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Abstract (Limit: 275 words; Word count: 271 words) 

Background: Existing methods to link preference-based and profile-based 

health-related quality of life (HRQoL) questionnaires have their limitations. 

Hence, we developed a new mapping method (the mean rank method, MRM) 

and applied it to map the World Health Organization Quality of Life 

Questionnaire (WHOQOL-BREF) to the EuroQoL 5 Dimensions 5 Levels (EQ-

5D-5L). We then compared the new MRM with current methods, i.e. 

regression-mapped (OLS method) and equipercentile method (EPM).    

Methods: Singapore residents, aged ≥21 years, were recruited from the 

general population and two outpatient clinics in acute care hospitals. 

Performance of the MRM was evaluated using both simulation and split-sample 

validation (n=658 in training and n=657 in validation samples). Using the 

training sample, we derived three sets of mapped EQ-5D-5L utilities based on 

MRM, OLS and EPM. Using simulation and the validation sample, we 

compared the performance of the mapping methods in terms of distribution 

parameters, mean utility by strata, association with health covariates, and 

prediction errors at the individual-level, among others.  

Results: The WHOQOL-BREF Physical Health domain is the only domain 

significantly associated with EQ-5D-5L utilities. Simulation showed that MRM 

more accurately reproduced the variance and percentiles of the distribution of 

the observed utilities than did the OLS method or EPM. OLS tended to under-

estimate the mean utility of good health states, overestimate the mean utility of 
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poor health states and underestimate the association with covariates. An 

analysis of validation sample gave similar results.  

Conclusion: In scenarios similar to the mapping of WHOQOL-BREF to the 

EQ-5D-5L, the MRM outperformed OLS method and EPM in important - though 

not all - aspects. The simplicity and reproducibility of the MRM makes it an 

attractive alternative to current methods.  
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Introduction 

Economic evaluation of drugs, devices and healthcare programmes is 

increasingly prevalent, driven in large part by the recognition that healthcare 

resources are limited. Cost-utility analyses (CUA), which evaluate the 

incremental cost incurred for an incremental unit of quality-adjusted life years 

(QALY) gained, is the most common form of economic evaluation.(1) QALY is 

a survival outcome adjusted for the quality of those additional life years gained, 

with the quality adjustment factor derived from preference-based measures of 

health-related quality of life (HRQoL). Several preference-based HRQoL 

measures are available and include the EuroQoL 5 Dimension 5 Levels (EQ-

5D-5L),(2) the Short-Form 6 Dimension (SF-6D)(3) and Health Utilities Index III 

(HUI-3);(4) the EQ-5D-5L is the preferred measure by the National Institute for 

Health and Clinical Effectiveness (NICE) in the United Kingdom(5) and the 

HUI-3 used in several major national population health surveys in Canada.(4) 

 

Although preference-based HRQoL measures are essential in economic 

evaluation, profile-based HRQoL measures remain the predominant - if not 

only - measures used in clinical trials and clinical studies as they provide richer 

information about patient’s HRQoL and are more sensitive to clinically relevant 

changes. For instance, the Short-Form 36 version 2 questionnaire, from which 

the SF-6D was derived, provides scores on eight aspects of HRQoL including 

physical functioning (PF), role-physical (RP), bodily pain (BP), general health 

(GH), vitality (VT), social functioning (SF), role-emotional (RE) and mental 
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health (MH). Hence, there has been strong interest to bring the two types of 

measures (profile-based and preference-based) together using processes such 

as mapping or linking (6-8). In a review published in 2010,(9) a total of 30 

studies were identified with EQ-5D being the most widely used preference-

based HRQoL measure and the Short Form-12 (SF-12) and SF-36 being the 

most widely-used profile-based HRQoL measure in the mapping studies. 

Interestingly, to the best of our knowledge, there has not been any study that 

maps the WHOQOL-BREF to a preference-based measure, despite 

WHOQOL-BREF being a widely used questionnaire. WHOQOL-BREF(10) is 

an abbreviated version of the WHOQOL-100(11) developed by the World 

Health Organization at 18 international field centers simultaneously. It has 

been used in more than 100 studies worldwide. Hence, the first aim of this 

study is to map the WHOQOL-BREF to EQ-5D-5L as this has tremendous 

potential for numerous existing and future studies.  

 

Mapping by ordinary least square regression (OLS) is the most common in 

quality of life and health utility studies. A major disadvantage of OLS-based 

mapping is that it tends to underestimate variability and risks inflating type 1 

error in hypothesis testing.(6) Equipercentile mapping (EPM) has been popular 

in educational settings.(6, 12, 13) The basic idea is that 𝑥 and 𝑦 are considered 

equivalent if 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑌 ≤ 𝑦) = 𝐺(𝑦), where 𝐹(𝑥) and 𝐺(𝑦) are the 

cumulative distribution functions (CDF) of 𝑋 and 𝑌, respectively. While the EPM 

is conceptually attractive, a major disadvantage is that the solution exists only if 
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the CDFs are continuous and strictly increasing. For discrete data, which is 

very common in HRQoL measurements, smoothing of the CDFs is needed 

before the EPM can be performed.(6) However, smoothing is, in general, not a 

trivial task. One of the difficulties in the practice of smoothing is boundary 

effects. In particular, the EQ-5D-5L utilities often show a heavy ceiling 

effect,(14) which accentuates the problem of boundary effects. Hence, the 

second aim of this study is to propose a new method based on ranks, and 

compare its performance with the two mapping methods aforementioned. This 

method is conceptually similar to the EPM but the practice does not involve 

smoothing and is very simple to understand and implement. We have 

organized this manuscript according to the MAPS statement.(15)   

 

Methods 

Participants and Study Design 

This study comprises participants from the general population as well as 

samples from two clinics. Ethics approval for this study was obtained from the 

National Healthcare Group Domain Specific Review Board (Ref. 2013/00747) 

as well as the SingHealth Centralised Institutional Review Board (Ref. 

2015/2041). The clinic samples were chosen to enrich the dataset, covering a 

wider spread of health status and enhancing the quality of mapping.  
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Singapore is a multi-ethnic society mainly consisting of Chinese, Malay and 

Indian people. English is the lingua franca. The general population participants 

were recruited by using a multi-stage cluster sampling using postcodes as the 

primary sampling unit (PSU) followed by the selection of household and then 

the selection of respondents. Three call attempts (1st attempt and 2 call backs) 

were made on different days and at different times of the week. Only one 

participant per household was selected. Participants were selected based on a 

pre-specified quota for language of interviews within each ethnicity interlocked 

with age and gender. The face-to-face interviews were conducted in the 

participants’ home between October 2014 to January 2015.  

 

The clinic participants were drawn from two separate studies in outpatient 

clinics in the National Heart Center Singapore (NHCS) and the Division of 

Endocrinology in the National University Hospital (NUH). Recruitment was 

conducted by research assistants via convenience sampling: patients were 

approached in the clinics while waiting to see the doctor. In both clinical 

samples, patients must respond positively to either of these questions: “Have 

you ever been told by a doctor previously that you have at least one of the 

following: blockage of the arteries to your heart, stroke, heart attack, peripheral 

arterial disease, or transient ischaemic attack, or kidney disease?”. and “Have 

you ever had at least one of the following: heart bypass operation, stent 

insertion or brain surgery for stroke?”. Patients with recent acute myocardial 

infarction (STEMI), hemodynamic instability or gestational diabetes were 
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excluded. Interviews were carried out between March 2015 and February 

2016.  

 

For the general population and clinic samples, to be eligible, the participant 

must be a Singapore Resident (include Singapore Citizens and Permanent 

Residents) aged 21 years and above who speaks English, Chinese (Mandarin) 

or Malay. Participants who speak only Tamil were excluded as the 

questionnaires are not available in Tamil. All participants read and signed the 

written informed consent form prior to commencement of the interviews. 

 

Questionnaires 

A total of three HRQoL questionnaires were used (EQ-5D-5L, WHOQOL-BREF 

and SF-36v2), in addition to a socioeconomic and clinical questionnaire, where 

information such as age, gender, ethnicity and self-reported medical conditions 

were captured.  

 

WHOQOL-BREF 

The WHOQOL-BREF is a 26-item questionnaire which includes one item from 

each of the 24 facets contained in the WHOQOL-100 and two additional items 

on overall quality of life and general health. The 24 items are organized into 4 

domains, namely Physical Health, Psychological, Social Relationships and 
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Environment. Three negatively phrased items were reversed scored. According 

to the users manual, domain scores were computed by taking the mean of the 

scores of the items that constitute the domain and multiplied by 4, so that the 

scores are directly comparable with those derived from WHOQOL-100. 

However, in our analyses, the raw domain scores (i.e. sum of item scores 

within domain) were used. Unlike the transformed domain scores, the raw 

scores had the advantage of equal-interval, which would make the mapping 

easier, as smoothing of the CDF was needed for one of the mapping methods. 

We used the mean substitution method to replace missing values provided that 

there was no more than one missing value per domain, which is the official 

WHOQOL-BREF approach for handling missing data.(16) That is, missing item 

scores were replaced with the mean of the non-missing item scores in the 

same domain; other ways of handling missing values were not considered 

because our aim was to map the WHOQOL-BREF scores to the EQ-5D-5L 

utility index. The mean substitution is an integral part of the WHOQOL-BREF 

score. To use an alternative method for handling the missing values would 

mean generating a score different from the WHOQOL-BREF, which was not 

our intention. 

 

EQ-5D-5L 

The EQ-5D-5L comprises five dimensions: mobility, self-care, usual activities, 

pain/discomfort and anxiety/depression with 5 response options for each 

dimension (no, slight, moderate, severe, extreme problems/unable). 
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Participants indicate their health status for the day by selecting one response 

option per dimension, giving rise to a 5-digit health profile. This, in turn, is 

linked with a utility score. We used the Japanese value set from the EuroQoL 

Group’s crosswalk project as a Singapore dataset is not available.(17) The 

Japanese value set has a possible range of –0.111 to 1.(18)  

 

SF-36v2 

The SF-36v2 is a 36-item profile-based generic HRQoL questionnaire that 

assesses 8 domains of HRQoL, as described above. Scores for the 8-scale 

dimensions were standardized to the Singapore adult population (mean 50, 

standard deviation 10) with higher scores indicating better HRQoL; this makes 

it possible to meaningfully compare scores across domains.(19) Missing data 

were replaced by mean substitution.   

 

Statistical Analyses 

Participants who had non-missing values in the four WHOQOL-BREF domains 

were randomly split to form a training sample and a validation sample, with 

approximately equal number of participants in each sample. 
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Exploratory Data Analysis 

As mapping should be performed only if the two instruments measure the 

same constructs, we performed least squares regression to assess whether all 

or only some of the four WHOQOL-BREF domain scores were associated with 

EQ-5D-5L utilities. Domain scores not associated with EQ-5D-5L utilities were 

excluded from the mapping exercise.  

 

Modelling Approaches and Estimation Methods 

Three different mapping methods were employed. First, we proposed a new 

method referred to as the mean rank method (MRM).  

Mean Rank Method for Mapping Health Utility 

 (1) 𝑋 is the predictor variable and its values are ranked from smallest (=1) to 

largest (=N). For tied values, mean of ranks is assigned. For unique (non-tied) 

values, mean rank is the same as the rank. 

(2) 𝑌 is the health utility variable and its values are ranked from smallest (=1) to 

largest (=N). For tied values, the ranking among the set of tied values is 

arbitrary. The index 𝑖 refers to the 𝑖-. row of the sorted (𝑥, 𝑦) data. 

(3) For each unique 𝑥 value, 𝑥 is mapped to the 𝑦 value with the same rank.  
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(4) For 𝑛1 tied 𝑥 values at the 𝑘-. level of unique values in 𝑋	(𝑘 = 1,2,… ,𝐾), 𝑥 

is mapped to the mean of the 𝑛1 consecutive 𝑦 values whose mean of ranks 

equals the mean ranks of the tied 𝑥 values. The vector of mapped values is 

denoted by 𝑦89:9.   

The spirit of the proposed method is like that of the EPM, with ties in 𝑋   

handled with a simple assignment of the mean of the 𝑦 values with comparable 

ranks. Unlike the EPM, the proposed method does not achieve symmetry; it is 

like the OLS method in this regard. In the absence of ties in 𝑋, the CDF of the 

mapped values will be identical to the CDF of the observed 𝑌, regardless of the 

presence or absence of ties in 𝑌. For tied values in 𝑋, the CDF jumps at the 

mean of the set of 𝑦 values whose mean of ranks equals the mean ranks of the 

tied 𝑥 values. The proposed method involves minimal modelling other than 

assigning the mean of consecutive 𝑦 values to their corresponding tied values 

in 𝑋. In the absence of ties in 𝑌, the rank of each 𝑦89:9 value is identical to the 

rank of its corresponding 𝑥 value. As such, although there is no direct 

modelling of the association between variables, the proposed method has a 

feature of 𝑟ℎ𝑜(𝑦89:9,𝑦) = 𝑟ℎ𝑜(𝑥, 𝑦), where rho is the Spearman correlation 

coefficient, except when there are ties in 𝑌. This is similar to the feature of 

𝑟(𝑦8>?@,𝑦) = 𝑟(𝑥, 𝑦) in OLS-based mapping, where r is the Pearson’s correlation 

coefficient and 𝑦8>?@ is the mapped utility variable using the OLS method. 

 

The proposed method does not necessarily require 𝑋 and 𝑌 to be paired data 

from the same individual. For example, suppose that for the purpose of 
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reducing burden on respondents, individuals are randomized to complete 

different assessment packages that contain, among other instruments, either  

𝑋 or 𝑌. The proposed method is still usable even though the individual did not 

complete both 𝑋 and 𝑌. 

As shown in details in Online Appendix 1, the means of the observed and 

mapped values are identical, but the MRM underestimates the true variance by 

∑ 𝑒CDE
CFG 𝑁⁄ ≥ 0, where the subscript i denotes the 𝑖-. row of the sorted (𝑥, 𝑦) 

data, as mentioned above. In the context of OLS-based mapping, Chan et al. 

(2014) proposed to use 1/ R2 from a training dataset as a correction factor to 

inflate the variance of 𝑦8>?@ in future studies to correctly estimate the true 

variance. Similar to their proposal, in the MRM, an R2-type of variance 

adjustment factor, 𝑉𝑎𝑟(𝑦C) {𝑉𝑎𝑟(𝑦C) − (∑ 𝑒CDE
CFG 𝑁⁄ )}⁄ , can be obtained from the 

training dataset for use in future studies.  If there is no tie in 𝑋, the variance of 

𝑦89:9 is identical to that of the observed utilities. In practice, the larger the 

number of levels a measurement scale has, the smaller the number of ties and 

the closer the variances of the observed and mapped utilities.  As shown in 

Online Appendix 1, as the number of levels on the predictor scale increases 

and the amount of tied observations reduces, mapping errors reduce. 

 

Regression and Equipercentile Methods for Mapping Health Utility 

Second, we used the OLS method to map the WHOQOL-BREF scores to EQ-

5D-5L utilities. Non-linear relation was estimated by the fractional polynomial 
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method. Third, we used the EPM where kernel smoothing with the 

Epanechnikov kernel function was used to smooth the CDFs.(20) The pseudo-

data method was used to mitigate the boundary effect.(21, 22) Kernel 

smoothing often defines an “optimal” bandwidth as the bandwidth that 

minimizes the mean integrated squared error if the data follow a Gaussian 

distribution. For non-Gaussian data, this “optimal” bandwidth tends to be too 

wide.(23) We considered this “optimal” bandwidth the upper limit and used half 

of this value in this article. Varying the bandwidth around this half value and 

below the “optimal” value gave similar results (details not shown). EPM was 

implemented by linking the two smoothed CDFs. 

 

Validation Methods  

The choice of criteria to compare the performance of mapping methods is not 

straightforward, as different criteria may favour different methods; e.g. 

minimum sum of squared errors would favour the OLS method. We proposed 

that the key evaluation criteria should be based on how well the results of the 

analyses that used the mapped utilities agree with the results of the analyses 

that used observed utilities. In general, utilities may be used in at least two 

ways: (1) to describe a population and (2) to estimate group differences or 

associations. For example, if utilities are used to describe a population, one 

would expect the descriptive summary, including mean, variance, median, and 

10th and 90th percentiles, of the mapped and observed utilities to be similar. In 

addition, the proportion with low utility should be similar.  
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If utilities are used to estimate group differences or associations, then in the 

regression model, one expects the beta coefficients obtained using the 

mapped utilities and the observed utilities to be similar. We discuss this in the 

context of a CUA, which is the typical use of utilities to estimate group 

differences or associations. In CUA, the incremental cost for gaining an 

incremental quality-adjusted life year (QALY) with a newer treatment (j=2) over 

an existing treatment (j=1; usually standard of care) is calculated. Patients 

under each treatment are classified into ordered health states, 𝐻1 (k=1, 2, …, 

K), according to observable signs or measures, with 𝐻G and 𝐻R being the most 

and least desirable health states, respectively. For example, 𝐻G may be Type 2 

diabetes mellitus without complications while 𝐻R is Type 2 diabetes mellitus 

with end stage renal failure. The goal of the new treatment is to shift the 

distribution of health states towards 𝐻G (i.e. slow down disease progression). 

The gain in QALY with the new treatment (j=2) as compared with the existing 

treatment (j=1) is calculated by 𝐺𝑎𝑖𝑛 = ∑ 𝑃D,1𝜇1𝑦1R
1FG − ∑ 𝑃G,1𝜇1𝑦1R

1FG , where 

𝑃T,1 is the proportion of patients under treatment j who have health state k, 𝜇1 is 

the mean utility for health state k and 𝑦1 is the length of time spent in health 

state k. Hence, the key concern in CUA is that the difference in mean utility 

between groups (𝜇1 − 𝜇1U) must be correctly estimated. Otherwise, the 

treatment’s impact on shifting health states would not be properly valued.  As 

such, the mean mapped utilities by health states needs to be similar to that of 

utilities obtained directly using the EQ-5D-5L or other utility instruments.  



Author’s Version for Self-Archive. Available at Medical Decision Making. 
2018; 38(3): 319 – 333 (https://doi.org/10.1177%2F0272989X18756890)  

 

16 

In summary, we considered the key criteria for comparing different mapping 

methods to be that (1) for the purpose of describing a population, the mean, 

variance, median, 10th and 90th percentiles using the mapped utilities should 

closely approximate that of using the observed utilities, and (2) for the purpose 

of estimating group differences and association, the difference in mean utility 

between groups	(𝜇1 − 𝜇1U) using the mapped utilities should closely 

approximate that of using the observed utilities. For completeness, we would 

also report measures of individual-level prediction errors such as mean 

squared error (MSE), mean absolute error (MAE) and intraclass correlation 

coefficient (ICC). We used the ANOVA estimator of ICC.(24) In this context, 

there are three sets of pairwise comparison because three mapping methods 

were considered. Each set of pairwise comparisons consisted of one observed 

and one mapped utility for each participant. We went on to perform a 

simulation and split-sample validation.  

 

Simulation 

The purpose of the simulation was to compare (1) the distribution parameters 

and (2) the mean utilities in strata, defined by Z, and the regression coefficient 

estimate of health utility Y on Z ((𝛽WX|Z)) on assumption of linear trend. 

Individual-level prediction errors were also reported. The population consists of 

three strata of equal size, coded as 𝑍 = 1, 2 or 3, with 𝑍 = 3 being the stratum 

with the best health and 𝑍 = 1 being the stratum with the worst health. The 
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predictor scores are generated by setting 𝑋 = 20 + 5 × 𝑍 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 5), 

which resembled the distribution of the Physical Health domain score of the 

WHOQOL-BREF, with a ceiling at 35. In the simulated data to be shown in 

Figure 1, the values ranged from 8 to 35 (i.e. 28 levels). Health utility 𝑌, was 

generated by a normal distribution, with mean equal to either 0.45 + 0.2𝑍 

(setting (i)) or 0.55 + 0.2𝑍 (setting (ii)), standard deviation equal to 0.1, and 

values > 1 were recoded to 1. Under simulation settings (i) and (ii), 25% and 

41% of observations had health utility above 1 before recoding, respectively. 

After recoding, the correlation between 𝑋 and 𝑌 was 0.74 and 0.70 and that 

between 𝑍 and 𝑌 was 0.85  and 0.79 under simulation settings (i) and (ii), 

respectively. The skewness in 𝑌 was -0.5 and -0.9 under settings (i) and (ii), 

respectively.  To assess the impact of ties and number of levels in the predictor 

scale, we further generated a coarsened version of the predictor (𝑋-coarse), by 

recoding the 𝑥 values to 10 levels only (≤17=1, 18-19=2, 20-21=3,…, 34-

35=10).  We ran 1000 replicates of the simulation, each with a sample size of 

500. Within each replication, the mapping methods were applied to the new 

data to generate new mapping results. 

Split-sample Validation 

Participants were randomly assigned to the training and validation samples. To 

evaluate the performance of the mapping methods in describing the population, 

we tabulated and compared the mean, SD, percentiles, and variance ratio, 

𝑉𝑎𝑟c𝑌de 𝑉𝑎𝑟(𝑌)⁄ , where 𝑌d is the predicted health utility, of the observed EQ-5D-

5L utilities and the three sets of mapped utilities. In addition, we arbitrarily 
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defined utility ≤ 0.8 as low utility and normal otherwise. This value of 0.8 was 

approximately the 25th percentile in the present study. The proportion of 

participants with low utility based on the observed utilities and three sets of 

mapped utilities were compared.  

 

 

To evaluate the performance of the mapping methods in estimating group 

differences and association, we performed several least squares regression 

analyses. The first model has the observed utilities as dependent variable, and 

demographic variables (age and gender) as the independent variables. The 

second model has observed utilities as the dependent variable and the 8 

domain scores of SF-36v2 as the independent variables. The third model has 

observed utilities as the dependent variable and self-reported morbidity on a 

disease inventory as the independent variable. We then repeated the above by 

replacing the observed utilities with one of three sets of mapped utilities, giving 

a total of 12 regression analyses. The regression coefficients and the 

acceptance/rejection of null hypotheses based on the observed and mapped 

utilities were compared. Individual-level prediction errors were also reported. 

 

Results 

Simulation 
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Figure 1 illustrates the cumulative distribution of observed and MRM-mapped 

health utilities under simulation setting (i) in a population of one million people 

generated according to the parameters described in the Methods section. The 

CDF of the mapped utilities follows that of the observed health utilities closely. 

A similar CDF pattern was observed for simulation setting (ii) (details not 

shown).   

 

 

Evaluation of Mapping Methods – Describing the Population 

Table 1 shows the mean of parameters over 1000 simulation runs under two 

settings, each of which had a sample size n=500. All mapping methods 

estimated the observed mean health utility accurately in both settings. 

However, the MRM outperform OLS method and EPM in several aspects. For 

instance, the MRM obtained a variance and percentiles close to the observed 

health utilities. The ratios of variance of MRM-, OLS method- and EPM-

mapped utilities against the observed utilities were 0.995, 0.525 and 0.831, 

respectively, in setting (i) and 0.994, 0.427 and 0.865, respectively, in setting 

(ii) . The MRM underestimated the variance by less than 1% in the two 

settings. In addition, the MRM outperformed the OLS method and EPM in 

terms of accuracy in estimating the percentiles of the observed distribution. 

Even when the predictor data were recoded to a coarser (10-point) scale, the 

MRM still outperformed the OLS method in both settings and outperformed the 
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EPM in setting (i) in terms of estimating the true variance and the 10th, 50th and 

90th percentiles.  

 

Evaluation of Mapping Methods – Describing the Association  

In terms of using mapped data to estimate association with covariate 𝑍, the 

MRM provided regression coefficients closer to the true regression coefficients 

than the other mapping methods. The MRM also more accurately estimated 

the mean utility values in all three strata in both simulation settings than the 

other two methods. In both simulation settings, the OLS method showed the 

expected pattern of bias in estimating the mean utility by health strata. For 

example,  in setting (i), the OLS method overestimated the mean utility for a 

poor health state (Z=1, 0.699 versus 0.650) and underestimated the mean 

utility for a good health state (Z=3, 0.947 versus 0.980; Table 1). Even when 

the predictor data were recoded to a coarser (10-point) scale, most of the 

above observations still held.  

Individual-Level Prediction Error 

Where individual-level prediction error was concerned, the OLS method had 

the smallest mean squared errors (Table 1). On the other hand, MRM had the 

smallest mean absolute errors.  

Split-Sample Validation 

Participants and Missing Data 
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There was a total of 1343 participants, with 913 participants from the general 

population, 223 from NHCS and 207 from NUH. The overall response rate in 

the general population survey was 21% and this is not unexpected for door-to-

door surveys. We did not keep track of the response rate in the clinic samples. 

However, in a similar study assessing health-related quality of life in the same 

diabetes clinic, response rate was 32%.(25) Out of 1343 participants, 1318 

(98.1%) participants had no more than one missing value per WHOQOL-BREF 

domain and 3 (0.2%) participants had missing value on other variables such as 

the SF-36v2. The item non-responses of these 1315 participants were imputed 

using the mean substitution method described earlier. Eighty four (6.4%) of the 

1318 participants had one missing value within the Physical Health domain of 

the WHOQOL-BREF, mostly in item 18 about “satisfied with your capacity for 

work” (n=73); people who were not employed tended not to answer this 

question. The present manuscript analysed the 1315 participants, with 658 

participants in the training and 657 in the validation samples. The participants 

comprised 755 men (57%), 616 Chinese (47%), 539 Malay (41%), 154 Indian 

(12%) and 6 of other race (0.5%) with mean age 52 (range: 24 to 90) years. 

Participants completed the survey in English (454, 35%), Chinese (442, 34%) 

or Malay languages (419, 32%). The percentage of participants with primary, 

secondary or tertiary education was 35%, 38% and 27%, respectively. 

 

Descriptive and Exploratory Data Analyses in Training Dataset  
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Distribution of WHOQOL-BREF, EQ-5D-5L and SF-36v2 scores in the training 

sample are given in Table 2. In the training sample, the Physical Health, 

Psychological, Social Relationships, and Environment domain scores are 

integers in the ranges of 10 to 35, 9 to 30, 5 to 15, and 11 to 40, respectively. 

The observed EQ-5D-5L utility and WHOQOL-BREF domains scores covered 

a broad range. However, the lowest possible EQ-5D-5L utility and the 

WHOQOL-BREF domain scores were not observed.  

 

A non-linear relation between WHOQOL-BREF Physical Health domain and 

EQ-5D-5L utility was found: as the Physical Health domain score increased, 

the increase in utility score levelled off. The non-linearity can be captured by a 

2-degree fractional polynomial with power terms -2 and 0.5 (each p<0.001). 

Having included the Physical Health domain scores, none of the other three 

domain scores were associated with utility (each p>0.40). The model with all 

four domain scores (2 degrees of freedom (DF) for Physical Health and 1 DF 

for each of the other domains) and the model with only the Physical Health 

domain (2 DF) gave adjusted R-squared of 0.449 and 0.451, respectively. 

Hence, we went with the model that included only the Physical Health domain.   

 

Estimation of Predicted Utilities in Training Dataset 
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The mapped utilities according to the MRM, OLS method and EPM are shown 

in Table 3 for the range of Physical Health domain scores (10 to 35) observed 

in this study.  The OLS mapping equation is: 

EQ-5D utility=  0.2621 - 46.8768×Physical-2 + 0.1327×Physical0.5 

Despite the non-linear functional form, if the Physical Health score is at its 

maximum score of 35, the OLS-mapped utility score at being 1.009 exceeded 

the full health utility. This was constrained to a maximum value of 1.0 to 

conform with the full health utility.   

 

The OLS-mapped utilities tend to be higher than the MRM-mapped utilities, 

except when the MRM-mapped utilities equalled or was near the full health 

utility of 1 at Physical Health domain score > 28. Except in the lower end of 

Physical Health domain scores (10 to 13), the MRM-mapped utilities tended to 

be slightly higher than the EPM-mapped utilities. 

 

Evaluation of Mapping Methods – Describing the Population 

 

Table 4 shows the mean, SD, percentiles of the observed and three series of 

mapped utilities in the validation sample. The OLS method underestimated the 

observed SD (0.095 versus 0.145). The EPM slightly underestimated the 

observed mean utilities (0.843 versus 0.885). The MRM performed well in both 
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regards. Its variance ratio against the observed variance was 0.959. The MRM 

also gave percentiles that more closely followed the observed percentiles than 

the other two methods. According to the observed utility, 24.7% (95% CI: 

21.4% to 28.1%) of the participants had a low (≤0.8) level of utility. Using the 

MRM, OLS method and EPM, 28.8% (25.3% to 32.4%), 14.0% (11.4% to 

16.9%) and 44.3% (40.5% to 48.2%) had a low level of utility, respectively. 

 

Evaluation of Mapping Methods – Describing the Association with Age and 

Gender  

In assessing the association with age and gender, the observed utilities were 

negatively associated with age per five-year band (regression coefficient -15 x 

10-3; p<0.001) but not with gender (6.9 x 10-3; p=0.53, Table 5). All three 

mapping methods gave similar findings.  

 

 

Evaluation of mapping methods – Describing the Association with SF-36v2 

Scale Scores  

The observed EQ-5D-5L utility score had strong association with the PF and 

BP scores of the SF-36v2 (each p<0.001), was somewhat associated with GH 

(p=0.015) and MH (p=0.027), and clearly had no association with SF (Table 6). 

All three mapping methods similarly captured the strong association with PF 
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and lack of association with SF. However, all of them somewhat 

underestimated the association with BP and overestimated the association with 

VT. The OLS method gave standard errors that were smaller (range: 1.3 (BP) 

to 2.0 x 10-4 (MH), not counting the intercept) than those from the observed 

utility (2.3 (BP) to 3.5 (MH) x 10-4) and the other two mapping methods.  

 

Evaluation of Mapping Methods – Describing the Association with Self-reported 

Morbidity 

Among conditions on an inventory, 6 conditions had prevalence above 5% 

(Table 7). Co-morbidities among patients with diabetes mellitus were common. 

Having controlled for co-morbidity, diabetes mellitus was not associated with 

the observed utility score (1.5 x 10-3; p=0.92, Table 7). Asthmatic patients had 

somewhat reduced utility but that was statistically non-significant (-38 x 10-3; 

p=0.096). It should be noted that, although the association between observed 

utility score and diabetes mellitus were not statistically significant, the 

association between mapped utility scores and diabetes mellitus were 

statistically significant across all three sets of mapped utility scores (each 

p<0.01). Furthermore, the OLS method showed a reduced utility level in 

patients with asthma that is close to conventional level of statistical significance 

(-26x10-3; p=0.052). Other results were similar across methods.   

 

Individual-Level Prediction Error 
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The OLS method had the lowest mean squared error while the MRM had the 

lowest mean absolute error. The EPM had larger prediction errors on both 

accounts. The ICCs between the observed utilities and the MRM-, OLS-

method, and EPM-mapped utilities were 0.60 (95% CI: 0.55 to 0.65), 0.58 (0.53 

to 0.63), and 0.56 (0.51 to 0.62), respectively. This suggests fair/good 

agreement at the individual-level.  

 

Discussion 

This is the first manuscript to map the WHOQOL-BREF to EQ-5D-5L, two 

widely used HRQoL measures. We have now enabled numerous studies that 

employ the WHOQOL-BREF alone without concurrently including a preference-

based HRQoL measure to produce such a score that is critical for inclusion in 

cost-utility studies. In addition, we proposed a new mapping method, which we 

call the MRM. We demonstrated by simulation and split-sample validation that 

this new method performs better than the OLS method and the EPM.  

In this article, we have focused our comparison on OLS method and EPM 

because the former is the most commonly used method so far and the latter is 

conceptually similar to our proposed method. Nonetheless, there are other 

alternative methods. For example, Gray et al.(26) used the multinomial 

regression approach to map SF-12 responses to the five dimensions of the 

EQ-5D, which were then used to generate the utility index, and Sullivan and 

Ghushchyan used Tobit regression to map the SF-12 scores to the EQ-5D 
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utility index.(27) In these two examples, the observed responses to EQ-5D 

dimensions or the observed EQ-5D utility index were considered the 

manifestation of latent variables. Despite more statistical sophistication, these 

regression methods did not appear to perform better than the OLS method in 

mapping to the utility index,(26, 27) even though the indirect mapping via the 

EQ-5D dimensions did provide richer descriptive information. As regression 

methods other than OLS method have not provided much improvement in 

mapping, we consider the alternative approach along the line of EPM. 

All three mapping methods estimated the mean and median reasonably 

accurately. However, in terms of describing the lower end of the distribution 

and the proportion with low EQ-5D-5L utility, the MRM out-performed the other 

two methods in both simulation and split-sample validation. It is well known that 

the variability of utility scores generated by OLS mapping is underestimated. 

But its implication on CUA appears to have received limited attention. Since 

OLS mapping replaces high and low values with the corresponding conditional 

means, mean utilities for the group with a good (bad) health state tends to be 

underestimated (overestimated). As a result, the gradient of utilities across 

ordered health states tends to be underestimated, which leads to biased 

estimation of the gain in QALY and incremental cost-utility ratio. This pattern 

was previously reported in, for example, cancer patients classified according to 

performance status (28) and migraine patients classified according to number 

of headache days per month.(29) In both simulation settings, we found that the 

MRM and EPM were successful in preserving the differences in mean utilities 



Author’s Version for Self-Archive. Available at Medical Decision Making. 
2018; 38(3): 319 – 333 (https://doi.org/10.1177%2F0272989X18756890)  

 

28 

between groups and the regression coefficient. In contrast, the OLS method 

underestimated the differences, with the regression coefficient being under-

estimated by 25% to 28%.   

 

In terms of estimating association and the mean difference between groups, 

the relative accuracy of the MRM was more visible in simulation than in the 

split-sample validation. In the split-sample validation, the three methods 

captured most of the major findings using the observed EQ-5D-5L utility. It was 

true that the OLS method gave smaller variability, but it did not differ vastly 

from the other methods in terms of rejecting hypotheses. We do note that there 

was a discrepancy in the covariate-adjusted association between observed 

EQ-5D-5L utility score and diabetes mellitus and the covariate-adjusted 

association between mapped EQ-5D-5L utility score and diabetes mellitus. We 

believe that this discrepancy is not due to an underestimation of the variance 

produced by the MRM as we have demonstrated that the underestimation with 

the MRM using WHOQOL as predictor is negligible. It should be noted that the 

multiple regression analysis (Table 7) adjusted for comorbidities. As such, the 

non-significant regression coefficient for diabetes mellitus in the analysis of 

observed EQ-5D-5L utility scores represented the non-significant difference 

between healthy people and persons with diabetes who had no comorbidity, 

which was only a small fraction of persons with diabetes mellitus in our study 

population. Ceiling effects are pronounced with the observed EQ-5D-5L utility 

scores. Pooling the training and validation datasets, 16 of 25 persons (64%) 
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with diabetes mellitus but no comorbidity were at the EQ-5D-5L ceiling. In 

contrast, none of this group of participants reached the WHOQOL-Physical 

Health score ceiling. Since ceiling effect suppresses differences in people who 

are relatively well, the mapped utility scores were more likely to show a 

significant coefficient for diabetes mellitus in comorbidity-adjusted analysis. 

Similarly, despite statistical significance in all four sets of analyses, the 

absolute values of the regression coefficients on the General Health score of 

the SF-36 (Table 6) and heart and renal diseases (Table 7) in the analyses of 

observed EQ-5D-5L utilities were smaller than those in the analyses of mapped 

utilities, by roughly two to three standard errors. That the WHOQOL-BREF 

scores and mapped EQ-5D-5L utilities had less ceiling effect than the observed 

EQ-5D-5L utilities may have also contributed to these differences. The present 

study did not include an assessment of the impact of using mapped versus 

actual utilities on the incremental cost-utility ratio because that will be similar to 

looking at group differences (i.e. differences in utilities between patients on 

new and old treatments). 

 With regards to individual-level prediction error, as expected, both the 

simulation and validation analysis showed that the mean squared error was 

lowest in the OLS-based mapping. However, both the OLS method and EPM 

had higher mean absolute error than the MRM. In terms of intraclass 

correlation, the three methods performed quite similarly, with the MRM showing 

slightly stronger agreement with the observed data than the other two methods. 
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There was no consistent pattern to clearly indicate which method is more 

accurate in making individual-level predictions.   

Kernel smoothing is no trivial task. It involves decisions that are somewhat 

subjective, such as choice of kernel function, band width, and handling of 

boundary effects. That the EPM performed somewhat less well than the MRM 

in this study does not necessarily mean that the methodological framework is 

poor. The issue with the EPM is that different analysts may produce somewhat 

different results depending on the choice of the parameters described above. 

This leads us to point out that the MRM is simple to use and does not involve 

any subjective modelling choices. Most importantly, all analysts will produce 

the same mapping result given the same dataset. Simplicity and reproducibility 

are thus two relative advantages of the MRM. 

 

The accuracy of the MRM is reduced as the number of levels on the predictor 

scale decreases. The observed number of predictor levels in this study was 26 

(integers from 10 to 35), although the maximum possible number for the scale 

was 39 (integers from 7 to 35). In the case study and in simulation settings with 

similar data patterns, the MRM performed well. We note that profile-based 

HRQoL measures that are used to map to utilities often have more levels than 

we evaluated. For example, the observed number of levels in the Functional 

Assessment of Cancer Therapy (FACT) – General and the FACT-Breast in a 

mapping study were 74 and 96, respectively.(30) As such, we expect that the 
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proposed mapping method will have wide applicability, even though caution is 

needed in scales with fewer levels than ours. 

As proposed by Chan et al.,(31) an adjustment factor can be derived to inflate 

the variance of mapped utilities. However, in both simulation and split-sample 

validation, we have found that for use of the WHOQOL-BREF (or other scales 

with similar number of levels of measurement) as predictor of health utility, the 

ratio of variance was very close to one, allowing us to practically ignore such 

an adjustment. However, as the predictor scale becomes coarser, the 

adjustment should be considered. 

 

We acknowledge that this study has a few limitations. First, the mapping does 

not cover the full theoretical raw score range (7 to 35) of WHOQOL-BREF 

Physical Health domain and is restricted only to the observed raw score range 

of 10 to 35. This may limit the applicability of the mapping in samples with very 

poor WHOQOL-BREF Physical Health scores. Despite our effort to include a 

combination of general population and clinic participants, we were unable to 

capture individuals with extremely poor HRQoL. It is expected that individuals 

with such poor physical health may be found either in inpatient or nursing home 

settings and will inevitably be missed in any study conducted in the community 

or ambulatory care setting. Second, there may be some concern that the 

mapped EQ-5D-5L scores reflect only the Physical Health and not the other 

three domains of WHOQOL-BREF. However, we have found that including all 

three domains did not improve the model fit of the regression between 
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WHOQOL-BREF and EQ-5D-5L utilities. Hence, our modelling choice was 

empirically supported. In a previous study, we have also found that only four of 

five subscales of the Functional Assessment of Cancer Therapy - Breast 

(FACT-B) were associated with EQ-5D-5L utilities and the mapping algorithm 

was based on these four subscales.(30) Third, there may be some concern 

over the generalizability of the findings from Singapore to other countries. 

However, the design of WHOQOL-BREF has intentionally taken cross cultural 

differences into account, including only those items that are applicable across 

various countries. As such, we believe that generalizability of our findings to 

other countries is unlikely to be an issue. Fourth, this study has covered a 

general population and two outpatient populations (heart disease and 

diabetes). Further assessment of the performance of the mapping algorithm in 

other clinical conditions and inpatient/ non-ambulatory patient situations is 

recommended.   

 

Conclusion 

We have provided the first algorithm for translating profile-based WHOQOL-

BREF Physical Health domain scores into utilities that can be incorporated into 

cost-utility analyses for the evaluation of new drugs or other healthcare 

interventions. The proposed MRM has practical and numerical advantages 

although all three mapping methods were approximately valid in generating 

EQ-5D-5L utilities in this Singaporean study. In scenarios similar to the 

mapping of WHOQOL-BREF to the EQ-5D-5L, the MRM outperformed OLS 
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method and EPM. The simplicity and reproducibility of the MRM makes it an 

attractive alternative to current methods. To access de-identified data used in 

this analysis, please email the corresponding author for a data analysis 

proposal form, which is to be duly completed and returned to the corresponding 

author. 
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Table 1. Mean of parameter estimates in 1000 simulation runs (n=500 each) under two 
settings.  

Parameters Observed 

Values 

Mapped Values 

  Mean Rank a Mean Rank 
(Coarsened) b 

Regression 
(OLS) 

Equipercentile 

Setting (i)      

Mean 0.826 0.826 0.825 0.824 0.803 

Variance 0.025 0.025 0.025 0.013 0.021 

P10 0.556 0.599 0.586 0.672 0.605 

P50 0.850 0.849 0.836 0.827 0.813 

P90 1.000 1.000 1.000 0.983 0.983 

Mean | Z=1 0.650 0.646 0.648 0.699 0.641 

Mean | Z=2 0.847 0.849 0.848 0.826 0.811 

Mean | Z=3 0.980 0.983 0.981 0.947 0.955 

(𝛽"#|%) 0.165 0.168 0.167 0.124 0.157 

Mean squared error - 0.0128 0.0129 0.0111 0.0120 

Mean absolute error - 0.0810 0.0815 0.0815 0.0825 

Variance ratio - 0.995 0.980 0.525 0.831 

Setting (ii)      

Mean 0.892 0.892 0.892 0.889 0.865 

Variance 0.016 0.016 0.016 0.007 0.014 

P10 0.696 0.699 0.686 0.777 0.698 

P50 0.950 0.949 0.935 0.893 0.889 

P90 1.000 1.000 1.000 1.000 0.990 

Mean | Z=1 0.750 0.746 0.748 0.797 0.730 

Mean | Z=2 0.930 0.934 0.933 0.892 0.886 

Mean | Z=3 0.997 0.997 0.997 0.976 0.980 

(𝛽"#|%) 0.124 0.126 0.124 0.089 0.125 

Mean squared error - 0.0098 0.0097 0.0081 0.0094 

Mean absolute error - 0.0640 0.0642 0.0660 0.0690 

Variance ratio - 0.994 0.976 0.427 0.865 

a Mapped values using Mean Rank mapping of raw predictor scores 
b Mapped values using Mean Rank mapping after recoding predictor scores to only 10 levels 
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Table 2. Distribution of WHOQOL-BREF, EQ-5D-5L and SF-36v2 scores in the training sample 

(n=658).   

Measure Mean (SD) Observed 

Range 

WHOQOL-BREF Physical Health 27.5 (4.55) 10 to 35 

WHOQOL-BREF Psychological 22.9 (3.46) 9 to 30 

WHOQOL-BREF Social Relationships 11.7 (1.79) 5 to 15 

WHOQOL-BREF Environment 30.4 (4.39) 11 to 40 

EQ-5D-5L utility 0.9 (0.15) -0.02 to 1 

SF-36v2 Physical Functioning 85.2 (21.13) 0 to 100 

SF-36v2 Role Physical 82.4 (24.15) 0 to 100 

SF-36v2 Bodily Pain 80.3 (21.43) 0 to 100 

SF-36v2 General Health 67.7 (20.05) 0 to 100 

SF-36v2 Vitality 66.1 (19.08) 0 to 100 

SF-36v2 Social Functioning  84.9 (22.08) 0 to 100 

SF-36v2 Role-Emotional 86.9 (21.32) 0 to 100 

SF-36v2 Mental Health 78.3 (17.69) 5 to 100 

 

 



Table 3. Mapped EQ-5D-5L Utilities to WHOQOL-BREF Physical Health Domain Using Mean Rank-, 

Regression- and Equipercentile Approaches.  

WHOQOL-BREF 

Physical Health 

Domain 

Mean rank method Regression (OLS) 

method 

Equipercentile 

method 

10  0.05   0.21   0.20  

11  0.23   0.31   0.25  

12  0.29   0.31   0.30  

13  0.34   0.46   0.35  

14  0.43   0.52   0.41  

15  0.48   0.57   0.47  

16  0.56   0.61   0.52  

17  0.60   0.65   0.57  

18  0.63   0.68   0.60  

19  0.66   0.71   0.63  

20  0.68   0.74   0.66  

21  0.70   0.76   0.68  

22  0.72   0.79   0.69  

23  0.73   0.81   0.71  

24  0.74   0.83   0.72  

25  0.78   0.85   0.74  

26  0.81   0.87   0.77  

27  0.82   0.89   0.80  

28  0.97   0.90   0.82  

29  1.00   0.92   0.86  



WHOQOL-BREF 

Physical Health 

Domain 

Mean rank method Regression (OLS) 

method 

Equipercentile 

method 

30  1.00   0.94   0.98  

31  1.00   0.95   0.99  

32  1.00   0.97   0.99  

33  1.00   0.98   1.00  

34  1.00   1.00   1.00  

35  1.00   1.00   1.00  

Rounded off to two significant figures. 

 

 



Table 4. Mean, Standard Deviation (SD), Percentiles, Mean Squared Errors (MSE), Mean Absolute Errors (MAE) and Intraclass Correlation Coefficient (ICC) 

of the Observed and Mean Rank-, Regression- and Equipercentile-mapped EQ-5D-5L Utilities in the Validation Sample (n=657).  

Mapping 
Method 

EQ-5D-5L Utilities Individual Level Prediction Errors Agreement 

 Mean 
(SD) 

5th 10th 25th Median 75th 90th 95th MSE MAE ICC 

Observed 0.885 
(0.145) 

0.649 0.700 0.813 1.000 1.000 1.000 1.000 - - - 

Mean Rank 0.883 
(0.142) 

0.657 0.697 0.777 0.973 1.000 1.000 1.000 0.016 0.084 0.60 

Regression 
(OLS) 

0.886 
(0.095) 

0.711 0.764 0.851 0.905 0.952 0.981 0.995 0.013 0.091 0.58 

Equipercentile 0.843 
(0.140) 

0.630 0.676 0.744 0.822 0.988 0.996 0.998 0.018 0.095 0.56 

Rounded off to three decimal places.  

 



Table 5. Association between Observed, Mean Rank-, Regression- and Equipercentile- mapped EQ-

5D-5L Utilities with Age (5-year band) and Gender (n=657).  

EQ-5D-5L Utilities Beta coefficient 

(x10-3)  

Standard 

error (x10-3) 

p 95% Confidence 

Interval (x10-3) 

Observed      

   Age -15 1.7 <0.001 -18 to -11 

   Gender 6.9 11 0.53 -15 to 2.8 

   Constant 980 14 <0.001 950 to 1000 

Mean Rank-mapped     

   Age -17 1.7 <0.001 -20 to -14 

   Gender -14 10 0.19 -35 to  7.0 

   Constant 100 13 <0.001 980 to 1030 

Regression-mapped     

   Age -10 1.1 <0.001 -13 to -8.3 

   Gender -8.1 7.1 0.25 -22 to 5.8 

   Constant 960 8.7 <0.001 940 to 980 

Equipercentile-

mapped 

    

   Age -17 1.6 <0.001 -20 to -14 

   Gender -3.3 10 0.75 -24 to 17 

   Constant 960 13 <0.001 930 to 980 

Rounded off to two significant figures. 

 



Table 6. Association between Observed, Mean Rank-, Regression- and Equipercentile- mapped EQ-

5D-5L Utilities with SF-36v2 Scale Scores (n=647). 

EQ-5D-5L Utilities Beta coefficient 

(x10-4) 

Standard 

error (x10-4) 

p 95% Confidence 

Interval (x10-4) 

Observed      

   PF 18 2.8 <0.001 12 to 23 

   RP 4.1 2.7 0.14 -1.3 to 9.4 

   BP 19 2.3 <0.001 14 to 24 

   GH 7.2 3.0 0.015 1.4 to 13 

   VT 3.9 3.3 0.24 -2.5 to 10 

   SF -0.7 2.5 0.79 -5.6 to 4.3 

   RE 4.3 2.8 0.12 -1.1 to 9.7 

   MH 7.8 3.5 0.027 0.9 to 15 

   Constant 380 22 <0.001 34 to 42 

Mean Rank Method     

   PF 16 2.4 <0.001 11 to 20 

   RP 7.0 2.3 0.0040 23 to 12 

   BP 3.5 2.0 0.094 -0.60 to 7.5 

   GH 19 2.6 <0.001 14 to 24 

   VT 15 2.8 <0.001 8.8 to 20 

   SF 0.5 2.2 0.82 -3.9 to 4.9 

   RE 0.6 2.4 0.014 1.2 to 11 

   MH 1.0 3.0 0.74 -5.1 to 7.1 

   Constant 380 19 <0.001 340 to 420 

Regression (OLS) 

Method 

    

   PF 11 1.6 <0.001 7.9 to 14 

   RP 4.0 1.5 0.0090 1.0 to 7.0 

   BP 3.3 1.3 0.012 7.0 to 6.0 



EQ-5D-5L Utilities Beta coefficient 

(x10-4) 

Standard 

error (x10-4) 

p 95% Confidence 

Interval (x10-4) 

   GH 11 1.7 <0.001 7.8 to 14 

   VT 9.2 1.8 <0.001 5.6 to 13 

   SF 1.2 1.4 0.39 -1.6 to 40 

   RE 2.6 1.6 0.099 -0.5 to 5.6 

   MH 4.4 2.0 0.026 0.5 to 8.3 

   Constant 530 12 <0.001 51 to 55 

Equipercentile Method     

   PF 13 2.3 <0.001 8.0 to 17 

   RP 7.1 2.3 0.0020 2.7 to 12 

   BP 3.7 2.0 0.062 -0.2 to 7.6 

   GH 20 2.5 <0.001 16 to 25 

   VT 15 2.7 <0.001 9.1 to 20 

   SF 0.20 2.1 0.92 -4.0 to 4.4 

   RE 4.7 2.3 0.045 0.1 to 9.2 

   MH 3.7 3.0 0.21 -2.1 to 9.5 

   Constant 340 19 <0.001 310 to 380 

 PF – Physical Functioning, RP – Role-Physical, BP – Bodily Pain, GH – 

General Health, VT – Vitality, SF – Social Functioning, RE – Role-Emotional, 

MH – Mental Health 

Rounded off to two significant figures. 

 



Table 7. Association between Observed, Mean Rank-, Regression- and Equipercentile- mapped EQ-

5D-5L Utilities with Self-reported Morbidity (n=654).   

EQ-5D-5L Utilities Beta coefficient 

(x10-3) 

Standard 

error (x10-3) 

p 95% Confidence 

Interval (x10-3) 

Observed      

   Diabetes mellitus 1.5 15 0.92 -29 to 32 

   Hypertension -47 14 0.0010 -75 to -20 

   Heart disease -39 14 0.0060 -67 to -11 

   Asthma -38 22 0.096 -82 to 6.6 

   Mental illness -83 16 <0.001 -110 to -52 

   Renal disease -55 23 0.016 -100 to -10 

   Constant 930 6.8 <0.001 920 to 940 

Mean Rank Method      

   Diabetes mellitus -47 14 0.0010 -74 to -20 

   Hypertension -44 12 <0.001 -68 to -20 

   Heart disease -79 12 <0.001 -100 to -55 

   Asthma -26 19 0.19 -65 to 13 

   Mental illness -59 14 <0.001 -86 to -32 

   Renal disease -92 20 <0.001 -130 to -53 

   Constant 950 5.8 <0.001 940 to 0.96 

Regression (OLS) 

Method 

    

   Diabetes mellitus -27 9.3 0.0040 -45 to -8.3 

   Hypertension -36 8.3 <0.001 -52 to -20 

   Heart disease -43 8.4 <0.001 -60 to -27 

   Asthma -26 13 0.052 -52 to 0.2 

   Mental illness -38 9.2 <0.001 -56 to -20 

   Renal disease -64 13 <0.001 -91 to -38 

   Constant 930 4.0 <0.001 920 to 940 



EQ-5D-5L Utilities Beta coefficient 

(x10-3) 

Standard 

error (x10-3) 

p 95% Confidence 

Interval (x10-3) 

Equipercentile 

Method 

    

   Diabetes mellitus -41 14 0.0020 -68 to -15 

   Hypertension -55 12 <0.001 -79 to -31 

   Heart disease -68 12 <0.001 -92 to -44 

   Asthma -30 19 0.12 -68 to 7.8 

   Mental illness -58 13 <0.001 -85 to -32 

   Renal disease -83 20 <0.001 -120 to -45 

   Constant 910 5.8 <0.001 900 to 920 

Rounded off to two significant figures.  
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Online Appendix 1. Numerical features of the mean rank mapping method 

Let 𝑥(#) < 𝑥(&) < ⋯ < 𝑥(()#) < 𝑥(() be the 𝐾 distinct values of 𝑥, 𝑛, be the number of 

observations with value 𝑥(,), and 𝑁 = ∑𝑛, is the study sample size. 

Define 𝑦1 = 𝑦21 + 𝑒1, where 𝑦21 is the mapped value and 𝑒1 is the mapping error for the 𝑖67 row of the 

sorted (𝑥, 𝑦) data as described in the manuscript.  

Define 𝑅, = ∑ 𝑛:,
:;#  for 𝑘 ≥ 1, 𝑅? = 0, and 𝑢, = ∑ 𝑦1

BC
1;BCDEF# 𝑛,G = 𝑦21 for 𝑅,)# < 𝑖 ≤ 𝑅,  is the 

mean of the observed 𝑦’s to be mapped to 𝑥(,) as described in the manuscript. 

The mean of mapped values is identical to the mean of the observed 𝑦 values: 

1
𝑁
I𝑦21

J

1;#

=
1
𝑁
I𝑛,𝑢,

(

,;#

= 𝑦K 

The variance of observed 𝑦 values is:  

𝑉𝑎𝑟(𝑦1) =
∑ 𝑦1&J
1;#
𝑁

− 𝑦K& =
∑ (𝑦21 + 𝑒1)&J
1;#

𝑁
− 𝑦K& =

∑ 𝑦21& + 2∑ 𝑦21𝑒1J
1;# + ∑ 𝑒1&J

1;#
J
1;#

𝑁
− 𝑦K& 

   

= Q
∑ 𝑦21&J
1;#
𝑁

− 𝑦K&R +
2 × 0
𝑁

+
∑ 𝑒1&J
1;#
𝑁

= 𝑉𝑎𝑟(𝑦21) +
∑ 𝑒1&J
1;#
𝑁

 

As ∑ 𝑒1&J
1;# ≥ 0,	 𝑉𝑎𝑟(𝑦1) ≥ 𝑉𝑎𝑟(𝑦21).  

The sum of squared mapping errors is: 

I I (𝑦1 − 𝑦21)&
BC

1;BCDEF#

(

,;#

 

Let 𝑦,,UVW  and 𝑦,,XY be the 𝑦 values on the  (𝑅,)# + 1)𝑡ℎ and (𝑅,)𝑡ℎ row of the sorted data, 

respectively, and 𝑦Y	(𝑦,,UVW ≤ 𝑦Y ≤ 𝑦,,XY) be the 𝑝67 percentile value defined as the 𝑦1 where 𝑖 =

𝑝 × 𝑁 100⁄  and 𝑅,)# < 𝑖 ≤ 𝑅,. The absolute mapping error for the 𝑝67 percentile is:  

^𝑦Y − 𝑢,^ ≤ 𝑚𝑎𝑥`𝑢, − 𝑦,,UVW, 𝑦,,XY − 𝑢,a ≤ b𝑦,,XY − 𝑦,,UVWc 

As the total number of levels 𝐾 on the predictor variable 𝑋 and the spread of the predictor values 

increase, the difference (𝑅, − 𝑅,)#)	and the width of the interval (𝑦,,XY − 𝑦,,UVW)	decrease. So the 
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sum of squared mapping errors and the mapping errors for the percentiles also decrease. In the case 

of a unique 𝑥 on the 𝑖67 row, 𝑢, = 𝑦,,UVW = 𝑦,,XY = 𝑦Y and the mapped and observed 𝑝67 

percentile exactly agree.  

 

 

 

 


	MS_WHOQOL Mapping Sharing version
	MS_WHOQOL_mapping_Table_1_R2
	MS_WHOQOL_mapping_Table_2_R2
	MS_WHOQOL_mapping_Table_3_R2
	MS_WHOQOL_mapping_Table_4_R2
	MS_WHOQOL_mapping_Table_5_R2
	MS_WHOQOL_mapping_Table_6_R2
	MS_WHOQOL_mapping_Table_7_R2
	Online_Appendix_1_R2

