonal facets in- 
itially move; this is the source of the lack of mirror 
symmetry in Fig. 5. 

4. 7.2. Brakke's varifoM approach (isotropic). In 
this approach, the solution is non-unique, but each 
possible solution evolves as a one-dimensional vari- 
fold. The evolutions probably include all physically 
reasonable evolutions with the given initial data. 

4. 7.3. Viscosity-solution approach (isotropic). In this 
approach, the zero-level set becomes 2-dimensional 
rather than remaining a 1-dimensional curve [7]. 
Evans and Spruck conjectured [7] that the isotropic 
analogues of all of the above possible evolutions, and 
switches from one to another at times after 0, are 
contained in this evolving 2-dimensional zero-level 
set. It appears that the varying interpretations in the 
mapping approach (which reflect sensitive depen- 
dence on initial conditions) give rise to this non- 
physical behavior in the viscosity solution approach. 
If  one tries to apply the level-set method to the 
case where there are triple junctions, a similar non- 
physical spreading out of the interface to a whole 
region always occurs [Fig. 5(e)], and this cannot be 
removed by perturbation. 
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(a) (b) 

(c) (d) 

_/ 
(e) 

Fig. 5. The results for motion by crystalline curvature from an initial figure-8 depend on how the 
initial shape is interpreted. Curves are drawn at equal time intervals with earlier times shown lighter; 
in the first figure, the entire evolution is shown, while in the others, only the early times are presented. 
In all cases shown, both W and W~ are regular octagons. (a) If the 8 is presented as one large 
curve pinched together in the middle, then the pinch straightens out, resulting in a single curve which 
then shrinks to zero. (b) If the 8 is presented as two curves contacting at one point, two curves result, 
and they shrink independently, with the smaller one disappearing first. (c) If the 8 is presented as 
two overlapping triple points, then the triple points separate, giving two shrinking bubbles, that, 
depending on the angle at the crossing, will contact along the line between the triple junctions as 
shown or be strung together by that line. (d) If the 8 is presented as an immersion, it evolves as 
an immersion, remaining a figure 8 until the smaller loop shrinks to zero size. (e) In the viscosity 
solution approach, the set where u = 0 at any small time t > 0 becomes 2-dimensional and thus 
non-physical; if it applied in the crystalline context, the result at some small time t > 0 would probably 
be as indicated, with the hatched region (and a very thin extension around each bulb) being the set on 

which u = 0. 

5. COMPUTATIONAL VERSIONS OF THESE 
METHODS AND COMPARISONS 

The  re l a t ionsh ips  d i scussed  in this  sec t ion  are  
s u m m a r i z e d  in Tab le  2. 

5.1. 2-d, no triple junct ions 

F o r  the  m o t i o n  o f  c losed  curves  in 2-d m o v i n g  by 
p resc r ibed  velocity,  curva ture ,  o r  the  genera l  geo-  
met r ic  g r o w t h  law, there  have  been  m a n y  p r o g r a m s  
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Table 2. Computation 
Multiple Topological 

Method Who 2-d 3-d 7 M fla grains? changes? 
Mapping Brakke---Evolver x/ x/ Isotropic or Isotropic 0 Yes "By hand ''b 

crystalline ¢ 
Frost x/ Isotropie Isotropic 0 Yes Automatic 
Dziuk x/ Isotropie Isotropic 0 No No 

Crystalline Taylor .,/ Crystalline Any c Yes Automatic 
compatible 
with 

Taylor x/c Crystalline Any 
compatible 
with "e 

Viscosity Osher & Sethian x/ x/ Isotropie lsotropic c No Automatic 
Osher & Bence x/ 0 Isotropic c Yes Automatic 

Phase field With diffusion x/ x/ Anisotropy Some 0 No Automatic 
--Kobayashi via e anisotropy 

Q-State Potts Anderson, Srolovitz, ~/ x/c Determined lsotropic 0 Yes Automatic 
Grest, etc. 

c No d Automatic ~ 

ac = constant, with different constants for different interfaces when treating multiple grains. 
bAutomatic in 2-d. 
OPartial. 
aBelieve that these restrictions are not essential to the method. 

written, and all of the methods except Brakke's 
varifold, least time, and regularization have been 
used. 

The direct mapping method consists of putting 
points along an initial curve, moving them in the 
normal direction the appropriate distance, and (typi- 
cally) interpolating a smooth curve between the 
points. Such a method makes it quite difficult to 
handle the shocks that can develop in motion by 
prescribed velocity, and orientation and especially 
curvature are sensitive to the type of interpolation 
used. Computational problems in such motion 
include deciding when to add or delete points along 
the interface, and detecting and making topological 
changes. Nevertheless, this is the most convenient 
way to model moving interfaces up to times when it 
fails (due to these computational problems becoming 
essentially insurmountable). A variation used by 
Brakke [93], for motion by curvature or weighted 
curvature, is to do piecewise linear interpolation, and 
compute the curvature by determining how the area 
enclosed and curve length change with changes in 
position of the vertices, using the idea that the 
curvature is the change in length with regard to area 
under deformations. 

Using characteristics to calculate motion by a 
prescribed function of the normal direction has much 
in common with the direct mapping method; here, 
one just goes in the direction appropriate to the 
characteristic, rather than in the normal direction. 
The normals are known at the points (since normals 
stay constant on characteristics when v is independent 
of x, and otherwise are a known function of position), 
so the interpolation scheme can utilize that infor- 
mation; curvature information is not needed. There 
are still problems with finding and tracking shocks, 
with detecting and making topological changes, with 
increasing or decreasing the number of nodes along 
the curve, and so forth. But when these problems 
have known solutions, programs can be written; 
for example, Carter and Handwerker [122] wrote a 

program to compute curves by following character- 
istics to obtain the figures contained in our previous 
paper [2], but those were very special cases where the 
position of the shocks was known by symmetry. 

The formulation in terms of finding level sets of 
viscosity solutions to degenerate elliptic equations 
was designed precisely to avoid these problems posed 
by trying to compute with characteristics [6]. It also 
avoids the problem of trying to measure the normal 
and curvature of an interpolated surface. There is, 
however, a large computational overhead caused by 
having to compute u everywhere, when you only want 
to know where u = 0. 

It works well for curves provided the initial curve 
has no self-intersections; at self-intersection points, it 
produces physically unrealistic results. The unrealistic 
results at triple-junction-type intersection points are 
unavoidable in the current formulation, because the 
method is designed to find curves separating two 
phases. To model situations as in Fig. 5(a, b) (but 
with smooth curves), giving the initial data a slight 
perturbation will resolve its dilemma and put 
it back in the situation of moving curves without 
self-intersections. 

The crystalline method is naturally amenable to 
computation, and has been implemented in a pro- 
gram by Taylor [17, 18] and, independently (and in a 
more limited setting) by Roberts [96]. In this method, 
the motion law can have both 7 and ~ nonzero, or 
one or the other zero; as stated above, y and M 
are given on the same finite collection of normal 
directions. The initial curve must be polygonal. 
(A smooth initial curve might be approximated by a 
polygonal curve.) The program stores the normal 
directions, distances from the origin, and adjacencies 
of the line segments and changes the distances in 
accord with the sytem of ODE. Initial adjacencies 
are checked to see if they agree with those in IV, 
and if not, the proper adjacencies are filled in. Line 
segments that become of zero length are deleted, 
and the adjacent line segments are merged if they 
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have the same direction and otherwise the proper 
adjacencies, as determined by W, are filled in. Triple 
junctions and the varifolds they tend to leave behind 
in their motion are handled by using the variational 
formulation, and by introducing new line segments at 
each time step as needed. 

A 2-state Potts model [method (9)] could be used 
to model motion by curvature, but as has been stated 
before, just what continuum model this lattice model 
approximates is unclear, and careful studies of 
the evolution of simple initial bodies like squares 
is only now being undertaken [Anderson, personal 
communication]. 

The phase field approach has had limited use 
computationally for motion by curvature; it is usually 
used for the problem when diffusion fields must also 
be solved for, as in dendritic crystal growth [25, 112]. 
Osher [110] has compared the use of the phase field 
method with that of level sets of viscosity solutions 
and concluded that Ax must be quite small in com- 
parison to e for the phase field method to yield 
reasonable computational results. 

5.2. 2-d multigrain or multiphase 

The direct mapping method in the multi-grain case 
for motion by curvature has been treated computa- 
tionally by both Brakke [93] and Frost [95]; Brakke's 
evolver program has many additional bells and whis- 
tles, such as allowing 7 to be a function of n and 
including body forces like gravity, but his program is 
designed to be run interactively, and must be assisted 
through steps involving changes of topology, inser- 
tion or deletion of vertices, etc. (see Note added in 
proof). Frost's programs are designed to run large 
simulations of 2-d grain growth, and run in a "hands- 
olT' fashion, recording certain types of data as the 
simulation progresses. Here the motion is done in 
two steps, moving points on the interior of the curves 
and then moving the triple junctions to restore 120 ° 
angles. 

The Q-state Potts model has been used to model 
many types of 2-d grain growth, on different types of 
lattices, with different (constant) values of surface 
energy for different types of interfaces, with fixed 
obstacles, etc. [59, 60, 113]. It is difficult, however, to 
determine what the effect of the lattice is, and it is not 
clear that it really models motion by curvature. 
Nevertheless, this method has been developed to the 
point where it is used to investigate many features of 
grain growth. 

The crystalline method also has been implemented 
for multiple grains (and with possible different 7 and 
M for different interfaces) [17, 18]. 

Osher and Bence [110] are just developing compu- 
tational methods which handle a triple junction. They 
replace the single indirect PDE by a pair of equations, 
and define the interface to be the union of the zero 
sets of the two functions. They have applied it only 
to the case of constant normal motion (~, = 0), with 
different constants for different interfaces. 

We know of no case where motion of multiple 
grains has been done computationally using a phase 
field motion. 

Taylor [15] showed how to use characteristics to do 
motion of multiple grains, but did not implement this 
method computationally, due to the usual problem 
with finding and tracking shocks and of detecting 
when topological changes should be made. 

5.3. 3-d 

Brakke has a full-featured program called evolver 
for computing solutions to variational problems, 
including those with free boundaries, prescribed vol- 
umes, multiple grains with grain junctions, etc., and 
the program is in the public domain with a good 
reference manual [93]. One of its options is a motion- 
by-mean-curvature mode. This program is designed 
to be run interactively, so the operator must assist it 
through changes of topology, addition and deletion 
of vertices, etc. (see Note added in proof). Also, the 
motion by curvature runs best when the triangles of 
the surface triangulation are of approximately the 
same size. Again, there is no proof of how well it 
actually approximates motion by curvature. 

Dziuk [94] has a program for moving parametrized 
surfaces by curvature (in the mapping approach), 
together with some error bounds. However, it cannot 
handle anything but motion of smooth surfaces, 
and it cannot make topological changes. (Hoffman 
[123] primarily computes minimal surfaces, typically 
using the Weierstrass representation, and does not 
do motion problems.) 

Some Monte Carlo simulations have been done in 
3-d (T. Rollet, personal communication). We have 
heard that there is a problem with getting things to 
move with some lattices (M. P. Anderson, personal 
communication). The curse of dimensionality (too 
long computational time) also strikes here. 

An unusual method is the Voronoi-cell evolver 
method described by Almgren [124]. It probably does 
do some approximation to motion by curvature or 
weighted mean curvature. 

Motion in 3-d by weighted mean curvature for the 
crystalline case is under development [18]. A prelimi- 
nary program has been successfully applied to initial 
surfaces on a fixed boundary that satisfy some rather 
restrictive conditions. The program does not yet 
handle triple junctions. 

6. DISCUSSION 

We see the following as being important open 
problems. First, there are these open mathematical 
problems: 

• Extending all the methods, theoretically and com- 
putationally, to multiple grain or phase junctions. 

• Developing any method to be a good 3-d 
computational tool, especially with multiple grains. 

• Proving that the computational schemes stay 
close to the theoretical solutions. 
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• Proving results for arbitrary 7, especially in 
3-d. 

• Putting anisotropy in 7 and M into the phase 
field method (in a natural way). 

• Extending the phase field method to vector- 
valued u (probably necessary for multiple phases and 
grains). 

• Extending the viscosity solution method to non- 
smooth and non-strictly-convex ~. 

• Exploring whether the viscosity solution is really 
the physically correct one for non-convex M. 

• Determining whether a viscosity solution can 
develop an interior for some times t > to > 0 if it does 
not have an interior for 0 ~< t ~< to. This should be 
related to uniqueness questions for physically realistic 
motions. 

• Determining whether the viscosity solution can 
ever develop an interior if fl is non-zero. 

• Extending the viscosity solution method to 
vector-values u (necessary for multiple grains). 

• Extending viscosity-solution results to discon- 
tinuous dependence on position. 

• Understanding what continuum model is the 
limit of the Q-state Potts model, and what behavior 
the Monte Carlo scheme exhibits, in both 2-d and 
3-d. 

• Extending the crystalline model to all polyhedral 
3-d surfaces and to multiple grains in 3-d. 

• Developing a better description of which charac- 
teristics must be eliminated at shocks originating at 
saddle-shaped corners of an initial surface for non- 
convex M (7 -= 0), and extending the method of 
characteristics and minimax time formulation for 
non-convex M to multiple phases. 

All the methods have stringent requirements on 
when they can be applied; the following open prob- 
lems deal with the question: when can you use them 
as an approximation to the real world where the 
conditions may not be met? 

• Determining the nature of the convergence of 
solutions with 7 > 0 to solutions with ), = 0 (so that 
materials scientists can know when they can reliably 
neglect surface energy and use, for example, 
characteristics to get simple solutions "by hand") 
[125]. 

• Determining the nature of the convergence of 
solutions as a function of ~. In particular, determin- 
ing the nature of such convergence when crystalline 
~, are used to approximate arbitrary 7. 

• Determining the validity of using a sharp 
interface model for a diffuse interface and vice 
versa (recent work [111]) goes far toward giving a 
positive answer to this in one case, as mentioned 
in 2.8 above). 

Several of the nine methods outlined in Section 2 
have a parallel formulation when there is an 
additional diffusion field in the problem, and these 
methods are being pursued theoretically and compu- 
tationally. These include the mapping method 
[126-131], the phase field method [25-28, 112, 132], 

the viscosity-solution method [133-135], and the 
crystalline method [136]. 

• Extending further both theory and computation, 
for various methods, to the case where there is 
diffusion. 

• Determining when mass and/or heat flow can be 
neglected, and the nature of the convergence of 
solutions when heat and/or mass flow are not 
neglected to those where they are neglected. 

The mathematics requires quite precise formu- 
lations of the problem, and different statements can 
give quite different results for motion from corners 
and edges. All are correct from a mathematical point 
of view, but determining what is correct from a 
materials science point of view requires experiment 
and physical theory. 

• Determining experimentally when the frame- 
work of geometric crystal growth is applicable, and 
what determines M. Does the equation we have been 
using adequately describe v ? In essence, one measures 
v and 7 and deduces M. For  example, in domain 
growth near a second-order transition, fl = 0, 7 is 
isotropic and goes to 0 at the critical temperature, but 
v is independent of temperature and orientation [36]; 
thus M has to go to infinity as a function of tempera- 
ture in this formulation (while remaining isotropic), 
even though individual atoms have finite diffusion 
rates. 

• Determining what physically realistic conditions 
to apply when there are corners in the crystal shape 
[e.g. is stability the right criterion for characteristics, 
and is the viscosity solution the right one? When 
might other criteria be appropriate? See the discus- 
sion at the end of method (1) in Section 2.] 

• Determining whether or not 7 is convex. It is not 
obvious how one would measure 7 for the missing 
orientations of W, or even whether a surface could 
have a missing orientation whose energy would be 
higher than that if 7 were convex, since (in the 
absence of an extra energy due to edges) decompo- 
sition into a varifold would result in an instantaneous 
surface energy drop. One might be able to deduce the 
answer from the expected behavior of a nonconvex 7. 
For  example, some orientations that are not in W 
may be metastable; they are stable with respect to 
small undulations but unstable with respect to finite 
orientation changes as in a varifold [58]. 

• Resolving experimentally questions raised by 
differences in the formulations of the problem and in 
solutions. The mathematics required that certain 
assumptions be made explicit about what happens 
physically at edges and corners. Which of the differ- 
ent assumptions in this paper are physically realistic 
is a question that requires an answer from experiment 
or from physical theory. 
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Note added in proof--Progress continues to be made at a 
rapid pace, both in computation and theory. Much of this 
is outlined in the publication Computational Crystal Growers 
Workshop (edited by J. E. Taylor), Selected Lectures in 
Mathematics, Am. Math. Soc. (Providence) 1992, in press. 
It consists of 29 short papers and an 80-minute videotape 
containing 14 submitted videos, nearly all relevant to this 
overview. Some notable features are: 

(1) Merriman, Bence and Osher have developed a 
variant of the phase field method for motion by mean 
curvature and some other geometric motions. It can 
handle multiple phases and is expected to work computa- 
tionally in 3-d as well as in 2-d. It alternates a step of 
convoluting the characteristic functions of sets with the heat 
kernel (or some other smoothing function) with a step of 
rounding the resulting smoothed functions back to charac- 
teristic functions. 

(2) Brakke's evolver program now runs in 2-d in a 
"hands-off" fashion, needing no assistance in changing 
topology, inserting and deleting vertices, etc. The manual is 
available, as GCG 31, from the Geometry Center, Univer- 
sity of Minnesota, 1300 South Second Street, Minneapolis, 
MN 55415, U.S.A. The program plus manual is also 
available by anonymous ftp to geom.umn.edu, as the file 
pub/evolver.tar.Z. 

(3) Taylor's crystalline program in 3-d has been expanded 
to deal with surfaces without boundaries and some simple 
topological changes. Mobilities and driving forces f~ which 
depend on position and shape, such as in an imposed 
temperature gradient, can be treated. The facet-splitting 
process is better understood and implemented. 

(4) Programs for computing dendritic crystal growth are 
able to reproduce many experimentally observed phenom- 
ena (papers and videos by R. Almgren, Kobayashi and 
Roosen; papers by Dziuk and by B~insch and Schmidt). 

(5) Ilmanen has proven the convergence of the Allen- 
Cahn equation to Brakke's motion by mean curvature, in 
a preprint of that title. This preprint is summarized in the 
proceedings. 

(6) F. Almgren, Taylor and Wang have put a firm 
theoretical base under the optimization approach. 
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APPENDIX 

Glossary 
A function is C 2 if it is continuous and all its first and second 
partial derivatives are continuous functions. It is C ~ if its 
derivatives up to nth order are continuous. A surface is C 2 
if it is locally the graph of  a C 2 function. 

A real-valued function f which satisfies f (r x) = rf (x) for 
all r /> 0 is called positively homogeneous of degree 1. 

A real-valued function f is called convex if 
f ( a x  + by) ~< af (x)  + bf(y)  for all x,y and all positive a,b. 
It is strictly convex i f f ( a x + b y ) < a f ( x ) + b f ( y )  for all 
non co-linear x,y and for all positive a,b with a + b = 1 
(the latter condition is unnecessary if f is also positively 
homogeneous of  degree 1). 

A function f is called Lipschitz if there is a constant L 
such that I f ( x ) - f ( Y ) l  ~< L l x - y  I. A Lipschitz function 
is differentiable almost everywhere, but it can have infinitely 
many points where it does not have a derivative. In particu- 
lar, its graph can have "angles" in it. It must, however, be 
continuous and have slopes bounded by L. 

Almost everywhere means except on a set of  measure zero. 
It is thus a term which depends on the measure one is using; 
if this is not specified, then the measure is usually assumed 
to be the usual n-dimensional Lebesgue measure (length, 
area or volume, when n is 1, 2, or 3). 

A rectifiable path or curve is an image of  a Lipschitz 
function defined on the unit interval, i.e. a path is the set 
of  points x such that for some function f ,  f ( s ) =  x for 
some 0 ~< s ~< 1, and it is rectifiable if that function f is 
Lipschitz. The function f gives a parametrization of  the 
path. Rectifiable paths have tangent directions almost 

everywhere and hence are suitable for path integration of 
functions that depend on tangent direction. 

Isotropic means a function does not depend on normal 
direction. Anisotropic means the function is different in 
different directions. 

A specific surface free energy function ~ is called crys- 
talline if its Wulff shape Wr is a polyhedron (i.e. its surface 
is composed entirely of  a finite number of fiat plane 
segments). 

The Wulffshape W = I,V~. for a surface free energy func- 
tion ~, is defined by 

W = {x :x .n  ~< ?(n) for every unit vector n}. 

The limiting outward growth shape W~ is 

W ,  = {x :x .n  ~< M(n) for every unit vector n}. 

A support plane for a convex body B is a plane 
{ x : x . n = s }  such that y.n~<s for every y in B and y.n = s  
for some y in B. It touches B but only on its boundary; if 
B has a tangent plane at y, then the only support plane for 
B through y is that tangent plane. 

Smooth in this paper is usually taken to mean C 2. It is 
used mathematically to mean more or less "a sufficient 
number of  derivatives for the problem at hand." (Sometimes 
in other papers it means having a Taylor series expansion 
at each point which converges to the function in a neighbor- 
hood of  that point, which is called being analytic). 

A piecewise C 2 curve is a continuous curve composed of 
a finite union of curves, each of  which is C 2. It can have 
discontinuities in slope and curvature, but it must be 
continuous. A piecewise C 2 surface is a continuous surface 
that is composed of a finite number of pieces of  surface, each 
of  which is C 2 and each of  which has a piecewise C 2 
boundary. A piecewise C 2 function is one which is continu- 
ous, has a piecewise C 2 domain, and the function is C 2 on 
each piece. 

A geometric growth problem is defined in Section 1. 
A function F(x, t, p, X)  is geometric if and only if 

F(x, t, 2p, 2X + ~rp® p) = ~.F(x, t, p, X),  ), > 0, crcR; 

here p ® p  means the matrix whose 0'th entry is p~pj. The 
lack of  dependence on p ® p means that the velocity doesn't  
depend on the second derivative of  u in the normal direction, 
which is reasonable since that second partial has no influ- 
ence on curvatures. 

The function F = F(x, t, Du, D2u) is degenerate elliptic if 

F(x , t , p ,X  + Y)<.F(x , t , p ,X)  

for any Y which is a real symmetric matrix with non- 
negative eigenvalues. 

wmc is used to stand for "weighted mean curvature." 
It is defined for smooth 7 and smooth surfaces in 
Section 2 under the mapping method, and for crystalline 
y under the description of the crystalline method. It 
is discussed extensively in the companion paper to this 
overview [34]. 

A 2-dimensional manifold is locally an ordinary smooth 
piece of  surface everywhere, with no triple junctions or 
self-crossings. 

The concept of a varifold plays two roles. First, it is 
a mathematical idealization of a surface with fine-scale 
faceting. Secondly and quite independently, the definition of 
the first variation of  a varifold, and thereby its mean 
curvature, can handle triple junctions and point junctions 
without them being part of  the mathematical boundary of 
the surface [34]; this is an essential feature of Brakke's 
definition of  motion of  a varifold by mean curvature. 
Mathematically, a varifold is a "Radon measure on 
R~× G(n,m)." See Taylor [34] and Allard [98] for more 
details. It can make mathematically precise the notion of  
"infinitesimal corrugations" because it separately measures 
where the surface is (the R" part) and where the "tangent 
planes" are [the G(n,m) part], and one can think of  it as a 
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probability distribution o f  tangent planes at each point on 
a surface. 

A level set of  a function f i s  a set o f  all the points x such 
that  f takes a certain value on each x. For example, the 
0-level set is {x : f (x )  = 0}. 

A shock must  occur whenever characteristics cross. See 
Section 3.1. Shocks give rise to edges and corners in the 
evolving surface. A shock surface is the locus of  points where 
the resulting edges and/or  corners have been (or will be). 

A fan  (or rarefaction wave) of  characteristics must  be 
introduced whenever the mobility function M is not  differ- 
entiable, or when the surface is not  differentiable (i.e. at 
corners and edges). See Section 3.1. 

A curve or a surface is embedded if it has no self- 
intersections but  rather is topologically an  ordinary curve or 
surface everywhere. 

A function N on R 3 is a norm if and only if it satisfied 
the two properties of  positive homogeneity of  degree 1 
and convexity. (Strictly speaking, it is often further 
required that N ( -  p) = N(p), but  this property o f  the norm 

is not  used in this paper.) The unit ball of  a norm N is 
{p:N(p) ~< I}. The dual norm N* to a norm N is defined by 
N*(x) = SUppX" p/N(p). 

The tangent cone to a surface C at a point x o is the set of  
all the rays from x o tangent to C o, translated to the origin. 
That  is, it is 

{y: there exist sk~0 and Yk-'*Y with Xo+Sky k in Co}. 

The subgradient of ),(n) is defined [78] as the set of  all 
convex combinations o f  limits of  gradients as nj approaches 
n .  

The crystalline method is the naturally polyhedral way to 
treat various equilibrium and growth problems which 
applies when the Wulff shape is completely facetted. See 
Section 3.3 and the following paper [34]. 

A level set to a solution u for a PDE is said to have 
an interior at time t if the set on which u(t,.) = 0 is not  the 
lower dimensional object (e.g. curve in the plane, surface in 
3-space) that one would expect, but  rather is of  the same 
dimension as the ambient space. See Section 2(8). 


