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Abstract— An intelligent building is required to provide
safety to its occupants against any possible threat that may
affect the indoor air quality, such as accidental or malicious
airborne contaminant release in the building interior. In this
work, we design a distributed methodology for detecting and
isolating multiple contaminant events in a large-scale build-
ing. Specifically, we consider the building as a collection of
interconnected subsystems and we design a contaminant event
monitoring agent for each subsystem. Each monitoring agent
aims to detect the contamination of the underlying subsystem
and isolate the zone where the contaminant source is located,
while it is allowed to exchange information with its neighboring
agents. The decision logic implemented in the contaminant
event monitoring agent is based on the generation of observer-
based residuals and adaptive thresholds. We demonstrate our
proposed formulation using a 14-zone building case study.

I. INTRODUCTION
A key emerging control application is the monitoring of

intelligent buildings, where by incorporating various sensing
devices and distributed computing it is possible to enhance
the building environment in terms of saving energy and
providing a more comfortable environment for the occupants
[1]–[4]. Besides energy efficiency and comfort, an intelligent
building is required to also provide safety to its occupants
against possible threats that affect the indoor air quality as
a result of airborne contaminants released in the building
interior. These contaminant events could be the result of an
accident or a planned attack. Under such safety-critical con-
ditions, real-time collected data from sensors that monitor the
contaminant concentration can be used to alert the occupants
and determine appropriate control solutions like indicating
safe spaces, or isolating and cleaning contaminated spaces.
Therefore, the accurate and prompt detection and isolation
of contaminant events (sources) is an essential part of the
intelligent building design.

For indoor air and contaminant simulation there are two
main modeling approaches: Computational Fluid Dynamics
(CFD) and multi-zone modeling. Multi-zone models (i.e.
CONTAM [5]) offer a computational efficient solution by
representing a building as a network of well-mixed zones.
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Both multi-zone and CFD models can predict the behavior
and transport characteristics of indoor contaminants given the
source conditions. This is referred to as the forward problem:
given certain inputs (e.g., a contaminant source location and
emission rate) and system parameters, find the output of the
model (contaminant concentration in all areas). For event
detection and isolation applications, what we are interested
in is actually the inverse reconstruction problem: given the
system parameters and output, find out which input has led
to this output. A detailed report on related literature on the
inverse tracking of pollutants in both groundwater and air
fields is presented in [6]. Two methods that have successfully
been applied to the problem of contaminant source isolation
in indoor building environments are the Bayesian updating
method [7] and the Adjoint probability method [8]. However,
both of these methods require some form of prior knowledge
in the results demonstrated so far, either in the form of a
constructed scenario database before the event or concerning
one of the source characteristics during the event (location
or the time of release).

In a recent work [9], we developed a state space method
using a multi-zone formulation for the problem of contam-
inant event monitoring. In the proposed formulation, the
contaminant event source is modeled as a fault in the process,
which we would like to detect and isolate. This enables
the application of advanced fault diagnosis tools to the
problem of contaminant event monitoring in intelligent build-
ings. Furthermore, we developed Contaminant Detection and
Isolation (CDI) estimator schemes with adaptive thresholds
for the detection and isolation of a single contaminant
source in the presence of measurement noise and modeling
uncertainty. The proposed solution does not require any prior
information of the source characteristics (onset time, location
and generation rate). In our previous work, however, we
consider a centralized approach, where the building is treated
as a monolithic system so the complexity of the developed
schemes increases with the number of zones considered. In
fact, when the scale of the building is large, the calculation
of the adaptive thresholds can become a formidable task.

The main objective of this paper is the development of
a distributed CDI scheme by considering the building as a
collection of interconnected subsystems. Buildings offer a
natural candidate for such a decomposition, because they
are distributed in space and a particular building zone is
only interconnected with a limited number of neighboring
zones, mainly through doors and windows. The structural
decomposition applied in this work is chosen in a way
to minimize the interconnections between the various sub-



systems involved and ensure the structural observability of
each subsystem. The advantages of distributed fault diagnosis
architectures and frameworks have been documented in [10]–
[12]. Specifically, following a distributed approach may: (i)
simplify the design of a CDI method, since it applies to a
smaller part of the global model of the system (building), (ii)
make the problem of isolating multiple contaminant sources
in a large-scale building tractable (the centralized method
can lead to combinatorial explosion because the CDI method
should be designed to handle faults globally), (iii) decrease
the communication requirements, because there is no need
of transmitting all the information to a central computing
core, (iv) increase the reliability of the CDI method against
security threats, since there are more than one computing
cores (a central computing core corresponds to a single-
point of failure), and (v) improve the scalability of the CDI
method, since it can easily be adapted in the case that more
zones should be monitored.

The paper is organized as follows. First, in Section II,
we formulate the distributed framework for the problem
of contaminant event monitoring in the indoor building
environment, followed by the development of the proposed
distributed CDI scheme in Section III. Section IV illustrates
how the developed method can be applied to the problem
of detection and isolation of multiple contaminant sources
through a 14-zone representative building case study. Finally,
Section V provides some concluding remarks.

II. PROBLEM FORMULATION
Considering a n-zone building as a monolithic system,

the contaminant dispersion in the indoor environment of the
building is described by the following multi-zone model

Σ : ẋ(t) = (A+∆A)x(t)+Q−1Bu(t)+Q−1Gg(t), (1)
y(t) =Cx(t)+w(t), (2)

where x ∈ Rn represents the concentrations of the contami-
nant in the building zones (x(i) is the element of x, denoting
the concentration in the i-th zone), while A∈Rn×n is the state
transition matrix with its element A(i, j) be zero, if there is
no leakage path (door, window, etc) between between zone i
and zone j, otherwise A(i, j) models changes in contaminant
concentration between zone i and zone j, primarily as a result
of the air-flows. The term ∆A ∈ Rn×n collectively accounts
for the presence of modeling uncertainty in the building
envelope as a result of changing wind speed, wind direction
and variable leakage openings. The controllable inputs in
the form of doors, windows, fans and air handling units are
represented by u∈Rp, while B∈Bn×p is a zone index matrix
concerning their locations, with B= {0,1}. The last term of
(1) involves the location and evolution characteristics of the
contaminant sources, represented by G ∈ Bn×s and g ∈ Rs

respectively. Note that Q ∈ Rn×n is a diagonal matrix with
the volumes of the zones, i.e. Q = diag(Q(1),Q(2), . . . ,Q(n))
where Q(i) is the volume of the i-th zone. In (2), y ∈ Rm

represents the output of the sensors monitoring Σ, C ∈ Bm×n

is a zone index matrix for the sensor locations and w ∈ Rm

characterizes the additive measurement noise. More details

on the state-space model formulation can be found in [9]. It
is worth pointing out that in the context of fault diagnosis,
the last term in (1), i.e. Q−1Gg(t), is equivalent to process
faults that impact the normal system operation.

In this work, the monolithic system Σ is decomposed
into K interconnected subsystems ΣI , I ∈ {1, . . . ,K}, where
each subsystem corresponds to the concentration of the
contaminant in an area of nI zones and is described by:

ΣI : ẋI(t) = (AI +∆AI)xI(t)+Q−1
I BIuI(t)+Q−1

I GIgI(t)

+(HI +∆HI)zI(t), (3)
yI(t) =CIxI(t)+wI(t), (4)

where xI ∈ RnI , uI ∈ RpI and yI ∈ RmI are the local state,
local control input, and local measured output vectors, re-
spectively, and zI ∈ Rℓ is the vector of the interconnec-
tion variables. In particular, xI represents a column vector
made up of nI elements of x (correspondingly for uI and
yI), i.e. there is an index mapping function MxI such that
MxI : {1, . . . ,n} → {1, . . . ,nI} and M−1

xI
its inverse mapping

function such that M−1
xI

: {1, . . . ,nI}→ {1, . . . ,n}, satisfying

MxI (k) =
{

j : x( j)
I = x(k), k ∈ {1, . . . ,n}, j ∈ {1, . . . ,nI}

}
, (5)

M−1
xI

( j) =
{

k : x(k) = x( j)
I , k ∈ {1, . . . ,n}, j ∈ {1, . . . ,nI}

}
(6)

In a similar way, we determine the index mapping functions
for u and y, i.e. MuI such that MuI : {1, . . . , p}→ {1, . . . , pI}
and MyI such that MyI : {1, . . . ,m}→ {1, . . . ,mI}. The inter-
connection variables zI refer to the states of the neighboring
subsystems in the building structure graph having a direct
connection with the subsystem I, i.e. zI is made up of states
of x that belongs to subsystems different from ΣI . The term
gI ∈ R represents the local contaminant source, GI ∈ RnI is
a vector with zeros except for a single row with one, which
represents the location zone of the contaminant source and
wI ∈RmI corresponds to the local noise vector. Note that, in
this work, we assume a maximum of a single contaminant
source per subsystem. Finally, AI , ∆AI , QI , GI and CI are
sub-matrices of appropriate dimensions of the corresponding
matrices of the monolithic system Σ, while HI (∆HI) is a
sub-matrix of A (∆A) related to the interconnection variables
zI .

In this work, the decomposition of the monolithic system
(1) is conducted as follows; taking into account the structural
graph of the building, whose nodes are the state variables
of the system (i.e. the concentration in a specific building
zone), Σ is decomposed such that (i) there is no overlapping
between subsystems, i.e. a particular building zone can only
belong to a single subsystem, (ii) the subsystems’ inter-
dependencies are minimized, (iii) the components of the
interconnection vector zI are made of measurable variables,
and (iv) the subsystem ΣI is structurally observable for all
I ∈ {1, . . . ,K} as defined in [13], [14]. It is noted that the
thorough treatment of the decomposition problem is beyond
the scope of this paper. This is an important issue that will be
further investigated in our future research with respect to the
building structure, contaminant event detectability, isolability
and communication requirements.



III. DISTRIBUTED CONTAMINANT DETECTION
AND ISOLATION

The objective of this section is to design a methodology for
detecting and isolating multiple contaminant sources in the
building subsystems, assuming a maximum of a single source
per subsystem. For each of the interconnected subsystems
ΣI , a contaminant monitoring agent, denoted by MI , is
designed to detect and isolate a contaminant source affecting
the dynamics of ΣI . The agent MI is allowed to exchange
information with its nearest neighboring contaminant event
monitoring agents. The exchanged information is associated
with the form of the physical interconnections, i.e. unidi-
rectional or bidirectional interactions between the intercon-
nected subsystems. The agent MI consists of a contaminant
detector, denoted by DI and nI isolators, denoted by II, j,
j ∈ {1, . . . ,nI}.

Under normal conditions, the task of DI is to detect the
presence of a contaminant source in the subsystem ΣI . If
a contaminant is detected, then the corresponding isolators
II, j are activated to localize the zone of subsystem ΣI with
the contaminant source. The decisions of the nI isolators are
combined for excluding the zones in the building subsystem
ΣI that are not contaminated. The decision logic of DI and
II, j relies on comparing some residuals to corresponding
adaptive thresholds. Both the residuals and the adaptive
thresholds are generated using an estimation model, which
is produced by an observer. In the sequel, the dependence of
the signals on time (e.g. x(t)) will be dropped for notational
brevity.

A. Contaminant Event Detection

1) Residual Generation: The estimation model of DI is
formulated by selecting the following observer

˙̂xI = AI x̂I +Q−1
I BIuI +HIyzI +LI (yI −CI x̂I) , (7)

where x̂I ∈RnI is the estimation of xI (with initial conditions
x̂I(0) = 0), LI ∈ RnI×mI is the observer gain matrix selected
such that the matrix AI −LICI is stable and yzI ∈ RℓI is the
transmitted sensor information, defined based on (4) as

yzI = zI +wzI (8)

where wzI ∈ RℓI is the corresponding noise vector.
The k-th residual of the detector DI , denoted by ε(k)yI ∈R,

is defined as

ε(k)yI = y(k)I −C(k)
I x̂I , (9)

where y(k)I ∈ R is the k-th element of yI and C(k)
I is the k-th

row of CI .
2) Computation of Adaptive Thresholds: The k-th adap-

tive threshold of DI , denoted by ε(k)yI
(t), is designed in

order to ensure robustness of the detector DI with respect
to modeling uncertainties ∆AI and ∆HI and noise w; i.e. the
adaptive threshold is computed such that∣∣∣ε(k)yI (t)

∣∣∣≤ ε(k)yI
(t), (10)

ssuming that |∆AI | ≤ ∆AI , |∆HI | ≤ ∆HI and
∣∣∣w(k)

I (t)
∣∣∣≤ w(k)

I ,

where ∆AI , ∆HI , w(k)
I ∈ R are known constant bounds.

The k-th adaptive threshold of the detector DI is designed
to bound the residual under healthy conditions, i.e. taking
into account that gI = 0. Based on (4), (9), the residual
can be expressed as ε(k)yI = C(k)

I εxI +w(k)
I , where εxI is the

state estimation error, defined as εxI , xI − x̂I . Under healthy
conditions, the state estimation error is described by:

ε̇xI = ALI εxI −HIwzI +∆HIzI +∆AIxI −LIwI , (11)
ALI = AI −LICI . (12)

The adaptive thresholds ε(k)yI
(t) are computed taking into

account (10) and the solution of (11), following a standard
procedure in robust fault diagnosis methods [9]–[11].

3) Decision Logic: Detector DI ,I ∈ {1, . . . ,K} infers the
presence of the contaminant in subsystem ΣI , if there is a
time instant t at which∣∣∣ε(k)yI (t)

∣∣∣> ε(k)yI
(t), (13)

for at least one k ∈ {1, . . . ,mI}. The rationale behind this
decision is that the presence of the contaminant in subsystem
ΣI is guaranteed, when the behavior of ΣI observed through
yI is not consistent with the expected behavior, represented
by x̂I . The time instant of detection is defined as:

TDI = min
t

∪
k∈{1,...,mI}

{
min

t

{
t :

∣∣∣ε(k)yI (t)
∣∣∣> ε(k)yI

(t)
}}

(14)

After the time instant of detection TDI , we determine the
contaminant diagnosis set, denoted by SDI (t) that includes
all zones in subsystem ΣI as possibly contaminated. Hence,
after the time of detection, the diagnosis set is defined as

SDI (t) =
{

Z( j), ∀ j ∈ {1, . . . ,nI}
}
, for t ≥ TDI (15)

where Z( j) denotes the zone j.

B. Contaminant Event Isolation

Suppose that the contaminant source lies in the r-th zone
of building subsystem ΣI , r ∈ {1, . . . ,nI}; i.e.,

ẋI = (AI +∆AI)xI +Q−1
I BIuI +(HI +∆HI)zI

+Q−1
I GI,rgI , (16)

where GI,r is a vector with zeros except for the r-th row with
ones. It is noted that the r-th zone of building subsystem ΣI ,
r ∈ {1, . . . ,nI} corresponds to the M−1

xI
(r) zone of building

system Σ.
At the time instant of detection TDI , the bank of nI isolators

II, j, j ∈ {1, . . . ,nI} is activated, aiming at isolating the
contaminated zone in the building subsystem ΣI .



1) Residual Generation: The estimation model of II, j
is formulated by selecting an adaptive observer, which is
designed assuming the presence of the contaminant source
in the zone j, j ∈ {1, . . . ,nI}; i.e.,

˙̂xI, j = AI x̂I, j +Q−1
I BIuI +HIyzI +LI(yI −CI x̂I, j)

+ΩI, j
˙̂ϕ I, j +Q−1

I GI, jϕ̂I, j, (17)

Ω̇I, j = ALI ΩI, j +Q−1
I GI, j (18)

˙̂ϕ I, j = PI

{
ΓI, j(CIΩI, j)

⊤(yI −CI x̂I, j)
}

(19)

where x̂I, j is the estimation of xI , LI ∈RnI×mI is the observer
gain matrix selected such that the matrix ALI (defined in (12))
is stable and where GI, j is a vector with zeros except for the
j-th row with ones. Moreover, the adjustable parameter of the
adaptive approximator ϕ̂I, j(t)∈R corresponds to the estimate
of the contaminant source gI . The initial parameter ϕ̂(TDI )
and matrix Ω(TDI ) are chosen as ϕ̂(TDI ) = 0 and Ω(TDI ) = 0,
respectively. In the adaptive law (19), ΓI, j ∈ R is a learning
rate (positive), while the projection operator PI restricts the
adjustable parameter ϕ̂I, j(t) to the predefined interval ΦI ,
within which gI resides [15].

The k-th residual of the isolator II, j, denoted by ε(k)yI, j ∈R,
is defined as

ε(k)yI, j = y(k)I −C(k)
I x̂I, j, (20)

where y(k)I ∈ R is the k-th element of yI and C(k)
I is the k-th

row of CI .
2) Computation of adaptive thresholds: The adaptive

threshold of the isolator II, j is designed to bound the
residual ε(k)yI, j , i.e. ∣∣∣ε(k)yI, j(t)

∣∣∣≤ ε(k)yI, j
(t), (21)

assuming that the contaminant source lies in the j-th zone,
j ∈ {1, . . . ,nI}, i.e. GI,r = GI, j in (16) and that the rate of
evolution of the j-th contaminant g( j) ∈R (the j-th element
of g), for all j ∈ {1, . . . ,nI} is uniformly bounded,

∣∣∣ġ( j)(t)
∣∣∣≤

ḡ( j), where ḡ( j) ∈ R is a known constant bound.
Based on (4), (20), the residual can be expressed as ε(k)yI =

C(k)
I εxI, j +wI , where εxI, j , xI − x̂I, j; taking into account (16)

and (17), the state estimation error is described by:

ε̇xI, j = ALI εxI, j −HIwzI +∆AIxI +∆HIzI −LIwI

+Q−1
I GI,rgI −Q−1

I GI, jϕ̂I, j −ΩI, j
˙̂ϕ I, j. (22)

The adaptive thresholds ε(k)yI, j
(t) are computed taking into

account (21) and the solution of (22), following a standard
procedure in robust fault diagnosis methods [9]–[11].

3) Decision Logic: Isolator II, j infers that zone j, j ∈
{1, . . . ,nI}, of the building subsystem ΣI (or equivalently,
zone M−1

xI
( j) of the building system Σ), has not been

contaminated if there is a time instant at which∣∣∣ε(k)yI, j(t)
∣∣∣> ε(k)yI, j

(t), (23)

for at least one k ∈ {1, . . . ,mI}. The rationale behind this
decision logic is that it is guaranteed that zone j is safe, i.e.

the contamination of zone j is excluded, when the behavior
of ΣI observed through yI is not consistent with the expected
behavior represented by x̂I, j.

The decision of II, j is represented by a boolean function,
DI, j defined as

DI, j(t) =
{

1, for t < TI, j
0, otherwise , (24)

TI, j = min
t

∪
k∈{1,...,mI}

{
min

t

{
t :

∣∣∣ε(k)yI, j (t)
∣∣∣> ε(k)yI, j (t)

}}
. (25)

Hence, when DI, j(t) = 0, the isolator II, j decides that zone j
is safe (i.e. no contamination has occurred), or equivalently,
zone M−1

xI
( j) in the building system Σ is safe.

The decision of the contaminant event monitoring agent
MI , I ∈ {1, . . . ,K} on which zone in the building subsystem
ΣI is contaminated, is obtained by combining the decisions of
the nI isolators that update the diagnosis set SDI (t) defined by
(15). In particular, the diagnosis set is determined as follows

SDI (t) = SDI (TDI )\
{

Z( j), ∀ j ∈WI

}
, (26)

WI =
{

j : DI, j = 0
}

(27)

If there is a contaminant source in ΣI and every isolator
II, j except for isolator II,r, j ̸= r, j,r ∈ {1, . . . ,nI} excludes
the contamination of zone Z( j), then it is guaranteed that
a contaminant source is located in zone r of the building
subsystem ΣI , or equivalently, in zone M−1

xI
(r) of the building

system Σ.

IV. MULTI-ZONE BUILDING CASE STUDY

In this section, we demonstrate how the methodology
developed in the previous section can be applied toward the
distributed detection and isolation of multiple contaminant
sources in an indoor building test case environment. We
use the Holmes’ House building case study with 14 zones,
depicted in Fig. 1(a). Details of the model can be found
in [16]. The building is comprised of a garage (Z1), a
storage room (Z2), a utility room (Z3), a living room (Z4),
a kitchen (Z5), two bathrooms (Z6, Z13), a corridor (Z8),
three bedrooms (Z7, Z9, Z14) and three closets (Z10, Z11,
Z12). The building is divided into three subsystems as
demonstrated in Fig. 1(a), while the decomposition of the
state transition matrix is demonstrated in Fig. 1(b). The
structural decomposition is chosen in order to minimize the
interconnections between the subsystems by taking advan-
tage of the large number of zeros present inside the state
transition matrix A shown in Fig 1(b), while the non-zero
entries of A (the diagonal entries are indicated as λi, i ∈
{1, . . . ,n} while the non-diagonal as λi j for i, j ∈ {1, . . . ,n})
are treated as free parameters. Note that the 3 subsystems
are structurally observable for almost all wind directions, i.e.
λi j, i, j ∈ {1, . . . ,n} are parameters independent of the wind
direction.

For the contaminant scenario, we assume that at time t = 1
hour, two contaminant sources of generation rate g0 = 126.6
g/hr are simultaneously activated in the utility room (Z3) and
the Bedroom 1 (Z7) as shown in Fig. 1(a). During the release



Z1 Z2

Z3

Z4 Z5

Z6 Z7

Z8

Z9

Z10
Z11

Z12

Z13

Z14

wind

contaminant 

source

(a) Holmes’s house

x1 x2 x3 x4 x5 x6 x8 x9 x12 x13 x7 x10 x11 x14

x1 λヱ 0 λンヱ 0 0 0 0 0 0 0 0 0 0 0

x2 0 λヲ λンヲ 0 0 0 0 0 0 0 0 0 0 0

x3 λヱン λヲン λン 0 λヵン 0 0 0 0 0 0 0 0 0

x4 0 0 0 λヴ λヵヴ 0 λΒヴ 0 0 0 0 0 0 0

x5 0 0 λンヵ λヴヵ λヵ 0 0 0 0 0 0 0 0 0

x6 0 0 0 0 0 λヶ λΒヶ 0 0 0 0 0 0 0

x8 0 0 0 λヴΒ 0 λヶΒ λΒ λΓΒ 0 0 λΑΒ 0 0 λヱヴΒ
x9 0 0 0 0 0 0 λΒΓ λΓ λヱヲΓ λヱンΓ 0 0 0 0

x12 0 0 0 0 0 0 0 λΓヱヲ λヱヲ λヱンヱヲ 0 0 0 0

x13 0 0 0 0 0 0 0 λΓヱン λヱヲヱン λヱン 0 0 0 0

x7 0 0 0 0 0 0 λΒΑ 0 0 0 λΑ λヱヰΑ 0 0

x10 0 0 0 0 0 0 0 0 0 0 λΑヱヰ λヱヰ λヱヱヱヰ 0

x11 0 0 0 0 0 0 0 0 0 0 0 λヱヰヱヱ λヱヱ λヱヴヱヱ
x14 0 0 0 0 0 0 λΒヱヴ 0 0 0 0 0 λヱヱヱヴ λヱヴ

Subsystem 1

Subsystem 2

Subsystem 3

(b) State transition matrix (A)

Fig. 1. Structural decomposition of Holmes’s house into 3 subsystems.
Note that for Σ1 : {1,2,3,4,5}= Mx1 ({1,2,3,4,5}), for Σ2 : {1,2,3,4,5}=
Mx2 ({6,8,9,12,13}) and for Σ3 : {1,2,3,4}= Mx3 ({7,10,11,14})

it is assumed that natural ventilation is the dominant cause
of air movement in the building with wind coming from
the east 90◦ at a speed of 10 m/s. All the openings (doors
or windows) are assumed to be in the fully open position
and the resulting airflows are calculated using CONTAM
and portrayed in Fig. 1(a) with green lines (the length of
the line corresponds to the magnitude of the flow), while the
state transition matrix A corresponding to these conditions
can be found in [9]. There are sensors in 11 out of the
14 zones (Z1, Z2, Z4, Z6, Z7, Z8, Z9, Z10, Z11, Z12 and
Z14) able to record the concentration of the contaminant
at regular intervals at their own locations but the sensor
measurements are corrupted by noise. Based on the sensor
measurements, our goal is to detect and isolate the two
sources in the presence of noise and modeling uncertainty.
Specifically, we assume the following uncertainty conditions:
wind direction in the range wd = 90±10◦, wind speed in the
the range ws = 10± 0.5 m/s and leakage openings ±10%
from the fully open position. For these uncertainty values,
based on the results of [9], we use ∆A1 = 0.185, ∆A2 = 0.23,
∆A3 = 0.075, ∆H1 = 0.0564, ∆H2 = 0.162 and ∆H3 = 0
for calculating the adaptive thresholds. Regarding the noise
in the sensor measurements, we assume bounded noise of

magnitude w(k)
I = 0.05.

The detection results for the three agents are portrayed in
Fig. 2. From the figure it becomes evident that the sources
are detected by D1 and D3, since the magnitude of the
residual has crossed the threshold. Note that although Σ2
is interconnected with the other 2 subsystems, its detection
agent D2 is not triggered by the presence of the sources
in the other subsystems. Following detection, the isolators
I1 and I3 are activated by the respective agents. The
isolation results for I1, j, j ∈{1, ...,5} are portrayed in Fig. 3.
Following the proposed decision logic, the source is correctly
isolated in Z3 (Fig. 3(c)) since this is the only instance for
which residuals remain below the thresholds at all times.
Similarly, the second source is also correctly isolated in
Z7 by the third agent.What is particularly interesting in the
above scenario is that both sources are correctly detected and
localized, even though for one of the two sources, there is
no sensor in the room with the contamination (note that Z3
has no sensor).

V. CONCLUSIONS
In this paper, we presented a model-based, distributed

architecture for detecting and isolating multiple contaminant
events that may occur in a multi-zone building. By modeling
the monolithic building system as a set of interconnected
subsystems based on structural decomposition, we design
distributed contaminant event monitoring agents, with each
one dedicated to a corresponding interconnected, subsystem.
Each agent consists of a contaminant event detector and a
bank of contaminant event isolators, while it may exchange
information with its neighboring subsystems. The detectors
of the contaminant event monitoring agents pursuit first-level
of diagnosis, at which one or more contaminated building
subsystems are isolated. The bank of isolators in contaminant
event monitoring agent conducts second-level diagnosis by
isolating the zone where the contaminant source is located in
the building subsystem. Simulation results showed the effec-
tiveness of the distributed diagnostic technique in isolating
multiple contaminants in a 14-zone building case study.
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Fig. 2. Contaminant Detectors for the 3 Subsystems. The residual ε(k)yI (t), is displayed using solid lines while the corresponding adaptive thresholds ε(k)yI (t)
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Fig. 3. Contaminant Isolators for the first subsystem (Σ1). The residual ε(k)y1, j (t) is displayed using solid lines while the corresponding adaptive thresholds
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[8] X. Liu and Z. Zhai, “Prompt tracking of indoor airborne contaminant
source location with probability-based inverse multi-zone modeling,”
Building and Environment, vol. 44, no. 6, pp. 1135–1143, 2009.

[9] M. Michaelides, V. Reppa, M. Christodoulou, C. Panayiotou, and
M. Polycarpou, “Contaminant event monitoring in multi-zone build-
ings using the state-space method,” Building and Environment, vol. 71,
pp. 140–152, 2014.

[10] X. Zhang and Q. Zhang, “Distributed fault diagnosis in a class of
interconnected nonlinear uncertain systems,” International Journal of
Control, vol. 85, no. 11, pp. 1644–1662, 2012.

[11] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed
fault detection and isolation of large-scale discrete-time nonlinear
systems: An adaptive approximation approach,” IEEE Transactions
on Automatic Control, vol. 57, no. 2, pp. 275–290, 2012.

[12] F. Boem, R. M. Ferrari, T. Parisini, and M. M. Polycarpou, “Dis-

tributed fault diagnosis for continuous-time nonlinear systems: The
input-output case,” Annual Reviews in Control, vol. 37, no. 1, pp. 163
– 169, 2013.

[13] C. Commault, J.-M. Dion, O. Sename, and R. Motyeian, “Observer-
based fault detection and isolation for structured systems,” IEEE
Transactions on Automatic Control, vol. 47, no. 12, pp. 2074–2079,
2002.

[14] C. Commault, J. M. Dion, and D. H. Trinh, “Observability preservation
under sensor failure,” IEEE Transactions on Automatic Control,,
vol. 53, no. 6, pp. 1554–1559, 2008.

[15] J. Farrell and M. Polycarpou, Adaptive Approximation Based Control.
Wiley-Interscience, 2006.

[16] L. Wang, W. Dols, and Q. Chen, “Using CFD capabilities of CONTAM
3.0 for simulating airflow and contaminant transport in and around
buildings,” HVAC&R Research, vol. 16, no. 6, pp. 749–763, 2010.


