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Abstract—This paper proposes a distributed methodology for
detecting and isolating multiple sensor faults in interconnected
cyber-physical systems. The distributed sensor fault detection
and isolation process is conducted in the cyber superstratum,
in two levels. The first-level diagnosis is based on the design
of monitoring agents, where every agent is dedicated to a
corresponding interconnected subsystem. The monitoring agent
is designed to isolate multiple sensor faults occurring in the
sensor set of the physical part, while it is allowed to exchange
information with its neighboring monitoring agents. The second-
level diagnosis is realized by applying a global decision logic
designed to isolate multiple sensor faults that may propagate
in the cyber superstratum through the exchange of information
between monitoring agents. The decision making process, exe-
cuted in both levels of diagnosis, relies on a multiple sensor fault
combinatorial logic and diagnostic reasoning. The performance
of the proposed methodology is analyzed with respect to the
sensor fault propagation effects and the distributed sensor fault
detectability.

I. INTRODUCTION

Recent advances in information and communication tech-
nologies, embedded systems and sensor networks have gener-
ated significant research activity in the development of the
so-called cyber-physical systems (CPS). According to [1],
CPS consist of (i) physical, biological or engineered systems
that are usually large-scale and complex, and (ii) a cyber
core, comprised of communication networks and computa-
tional availability that monitors, coordinates and controls the
physical part. The focus of CPS is to improve the collaborative
link between physical and computational (cyber) elements
for increased adaptability, efficiency and autonomy. The key
motivation for migrating from “conventional” systems to CPS
is the need for enhancing the “intelligence” of the physical
systems used in many application domains in order to be able
to plan and modify their actions based on self-awareness and
the evolving environment, and for handling a huge amount of
data of different time and space characteristics.

Among the key challenges in designing CPS are safety, re-
liability and fault tolerance. For meeting these challenges, the
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cyber core should be empowered with supervision capabilities
for diagnosing faults in the physical part and compensating
their effects by taking appropriate remedial actions [2], [3].
Various methodologies have been developed for tackling the
problem of fault diagnosis in the framework of actuator/sensor
faults and especially process faults. Recently, the detection and
isolation of sensor faults have become of paramount impor-
tance, mainly as a result of the large number of sensors and
sensor networks, used for (i) monitoring and controlling large-
scale CPS; (ii) providing rich and redundant information for
executing safety-critical tasks; and (iii) offering information to
the citizens and governmental agencies for resolving problems
promptly in emergency situations.

Emerging applications of CPS with multiple sensors can
be found in intelligent transportation, smart buildings, smart
grids, mobile robotics and many more. For instance, in intelli-
gent transportation, vehicles may be equipped with odometers,
lasers, frontal camera video-sensors, GPS, speed or object
tracking sensors, in order to be able to acquire and broadcast
information aiming at performing tasks such as cooperative or
fully autonomous driving, avoiding lane departure and colli-
sion, etc. In smart buildings, multiple sensors are installed in
different zones (e.g. temperature sensor, humidity sensor, CO2

sensor, contaminant concentration sensor, infrared occupancy
sensor), as well as in the electromechanical part of heating,
ventilation and air-conditioning systems for measuring sup-
ply/return/mixed air temperature, supply/return air differential
pressure, return air humidity, etc. Such sensing information
may be used for reducing the energy consumption of a building
and maintaining the desired living conditions, while executing
evacuation plans in safety-critical situations (e.g. fire). Any
undetected sensor faults can have severe consequences, possi-
bly leading to system instability, loss of information fidelity,
incorrect decisions and disorientation of remedial actions.

Due to the large-scale and complex nature of the physical
systems, it is convenient to model CPS as a set of intercon-
nected subsystems of lower dimension. In this context, de-
centralized and distributed approaches are commonly adopted
for online fault detection and isolation (FDI). The common
characteristic of model-based decentralized and distributed
FDI schemes is the development of local monitoring units
that perform diagnosis based on local models describing the
interconnected subsystems. The classification of these schemes
relies on the type of system interconnections, the cyber levels
of diagnosis, the task of the local diagnosers, as well as the
type of communication and information exchanged between
the local and high-level diagnosers. The design of model-based
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techniques for interconnected systems requires some prior
knowledge related to the subsystems and the interconnections.

In [4]–[10], decentralized and distributed FDI methods
are developed for physically interconnected subsystems. Dis-
tributed architectures have also been designed for systems
with interconnections in the control law [11], interconnected
inputs [12] or sensing interconnections (i.e. relative output
measurements) [13]. For enhancing fault isolation, multiple
levels of diagnosis have been designed. In particular, while the
single level diagnosis is realized by the local diagnosers [4]–
[6], [11]–[13], additional FDI units are developed, aggregating
and processing the outputs of the local diagnosers [7]–[10].
The decentralized or distributed nature of the FDI process is
related either to the task executed by the local diagnosers or the
communication between the local diagnosers. In decentralized
schemes, a local diagnoser is commonly designed to detect
and isolate faults only in its underlying system [4], [6],
while it may not exchange any information with other local
diagnosers [9], [10]. On the contrary, in distributed schemes,
there is communication between the local diagnosers and every
local diagnoser can detect and isolate faults in neighboring
systems [5], [7], [8], [11]–[13]. The design of distributed
FDI architectures may also differ in the type of exchanged
information. Specifically, the local diagnosers may exchange
estimations [4], [5], [12], or measurements [7], [8], [11] of the
interconnected states, or fault signatures [12]. In multi-level
FDI schemes, the communication between levels is commonly
sporadic and event-driven, while the information transmitted to
higher levels can be the decisions of the local diagnosers [7],
[8], the time instances of fault detection of the local diagnosers
[9] or the calculated analytical redundancy relations [10].

Among distributed and decentralized FDI schemes for phys-
ically interconnected systems, there are very few results in
sensor fault diagnosis. In [14], [15], a distributed architecture
has been designed for isolating a single sensor fault that may
occur in one of the nonlinear subsystems. In [16], [17], local
monitoring agents, which do not exchange any information,
are used for isolating multiple sensor faults that may affect
more than one interconnected, nonlinear subsystem.

The goal and the main contribution of this work is the design
and analysis of a fault diagnosis methodology with emphasis
on the distributed isolation of multiple sensor faults that
may affect the physical part of multiple interconnected cyber-
physical systems, which may exchange sensor information
related to the physical interconnections. The backbone of the
proposed distributed scheme is the use of a bank of agents,
which are implemented in the cyber core of the interconnected
CPS and monitor the sensor sets of the CPS. A global
decision logic is designed for the isolation of sensor faults
that are propagated between the interconnected CPS through
the exchange of sensor information, which is necessary for
enhancing the distributed sensor fault detectability. This ex-
change of information is crucial and has significant practical
implications, since it provides the necessary redundancy to
isolate multiple faults in large-scale dynamical systems. The
intuitive rationale behind the global decision logic relies on
the diagnosis capabilities of a monitoring agent, which is
specifically designed using a bank of observer-based modules

that are robust against modeling uncertainties and structurally
sensitive to propagated sensor faults and faults that occur in
smaller local sensor sets of the underlying CPS, while being
affected by local sensor faults in a different way than being
affected by propagated sensor faults.

The local sensor sets result from the decomposition of the
sensor set of the corresponding CPS, necessary for resolving
efficiently the problem of isolating multiple sensor faults in
possibly large-scale and nonlinear CPS, and distinguishing
propagated sensor faults. The decision logic of a monitoring
module relies on analytical redundancy relations of residuals
and adaptive thresholds, derived using a nonlinear Lipschitz
observer. The design of the nonlinear observer is realized
by taking into account certain conditions that ensure the
stability of the nonlinear estimation error dynamics, using
the measurements of the underlying local sensor set and the
sensor information transmitted from neighboring CPS. These
conditions are used to analyze quantitatively the distributed
sensor fault effects.

The isolation decision logic applied locally, by combining
the decisions of the monitoring modules, and globally, by
combining the decisions of the monitoring agents of the CPS,
relies on diagnostic reasoning using sensor fault signature
matrices. The proposed distributed diagnostic reasoning and
fault signature matrices are formulated taking into account
the robustness and structured fault sensitivity properties, as
well as the quantitative analysis of the local and propagated
sensor fault effects, allowing the isolation of multiple sensor
faults in a CPS and multiple propagated sensor faults that
impact the network of the interconnected CPS. This work
is based on some preliminary results on distributed sensor
fault diagnosis in [18], while offering a general design and
analysis framework for diagnosing multiple sensor faults that
may affect the physical layer of operation of a network of CPS
and propagate in the cyber superstratum.

The paper is organized as follows. The problem formulation
is described in Section II, while the overall architecture of
the distributed sensor FDI method for a network of CPS is
presented in Section III. The distributed sensor fault detection
and isolation procedures are described in Section IV and V,
respectively. The performance of the proposed methodology is
analyzed in Section VI. A simple two-zone Heating Ventilation
and Air-Conditioning (HVAC) system is provided in Section
VII for illustrating the application of the proposed method,
followed by some concluding remarks in Section VIII.

II. PROBLEM FORMULATION

Consider a network of N interconnected CPS. The I-th
CPS, I ∈ {1, . . . , N}, is described by the pair

(
P(I), C(I)

)
,

where P(I) corresponds to the physical part, while C(I)

denotes the cyber part. The physical part P(I) is modeled by
a nonlinear dynamical subsystem, denoted by Σ(I), and a set
of sensors, denoted by S(I); i.e.,

Σ(I) : ẋ(I)(t) =A(I)x(I)(t) + γ(I)(x(I)(t), u(I)(t))

+ h(I)(x(I)(t), u(I)(t), C(I)
z z(I)(t))

+ η(I)(x(I)(t), u(I)(t), C(I)
z z(I)(t), t), (1)
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where x(I) ∈ RnI , u(I) ∈ RℓI are the state and control
input vector of Σ(I), respectively, while z(I) ∈ RqI is the
interconnection state vector, containing the states of the neigh-
boring (interconnected) subsystems of Σ(I), while C

(I)
z z(I)

denotes a linear combination of interconnection states with
C

(I)
z ∈ RpI×qI . The constant matrix A(I) ∈ RnI×nI is

the linearized part of the state equation and γ(I) : RnI ×
RℓI 7→ RnI represents the known nonlinear dynamics. The
term A(I)x(I) + γ(I)(x(I), u(I)) represents the known local
dynamics, while h(I) : RnI × RℓI × RpI 7→ RnI represents
the known interconnection dynamics. The last term η(I) :
RnI ×RℓI ×RpI ×R 7→ RnI denotes the modeling uncertainty
of Σ(I), representing various sources of uncertainty such as
linearization error, uncertainty in the model’s parameters, or
system disturbances etc. The input vector u(I) is generated by
a control agent, denoted by K(I), which is implemented in
the cyber part C(I) of the I-th CPS, based on some desired
reference signals r(I)(t).

The sensor set of P(I) is characterized by

S(I) : y(I)(t) = C(I)x(I)(t) + d(I)(t) + f (I)(t), (2)

where y(I) ∈ RmI is the output vector, d(I) ∈ RmI denotes the
noise vector corrupting the measurements of sensors in S(I)

and f (I) ∈ RmI represents the possible sensor fault vector.
The j-th sensor S(I){j}, j ∈ {1, . . . ,mI} is described by

S(I){j} : y
(I)
j (t) = C

(I)
j x(I)(t) + d

(I)
j (t) + f

(I)
j (t), (3)

where f
(I)
j represents the change in the output y(I)j due to a

single fault in the j-th sensor of the set S(I), modeled as

f
(I)
j (t) = β

(I)
j (t− T

(I)
fj

)ϕ
(I)
j (t− T

(I)
fj

), (4)

where β
(I)
j (t) is the time profile and ϕ

(I)
j (t) is the (unknown)

sensor fault function that occurs at the (unknown) time instant
T

(I)
fj

. The time profile of the fault is modeled as β
(I)
j (t) = 0

if t < 0 and β
(I)
j (t) = 1 − e−κ

(I)
j t if t ≥ 0, where κ

(I)
j >

0 denotes the (unknown) evolution rate of the fault. If the
occurrence of a sensor fault is abrupt, κ(I)

j → ∞. Multiple
sensor faults may occur simultaneously or sequentially; e.g.,
T

(I)
f1

≤ T
(I)
f2

≤ . . . ≤ T
(I)
fmI

.
In the presence of a single or multiple sensor faults, it is

important that the monitoring system is able to diagnose the
faults as quickly and accurately as possible before they lead
to catastrophic failures or propagate to other CPS through the
distributed control scheme. The objective of this work is to
design and analyze a methodology for detecting and isolating
multiple sensor faults that may occur in one or more CPS. The
following assumptions are made throughout the paper:

Assumption 1: For each subsystem I ∈ {1, . . . , N}, the
state vector x(I)(t) and input vector u(I)(t) generated by a
feedback controller K(I), remain uniformly bounded before
and after the occurrence of multiple sensor faults; i.e., there
exist compact regions of stability UI ⊂ RℓI , XI ⊂ RnI such
that

(
x(I)(t), u(I)(t)

)
∈ XI × UI , for all t ≥ 0.

Assumption 2: The nonlinear vector field γ(I) is locally
Lipschitz in x(I) ∈ XI , for all u(I) ∈ UI and t ≥ 0, while
h(I) is locally Lipschitz in x(I) ∈ XI and z(I) ∈ ZI , for all

u(I) ∈ UI and t ≥ 0. The vector space ZI ⊂ RqI denotes a
compact region of stability within which z(I) resides.

Assumption 3: The unknown modeling uncertainty η(I), is
bounded by a known functional bound η̄(I) for all x(I) ∈
XI , u(I) ∈ UI , z(I) ∈ ZI and t ≥ 0; i.e.

|η(I)(x(I), u(I), C(I)
z z(I), t)| ≤ η̄(I)(x(I), u(I), C(I)

z z(I), t),
(5)

whereas the functional bound η̄(I) is locally Lipschitz in
x(I) ∈ XI and z(I) ∈ ZI , for all u(I) ∈ UI and t ≥ 0.

Assumption 4: The noise affecting the sensor S(I){j} is
unknown but uniformly bounded; i.e., |d(I)j (t)| ≤ d̄

(I)
j , j ∈

{1, . . . ,mI}, where d̄
(I)
j is a known constant bound.

Assumption 1 is a well-posedness condition, requiring that
the feedback controller can retain the boundedness of the state
variables in the presence of sensor faults. This assumption
is necessary due to the fact that, in this work, we do not
address the fault accommodation problem, but only fault
detection and isolation issues. Assumption 2 characterizes the
class of nonlinear interconnected systems under consideration.
Many nonlinearities in practical systems can be considered
as locally Lipschitz [4], [19], [20]. Assumption 3 provides
a bound commonly used for distinguishing between modeling
uncertainties and faults. This bound can be obtained either an-
alytically, by explicitly determining the sources of uncertainty
and their corresponding bounds, or using off-line identification
techniques. Assumption 4 describes a practical representation
of the available knowledge for the sensor noise that is typically
provided in a given range of operation by sensor manufacturers
or introduced when a noise-free analog signal is converted into
a digital one with a finite number of digits.

III. SENSOR FAULT DIAGNOSIS ARCHITECTURE

The cyber part C(I) of the interconnected CPS consists
of the monitoring agent, denoted by M(I), associated with
each interconnected subsystem and the control agent K(I).
The objective of this paper is the design of the monitoring
agent M(I) for multiple sensor faults, with emphasis on
the communication between neighboring monitoring agents
and the decision logic for sensor fault isolation. The overall
architecture of the proposed distributed sensor fault detection
and isolation (SFDI) method is illustrated in Fig. 1. The
distributed SFDI process is realized in the cyber superstratum,
in two levels. The first-level diagnosis M(I), shown in Fig.
2, is designed to detect and isolate multiple sensor faults
that may affect directly some sensors in S(I) associated
with the underlying system Σ(I). The second-level diagnosis,
denoted by G, utilizes information (depicted as dashed arrows
in Fig. 1) from the monitoring agents M(I) for isolating
sensor faults propagated in the cyber superstratum due to the
communication of the monitoring agents M(I).

The exchanged information corresponds to the form of the
physical interconnections, i.e. unidirectional or bidirectional
interactions between interconnected subsystems (white, solid
arrows in Fig. 1). In particular, neighboring monitoring agents
can exchange data provided by the sensors that measure the
interconnection states z(I). The sensor information transmitted
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to the agent M(I), denoted by S(I)
z , is characterized by the

output vector y(I)z ∈ RpI ; i.e.

S(I)
z : y(I)z (t) = C(I)

z z(I)(t) + d(I)z (t) + f (I)
z (t), (6)

where d
(I)
z , f

(I)
z ∈ RpI are the noise and sensor fault vector,

respectively.

Fig. 1. Network of interconnected cyber-physical systems.

Fig. 2. Description of the I-th CPS affected by sensor faults.

A fault in sensor S(I) can be propagated to neighboring
cyber modules due to the information exchange of M(I) with
neighboring monitoring agents, as depicted in Fig. 2. Allow-
ing the exchange of sensor information between monitoring
agents can enhance sensor fault detectability, compared to
a decentralized architecture with no communication between
the monitoring agents, where usually the effects of intercon-
nections are treated as bounded disturbances [16], [17]. On
the other hand, the exchange of information may cause fault
propagation, which complicates the isolation of faulty sensors.
This issue is addressed in Section V with the design of a global
decision logic. It is important to note that the propagation of
sensor faults may occur not only in the monitoring agents
but also in the control agents in the case of a distributed
control architecture, however the design of the control and
fault accommodation scheme is beyond the scope of this paper.

Typically, in large-scale applications, the sensor set S(I)

may consist of a large number of sensors, thus making the

detection and especially the isolation of multiple sensor faults
very difficult and sometimes unfeasible with a single module.
The design of the agent M(I) relies on the decomposition of
the monitoring of the sensor set S(I) into smaller local sensor
sets that may be distinct or overlap [17]. The q-th local sensor
set, denoted by S(I,q), consists of mI,q sensors of S(I) and is
characterized by the output vector y(I,q) ∈ RmI,q ; i.e.,

S(I,q) : y(I,q)(t) = C(I,q)x(I)(t) + d(I,q)(t) + f (I,q)(t),
(7)

where C(I,q) is made up of mI,q rows of C(I) and y(I,q)

represents a column vector made up of mI,q elements of
y(I) (correspondingly for d(I,q) and f (I,q)). A decomposition
procedure that can ensure the design of stable observers of the
monitoring modules (presented in Section IV-A) and enhance
the multiple sensor fault isolability is proposed in [17].

For each local sensor set, we design a dedicated module
M(I,q), which uses the measurements of S(I,q), as well as
the sensor information y

(I)
z transmitted to the agent M(I)

from its neighboring agents. The primary goal of M(I,q)

is to detect the presence of sensor faults f (I,q) affecting
the local sensor set S(I,q). However, each module M(I,q)

uses the transmitted sensor information y
(I)
z , which may be

faulty, thus affecting the decision of M(I,q); i.e., the module
M(I,q) cannot distinguish between sensor faults in P(I) and
propagated sensor faults. Due to this fact, as well as due
to the possible overlapping between some local sensor sets
S(I,q) (sensors belong to more than one local sensor sets), the
decisions of the NI modules are aggregated and processed
combinatorially, applying diagnostic reasoning, in order for
the agent M(I) to isolate multiple sensor faults. Then, the
decisions of the monitoring agents are processed by a global
decision logic, aiming at isolating propagated sensor faults.

IV. DISTRIBUTED SENSOR FAULT DETECTION

This section deals with the design of the module M(I,q),
q ∈ {1, . . . , NI}. In the sequel, the dependence of the signals
on time (e.g. x(t)) will be dropped for notational brevity.

A. Observer-based residual generation

The estimation model of M(I,q) is formulated by selecting
a nonlinear observer O(I,q), described by

O(I,q) : ˙̂x
(I,q)

= A(I)x̂(I,q) + γ(I)(x̂(I,q), u(I))

+ h(I)(x̂(I,q), u(I), y(I)z )

+ L(I,q)
(
y(I,q) − C(I,q)x̂(I,q)

)
, (8)

where x̂(I,q) ∈ RnI is the estimation of x(I) (based on the
sensor measurements y(I,q) with x̂(I,q)(0) = 0), L(I,q) ∈
RnI×mI,q is the observer gain matrix and y

(I)
z is the trans-

mitted sensor information, defined in (6). It is noted that
the observer used in this work is based on the structure of
observers for Lipschitz nonlinear systems (see [20], [21] and
references therein), which is modified appropriately for non-
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linear interconnected subsystems. The j-th residual, denoted
by ε

(I,q)
yj , is defined as

ε(I,q)yj
= y

(I)
j − C

(I)
j x̂(I,q), j ∈ J (I,q), (9)

where J (I,q) is an index set, defined as J (I,q) ={
j : S(I){j} ∈ S(I,q)

}
.

As long as the local sensor set S(I,q) and the transmitted
information y

(I)
z are not affected by sensor faults, the estima-

tion model of M(I,q) under healthy conditions, denoted by
x̂
(I,q)
H , satisfies

˙̂x
(I,q)
H =A

(I,q)
L x̂

(I,q)
H + γ(I)(x̂

(I,q)
H , u(I))

+ h(I)(x̂
(I,q)
H , u(I), y(I)zH ) + L(I,q)y

(I,q)
H , (10)

where A
(I,q)
L = A(I) − L(I,q)C(I,q) and y

(I,q)
H and y

(I)
zH are

respectively defined through (7) and (6) with f (I,q) = 0 and
f
(I,q)
z = 0.

Let us define ε
(I,q)
xH , x(I) − x̂

(I,q)
H as the state estimation

error under healthy conditions; taking into account (1) and
(10), we obtain:

ε̇(I,q)xH
= A

(I,q)
L ε(I,q)xH

+ γ̃
(I,q)
H + h̃

(I,q)
H − L(I,q)d(I,q)

+ η(I)(x(I), u(I), C(I)
z z(I), t), (11)

γ̃
(I,q)
H = γ(I)(x(I), u(I))− γ(I)(x̂

(I,q)
H , u(I)), (12)

h̃
(I,q)
H = h(I)(x(I), u(I), C(I)

z z(I))− h(I)(x̂
(I,q)
H , u(I), y(I)zH )

(13)

The stability of the estimation error dynamics under healthy
conditions is analyzed in the following lemma.

Lemma 4.1: Suppose that the observer gain L(I,q) is chosen
such that: (a) the matrix A

(I,q)
L = A(I)−L(I,q)C(I,q) is stable,

and (b) there exist positive constants ρ(I,q), ξ(I,q) such that
|eA

(I,q)
L t| ≤ ρ(I,q)e−ξ(I,q)t and ξ(I,q) > ΛIρ

(I,q), where ΛI =
λγI

+ λhI
+ ληI

(the parameters λγI
, λhI

, ληI
denote the

Lipschitz constants of γ(I), h(I) and η̄(I), respectively); then
the state estimation error under healthy conditions, ε(I,q)xH (t),
is uniformly bounded and satisfies

|ε(I,q)xH
(t)| ≤E

(I,q)
H (t) + ρ(I,q)ΛI

∫ t

0

E
(I,q)
H (τ)e−ν(I,q)(t−τ)dτ

(14)

E
(I,q)
H (t) =Φ(t)x̄(I) +

ρ
(I,q)
d d̄(I,q)

ξ
(I,q)
d

(
1− e−ξ

(I,q)
d

t

)
+

∫ t

0

Φ(t− τ)η̄(I)(x̂
(I,q)
H (τ), u(I)(τ), y(I)

zH (τ), τ)dτ

+
(λhI + ληI )d̄

(I)
z

ξ(I,q)

(
ρ(I,q) − Φ(t)

)
. (15)

with Φ(t) = ρ(I,q)e−ξ(I,q)t and ν(I,q) = ξ(I,q) − ρ(I,q)ΛI .

Proof: Solving (11) and taking into account conditions

(a) and (b) of Lemma 4.1, the bound on
∣∣∣ε(I,q)xH (t)

∣∣∣ satisfies:∣∣∣ε(I,q)xH
(t)

∣∣∣ ≤Φ(t)x̄(I) +

∫ t

0

ρ
(I,q)

d e−ξ
(I,q)

d (t−τ)d̄(I,q)dτ

+

∫ t

0

Φ(t− τ)
(∣∣∣γ̃(I,q)

H (τ)
∣∣∣+ ∣∣∣h̃(I,q)

H (τ)
∣∣∣

+
∣∣∣η(I)(x(I)(τ), u(I)(τ), C(I)

z z(I)(τ), τ)
∣∣∣) dτ, (16)

where ρ
(I,q)
d , ξ

(I,q)
d are positive constants chosen such that∣∣∣eA(I,q)

L tL(I,q)
∣∣∣ ≤ ρ

(I,q)
d e−ξ

(I,q)
d t, x̄(I) is a bound on

∣∣x(I)(t)
∣∣

such that
∣∣x(I)(t)

∣∣ ≤ x̄(I), for all x(I) ∈ X (I) and t ≥ 0,
d̄(I,q) is a bound for d(I,q)(t) (defined in (7)) such that∣∣d(I,q)(t)∣∣ ≤ d̄(I,q), and γ̃

(I,q)
H , h̃(I,q)

H are defined in (12) and
(13), respectively. Given Assumptions 1-4, we have∣∣∣γ̃(I,q)

H

∣∣∣ ≤ λγI

∣∣∣ε(I,q)xH

∣∣∣ , (17)

∣∣∣h̃(I,q)
H

∣∣∣ ≤ λhI

∣∣∣∣∣∣
 ε

(I,q)
xH

C
(I)
z z(I) − y

(I)
zH

∣∣∣∣∣∣ ≤ λhI

(∣∣∣ε(I,q)xH

∣∣∣+ d̄(I)z

)
.

(18)

By setting

η̄
(I,q)
∆ = η̄(I)(x(I), u(I), C(I)

z z(I), t)− η̄(I)(x̂
(I,q)
H , u(I), y(I)zH , t)

(19)

and taking into account Assumption 3, we obtain∣∣∣η(I)(x(I), u(I), C
(I)
z z(I), t)

∣∣∣ ≤ η̄(I)(x̂
(I,q)
H , u(I), y

(I)
zH , t) +

∣∣∣η̄(I,q)∆

∣∣∣ ,
(20)

Given that η̄(I) is locally Lipschitz, we have∣∣∣η̄(I,q)∆

∣∣∣ ≤ ληI

(∣∣∣ε(I,q)xH

∣∣∣+ d̄(I)z

)
(21)

Based on (17)-(21), the bound on
∣∣∣ε(I,q)xH (t)

∣∣∣ can be computed
as ∣∣∣ε(I,q)xH

(t)
∣∣∣ ≤ E

(I,q)
H (t) +

∫ t

0

ΛIΦ(t− τ)
∣∣∣ε(I,q)xH

(τ)
∣∣∣ dτ (22)

where E
(I,q)
H is defined in (15). Applying the Bellman-

Gronwall Lemma [22] results in (14).
It is noted that in the absence of modeling uncertainty and

noise i.e. assuming that η̄(I) = 0 and d̄(I,q) = 0, d̄(I)z = 0,
we obtain E

(I,q)
H (t) = ρ(I,q)e−ξ(I,q)tx̄ → 0. Consequently,

|ε(I,q)xH (t)| converges to zero as t → ∞. The residual under
healthy conditions can be expressed as a function of the state
estimation error under healthy conditions ε

(I,q)
xH (t), i.e.

ε(I,q)yjH
= C

(I)
j ε(I,q)xH

+ d
(I)
j , j ∈ J (I,q) (23)

with ε
(I,q)
xH described by (11)-(13). If there is no sensor noise

and modeling uncertainty, ε(I,q)yjH converges to zero as t → ∞.

B. Computation of adaptive thresholds

The j-th adaptive threshold, denoted by ε̄
(I,q)
yj (t), j ∈

J (I,q), is designed to bound the residual under healthy con-
ditions ε

(I,q)
yjH . Using the solution of (11), we compute the j-th

adaptive threshold following the same procedure presented in
the proof of Lemma 4.1. It is noted that for the computation
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of the j-th adaptive threshold, we choose positive constants
α
(I,q)
j , ζ

(I,q)
j such that |C(I,q)

j eA
(I,q)
L t| ≤ α

(I,q)
j e−ζ

(I,q)
j t and

α
(I,q)
dj

, ζ
(I,q)
dj

such that |C(I)
j eA

(I,q)
L tL(I,q)| ≤ α

(I,q)
dj

e
−ζ

(I,q)
dj

t
.

The j-th adaptive threshold, j ∈ J (I,q) is described by

ε̄(I,q)yj
(t) =Y

(I,q)
j (t) +

∫ t

0

α
(I,q)
j e−ζ

(I,q)
j (t−τ)

(
ΛIZ

(I,q)(τ)

+η̄(I)(x̂(I,q)(τ), u(I)(τ), y(I)z (τ), τ)
)
dτ, (24)

with

Y
(I,q)
j (t) = α

(I,q)
j x̄(I)e−ζ

(I,q)
j t +

α
(I,q)
dj

d̄(I,q)

ζ
(I,q)
dj

(
1− e

−ζ
(I,q)
dj

t
)

+
α
(I,q)
j (λhI + ληI )d̄

(I)
z

ζ
(I,q)
j

(
1− e−ζ

(I,q)
j t

)
+ d̄

(I)
j ,

(25)

Z(I,q)(t) = E(I,q)(t) + ρ(I,q)ΛI

∫ t

0

E(I,q)(τ)e−ν(I,q)(t−τ)dτ

(26)

where E(I,q) is defined through (15) after replacing x̂
(I,q)
H

and y
(I)
zH with x̂(I,q) and y

(I)
z , respectively, and ν(I,q) =

ξ(I,q) − ρ(I,q)ΛI is positive according to Lemma 4.1, making
the adaptive threshold finite for all t. It is important to note that
the j-th adaptive threshold can be implemented using linear
filters [23]; i.e.,

ε̄(I,q)yj
(t) =W (s)

[
η̄(x̂(I,q)(t), u(I)(t), y(I)z (t), t)

+ΛIZ
(I,q)(t)

]
+ Y

(I,q)
j (t), (27)

W (s) =
α
(I,q)
j

s+ ζ
(I,q)
j

. (28)

The notation W (s)[z(t)] denotes the output of the filter
W (s) defined in Laplace domain with z(t) as input, for any
signal z(t). Similarly, the signals Z(I,q) and E(I,q) can be
implemented using linear filtering techniques. Considering that
there is no sensor fault in the local sensor set S(I,q) and
the transmitted sensor information, let us denote the adaptive
threshold under healthy conditions by ε̄

(I,q)
yjH (t), expressed as

ε̄(I,q)yjH
(t) =Y

(I,q)
j (t) +

∫ t

0

α
(I,q)
j e−ζ

(I,q)
j (t−τ)

(
ΛIZ

(I,q)
H (τ)

+η̄(I)(x̂
(I,q)
H (τ), u(I)(τ), y(I)zH (τ), τ)

)
dτ (29)

where Z
(I,q)
H is determined through (26) with E(I,q) = E

(I,q)
H

(E(I,q)
H is defined in (15)) . Hence, under healthy conditions,

∣∣∣ε(I,q)yjH

∣∣∣ ≤ ε̄(I,q)yjH
, (30)

where ε
(I,q)
yjH is defined in (23).

C. Distributed sensor fault detection decision logic

The sensor fault detection decision logic implemented in
the module M(I,q) is based on a set of analytical redundancy
relations (ARRs), which are dynamical constraints, formulated

using the residuals and adaptive thresholds [2], [24], [25].
Specifically, the j-th ARR, associated with the module M(I,q)

is defined as:

E(I,q)
j :

∣∣∣ε(I,q)yj
(t)

∣∣∣− ε̄(I,q)yj
(t) ≤ 0, (31)

When inequality in (31) is true, it is inferred that the ARR
E(I,q)
j is satisfied. The set of ARRs, based on which the module

M(I,q) obtains a decision, is defined as

E(I,q) =
∪

j∈J (I,q)

E(I,q)
j . (32)

Therefore, the set E(I,q) is satisfied when E(I,q)
j is satisfied

for all j ∈ J (I,q). The distributed sensor fault detection
decision logic is formulated taking into account the robustness
and structured fault sensitivity of the set E(I,q), which are
described in the following lemma.

Lemma 4.2: Taking into account the set of ARRs E(I,q),
defined in (32), it is ensured that:

(a) Robustness: If neither the local sensor set S(I,q) nor the
transmitted sensor information y

(I)
z are affected by sensor

faults, then the set of ARRs E(I,q) is always satisfied.
(b) Structured fault sensitivity: If there is a time instant at

which E(I,q) is not satisfied, then the occurrence of at least
one sensor fault in S(I,q)

∪
S(I)
z is guaranteed.

Proof: (a) If both S(I,q) and S(I)
z are healthy, the j-th

residual is described by (23); i.e., ε(I,q)yj = ε
(I,q)
yjH , and the j-

th adaptive threshold is defined by (29), i.e., ε̄(I,q)yj = ε̄
(I,q)
yjH ,

implying that (30) is valid and consequently E(I,q) is satisfied.
(b) The second part of Lemma 4.2 can be proved by reductio

ad absurdum. Suppose that no sensor fault has occurred in
S(I,q) and S(I)

z . Then, E(I,q) is satisfied, according to part (a)
of Lemma 4.2. This contradicts our assumption of part (b).

It is noted that the robustness and structured fault sensitivity
properties result from the design of the nonlinear observer, the
residuals and the adaptive thresholds. The robustness property
implies that the set of ARRs E(I,q) is insensitive to modeling
uncertainties and noise, thus avoiding false alarms. On the
other hand, the structured fault sensitivity property entails that
E(I,q) is sensitive to a subset of all possible sensor faults
that may affect the sensor set S(I) (since S(I,q) ⊂ S(I))
and the sensor sets monitoring the neighboring subsystems
(since S(I)

z ⊂
∪

Q∈N (I)

SQ, where N (I) is the set including the

subsystems that are physically interconnected with Σ(I)).
The output of M(I,q), denoted by D(I,q), is the decision on

the presence of sensor faults in S(I,q)
∪

S(I)
z , represented by

a boolean function, defined as

D(I,q)(t) =

{
0, for t < T

(I,q)
D

1, otherwise
, (33)

where T
(I,q)
D is the detection time for the module M(I,q),

defined as

T
(I,q)
D = min

t

∪
j∈J (I,q)

{
min

t

{
t : |ε(I,q)yj (t)| > ε̄(I,q)yj (t)

}}
(34)
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If E(I,q) is always satisfied, then the detection time is defined
as T

(I,q)
FD = ∞. When D(I,q)(t) = 1, the set S(I,q)

∪
S(I)
z

is faulty, since at least one sensor fault in S(I,q)
∪
S(I)
z is

guaranteed to have occurred, according to the structured fault
sensitivity (Lemma 4.2). As long as D(I,q)(t) = 0 either
there is no sensor fault in S(I,q)

∪
S(I)
z or sensor faults have

occurred, but have not been detected by the module M(I,q)

until the time T
(I,q)
FD . However, the sensor set S(I,q)

∪
S(I)
z is

characterized as non-faulty, based on the exoneration assump-
tion [17], [24]; i.e., given a set of observations, the sensors
in S(I,q)

∪
S(I)
z necessarily reveal their faulty operation by

provoking the violation of E(I,q), or equivalently, all sensors in
S(I,q)

∪
S(I)
z are exonerated, i.e. are considered as functioning

properly, if E(I,q) is satisfied.

V. DISTRIBUTED SENSOR FAULT ISOLATION

The multiple sensor fault isolation is realized in two levels;
locally, by combining the decisions of the monitoring modules
and globally, by combining the decisions of the monitoring
agents of the relevant CPS.

A. Multiple sensor fault isolation decision logic of CPS

The monitoring agent M(I) uses a binary fault signature
matrix F (I), consisting of NI rows and NcI + 2 columns,
where NcI = 2mI − 1 (mI is the number of sensors in
the sensor set S(I)); the q-th row corresponds to the q-th
set of ARRs E(I,q), q ∈ {1, . . . , NI}; the i-th column, for
all i ∈ {1, . . . , NcI} corresponds to the i-th combination
of sensor faults that may affect the sensor set S(I), denoted
by F (I)

ci , while the NcI + 1 column corresponds to the
fault vector f

(I)
z , that is sensor faults from neighboring CPS,

and the NcI + 2 column corresponds to the union of all
combinations of f

(I)
z and F (I)

ci for all i ∈ {1, . . . , NcI}. For
example, if mI = 2, F (I) has five columns, corresponding
to the following sensor fault combination: F (I)

c1 =
{
f
(I)
1

}
,

F (I)
c2 =

{
f
(I)
2

}
, F (I)

c3 =
{
f
(I)
1 , f

(I)
2

}
, F (I)

c4 =
{
f
(I)
z

}
and

F (I)
c5 =

∪
i∈{1,2,3}

{
f
(I)
z ,F (I)

ci

}
. The i-th column, denoted by

F
(I)
i , corresponds to the theoretical pattern of sensor faults

defined as:

F
(I)
i =

[
F

(I)
1i , . . . , F

(I)
NI i

]⊤
, (35)

where F
(I)
qi = 1, if at least one sensor fault included in

the combination F (I)
ci , i ∈ {1, . . . , NcI}, can provoke the

violation of (or else is involved in) E(I,q), q ∈ {1, . . . , NI}
and F

(I)
qi = 0 otherwise (see simulation example in Section

VII). The design of F (I) exploits the structure sensor fault
sensitivity property of E(I,q), described in Lemma 4.2.

The decisions obtained by the NI modules of the agent
M(I) constitute the observed pattern of sensor faults affecting
S(I) and S(I)

z , denoted by D(I)(t); i.e.,

D(I)(t) =
[
D(I,1)(t), . . . , D(I,NI)(t)

]⊤
(36)

where D(I,q), q ∈ {1, . . . , NI} is defined in (33). The
observed pattern, D(I)(t) is compared to each of the NcI +2

theoretical patterns F
(I)
i , I ∈ {1, . . . , N}, in order to deter-

mine the sensor fault diagnosis set D(I)
s (t) that includes the

sensor fault combinations that have possibly occurred [26]. As
long as D(I)(t) = 0NI

(0NI
is a zero vector of length NI ), the

diagnosis set D(I)
s (t) is empty; otherwise, if D(I,q)(t) = F

(I)
qi

for all q ∈ {1, . . . , NI}, then the observed pattern D(I)(t)

is said to be consistent with the i-th theoretical pattern F
(I)
i

(consistency test) and the diagnosis set is defined as

D(I)
s (t) =

{
F (I)

ci : i ∈ I(I)
D (t)

}
, (37)

where I(I)
D (t) is the consistency index set defined as I(I)

D (t) ={
i : F

(I)
i = D(I)(t), i ∈ {1, . . . , NcI}

}
. The diagnosis set

D(I)
s (t) may contain one or more fault combinations.
The observed pattern D(I)(t) changes over time, thus it

is possible that at some time instant the consistency test
is not satisfied. This may happen when there are two or
more identical theoretical patterns and some possible observed
patterns cannot be consistent with the theoretical patterns.
When the consistency test does not provide any result, the
sensor fault diagnosis set D(I)

s (t) contains the sensor fault
combinations involved in the violated ARRs [24]; i.e.

D(I)
s (t) =

∩
q∈Q(t)

Supp(E(I,q)), (38)

where Supp(E(I,q)) is the support of E(I,q), which is the set
of sensor fault combinations F (I)

ci for which F
(I)
qi = 1 and

Q(I)(t) is the index set of the violated ARRs, defined as
Q(I)(t) =

{
q : D(I,q)(t) = 1, q ∈ {1, . . . , NI}

}
. In general,{

F (I)
ci : i ∈ I(I)

D (t)
}

⊆
∩

q∈Q(t)

Supp(E(I,q)), i.e. the consis-

tency test provides a diagnosis set with a smaller (or equal)
number of diagnosed sensor fault combinations compared to
the diagnosis set defined in (38).

The outputs of the agent M(I), I ∈ {1, . . . , N} are the
diagnosis set D(I)

s and the decision on the presence of sensor
faults in S(I)

z , represented by the function D
(I)
z (t):

D(I)
z (t) =

 0, if f (I)
z /∈ D(I)

s (t)

1, if f (I)
z ∈ D(I)

s (t)
(39)

The diagnostic reasoning behind the decision of the agent
M(I) on multiple sensor fault isolation relies on the resultant
diagnosis set. Particularly, we may infer that (i) at least
one of the sensor fault combinations F (I)

ci that belongs to
D(I)

s (t) has occurred, (ii) the sensor fault f (I)
j included in all

diagnosed sensor fault combinations, i.e., f (I)
j ∈

∩
i∈I(I)

D (t)

F (I)
ci ,

with
∩

i∈I(I)
D (t)

F (I)
ci ̸= ∅, is guaranteed to have occurred, and

(iii) the occurrence of the combination F (I)
ci that does not

belong to the set of sensor fault combinations involved in the
violated E(I,q), i.e. F (I)

ci ̸∈
∩

q∈Q(t)

Supp(E(I,q)), is excluded.

When f
(I)
j is guaranteed to have occurred, the sensor S(I){j}
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is isolated as faulty. If f (I)
j belongs to some of the diagnosed

sensor fault combinations, but not to all of them, the sensor
S(I){j} is characterized as possibly faulty. If f (I)

z belongs to
the diagnosis set, then at least one sensor fault in S(I)

z may
have been propagated to M(I) from a neighboring agent.

B. Global sensor fault isolation decision logic

The primary goal of the global decision logic G is to isolate
sensor faults that have been propagated from neighboring
agents. If D

(I)
z (t) = 0 for all I ∈ {1, . . . , N}, then no

information (decisions) is processed by the global decision
logic; otherwise the global decision logic is based on the
theoretical patterns of propagated sensor faults, which describe
the involvement of the sensor faults f

(I)
z in the set of ARRs,

E(I), for all I ∈ {1, . . . , N}, defined as

E(I) =
∪

q∈{1,...,NI}

E(I,q). (40)

The theoretical patterns are the columns of the sensor fault
signature matrix F z , which has N rows and Nc = 2p − 1

columns, where p ≤
N∑

I=1

pI (pI is the length of f
(I)
z ). The

I-th row corresponds to the set of ARRs E(I) and the k-th
column, k ∈ {1, . . . , Nc} to the k-th combination of sensor

faults, denoted by Fz
ck

that affect
N∪

I=1

S(I)
z . The k-th theoretical

pattern of transmitted faulty sensor information is the k-th
column of F z defined as:

F z
k = [F z

1k, . . . , F
z
Nk]

⊤ (41)

where: a) F z
Ik = 1, I ∈ {1, . . . , N}, k ∈ {1, . . . , Nc}, if at

least one sensor fault included in Fz
ck

is involved in E(I) and
affects S(I), b) F z

Ik = 0 if none of the sensor faults included
in Fz

ck
is involved in E(I), and c) F z

Ik = ∗, if at least one
sensor fault included in Fz

ck
is involved in E(I) and affects

S(I)
z , while none of the sensor faults included in Fz

ck
affects

S(I) (see simulation example in Section VII).
The semantics of F z

Ik = 1 is that a sensor fault of Fz
ck

that affects S(I) necessarily provokes the violation of E(I).
In other words, E(I) is very sensitive to sensor faults f (I).
The semantics of F z

Ik = ∗ is that a sensor fault of Fz
ck

that
belongs to f

(I)
z and is involved in E(I), i.e. a sensor fault that

is propagated from a neighboring agent, can explain why E(I)

is violated at some time instant, but E(I) may happen to be
satisfied while this sensor fault in Fz

ck
has occurred. This may

happen if E(I) is not very sensitive to f
(I)
z (see Section VI).

The combinatorial process of the decisions of the N
monitoring agents is performed by initially determining the
observed pattern of propagated sensor faults as:

Dz(t) =
[
D(1)

z (t), . . . , D(N)
z (t)

]⊤
. (42)

The observed pattern Dz(t) is compared to each of the
columns of F z

k . If Dz(t) is consistent to F z
k , i.e. Dz(t) = F

(z)
k

the diagnosis set of propagated sensor faults is defined as:

Dz
s(t) =

{
Fz

ck
: k ∈ Iz(t)

}
, (43)

where Iz(t) is an index set defined as Iz(t) ={
k : D

(I)
z (t) = F z

Ik,∀ I ∈ {1, . . . , N}, k ∈ {1, . . . , Nc}
}

. If

F z
Ik = ∗ then D

(I)
z (t) = F z

Ik if either D
(I)
z (t) = 0 or

D
(I)
z (t) = 1. If Dz(t) is not consistent to F z

k , then Dz
s(t)

contains the sensor fault combinations that belong to the
support of the violated E(I), i.e. the sensor fault combinations
Fz

ck
for which F z

Ik = 1 or F z
Ik = ∗. The set Dz

s(t) is used
to update the non-empty diagnosis set D(I)

s (t) of M(I) by
excluding f

(I)
z and its combinations, if f (I)

z ̸∈ Dz
s(t).

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
distributed SFDI scheme with respect to the distributed sensor
fault effects and fault detectability of the modules M(I,q).

A. Distributed Sensor Fault Effects

The effects of sensor faults on the j-th residual and adaptive
threshold, denoted by ε

(I,q)
yjF and ε̄

(I,q)
yjF , j ∈ J (I,q), respec-

tively, for t ≥ T ∗, where T ∗ is the first time instant of sensor
fault occurrence, can be determined as

ε(I,q)yjF
= ε(I,q)yj

− ε(I,q)yjH
, (44)

ε̄(I,q)yjF
= ε̄(I,q)yj

− ε̄(I,q)yjH
, (45)

where ε
(I,q)
yjH , ε̄(I,q)yjH are defined in (23) and (29), respectively.

For t ≥ T ∗, the estimation model of M(I,q) satisfies

˙̂x(I,q) =A
(I,q)
L x̂(I,q) + γ(I)(x̂(I,q), u(I))

+ h(I)(x̂(I,q), u(I), y(I)zH + f (I)
z )

+ L(I,q)
(
y
(I,q)
H + f (I,q)

)
, (46)

where y
(I,q)
H , y(I)zH are defined in (7) and (6) with f (I,q) = 0

and f
(I)
z = 0. Given that ε(I,q)yj = y

(I)
jH +f

(I)
j −C

(I)
j x̂(I,q) and

ε
(I,q)
yjH = y

(I)
jH −C

(I)
j x̂

(I,q)
H , j ∈ J (I,q), the effects ε

(I,q)
yjF (t) for

t ≥ T ∗ can be described by

ε(I,q)yjF
= −C

(I)
j

(
x̂(I,q) − x̂

(I,q)
H

)
+ f

(I)
j , (47)

where x̂(I,q) is described by (46). Based on (10) and (46),

x̂(I,q)(t)− x̂
(I,q)
H (t) =

∫ t

T∗
eA

(I,q)
L

(t−τ)
(
γ(I)(x̂(I,q)(τ), u(I)(τ))

−γ(I)(x̂
(I,q)
H (τ), u(I)(τ))

+h(I)(x̂(I,q)(τ), u(I)(τ), y(I)
zH (τ) + f (I)

z (τ))

−h(I)(x̂
(I,q)
H (τ), u(I)(τ), y(I)

zH (τ))

+L(I,q)f (I,q)(τ)
)

(48)

If |f (I)
z | < ∞ and |f (I,q)| < ∞, a bound on |x̂(I,q)− x̂

(I,q)
H |

denoted by ε̄
(I,q)
xF , can be derived using Assumption 2 and the

Bellman-Gronwall Lemma [22]; i.e.,

ε̄(I,q)xF
=

∫ t

T∗
ρ(I,q) (λγI + λhI ) e

−µ(I,q)(t−τ)Υ(I,q)
z (τ)dτ

+Υ(I,q)
z (t), (49)
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Υ(I,q)
z (t) =λhI

∫ t

T∗
ρ(I,q)e−ξ(I,q)(t−τ)

∣∣∣f (I)
z (τ)

∣∣∣ dτ
+ |L(I,q)|

∫ t

T∗
ρ(I,q)e−ξ(I,q)(t−τ)

∣∣∣f (I,q)(τ)
∣∣∣ dτ (50)

where µ(I,q) = ξ(I,q) − ρ(I,q) (λγI + λhI ) is positive. By
introducing (50) in (49), we obtain a compact form for ε̄(I,q)xF

ε̄(I,q)xF
= λhI

g
(I,q)
j (|f (I)

z |) + |L(I,q)|g(I,q)j (|f (I,q)|), (51)

where g
(I,q)
j represents the propagated and local sensor fault

effects on the j-th residual of the module M(I,q), j ∈ J (I,q).
The effects ε̄

(I,q)
yjF (t) can be expressed as

ε̄(I,q)yjF
(t) =

∫ t

T∗
α
(I,q)
j e−ζ

(I,q)
j (t−τ)

(
δη̄

(I,q)
F (τ)

+ΛIδZ
(I,q)(τ)

)
dτ, (52)

δη̄
(I,q)
F = η̄(I)(x̂(I,q), u(I), y(I)zH + f (I)

z )

− η̄(I)(x̂
(I,q)
H , u(I), y(I)zH ), (53)

where δZ(I,q) = Z(I,q) − Z
(I,q)
H , defined through (26) by

replacing E(I,q) with δE(I,q) = E(I,q) − E
(I,q)
H , defined as

δE(I,q) =

∫ t

T∗
ρ(I,q)e−ξ(I,q)(t−τ)δη̄

(I,q)
F (τ) dτ. (54)

Using Assumption 3 and |x̂(I,q)−x̂
(I,q)
H | ≤ ε̄

(I,q)
xF , where ε̄

(I,q)
xF

is defined in (51), we obtain∣∣∣δη̄(I,q)F

∣∣∣ ≤ληIλhIg
(I,q)
j (|f (I)

z |) + ληI |f (I)
z |

+ ληI |L(I,q)|g(I,q)j (|f (I,q)|). (55)

A bound on δE(I,q) can be defined as∣∣∣δE(I,q)
∣∣∣ ≤ ∫ t

T∗
ρ(I,q)e−ξ(I,q)(t−τ)

(
ληI

(
λhI g

(I,q)
j (|f (I)

z (τ)|)
)

+ληI

∣∣∣f (I)
z (τ)

∣∣∣+ ληI |L
(I,q)|g(I,q)j (|f (I,q)(τ)|)

)
dτ

(56)

Taking into account (26), a bound on δZ(I,q) is determined as∣∣∣δZ(I,q)
∣∣∣ ≤ ∣∣∣δE(I,q)

∣∣∣
+ ρ(I,q)ΛI

∫ t

0

e−ν(I,q)(t−τ)
∣∣∣δE(I,q)(τ)

∣∣∣dτ (57)

where ν(I,q) = ξ(I,q) − ρ(I,q)ΛI is positive (see Lemma 4.1).
Combining (55)-(57), a bound on

∣∣∣ε̄(I,q)yjF

∣∣∣ is defined as∣∣∣ε̄(I,q)yjF

∣∣∣ ≤λhI ḡ
(I,q)
Aj (|f (I)

z |) + ḡ
(I,q)
Bj (|f (I)

z |)

+ |L(I,q)|ḡ(I,q)Aj (|f (I,q)|) (58)

where g
(I,q)
Aj , ḡ(I,q)Bj are functions describing an upper bound

for the sensor fault effects on the j-th adaptive threshold of
the module M(I,q). Taking into account (58) and that

∣∣∣ε(I,q)yjF

∣∣∣ ≤λhI

∣∣∣C(I)
j

∣∣∣ g(I,q)j (|f (I)
z |)

+
∣∣∣L(I,q)

∣∣∣ ∣∣∣C(I)
j

∣∣∣ g(I,q)j (|f (I,q)|) +
∣∣∣f (I)

j

∣∣∣ , (59)

we may infer that the sensor fault propagation effects on the j-
th residual and adaptive threshold depend on the interconnec-
tion function, represented by the Lipschitz constant λhI . This
means that propagated sensor faults of large magnitude may
have low impact on the j-th residual and adaptive threshold
or propagated sensor faults of small magnitude may have high
impact on the j-th residual and adaptive threshold. On the
other hand, the effects of sensor faults f (I) on the j-th residual
and adaptive threshold can be designed to be higher than the
sensor fault propagation effects, because they are amplified by
the magnitude of the observer gain |L(I,q)|. This quantitative
analysis is the basis of the design of the sensor fault signature
matrix implemented in G, which may differentiate qualitatively
the sensitivity of E(I) with respect to the propagated sensor
faults f

(I)
z and the local sensor faults f (I) in the I-th CPS.

B. Distributed Sensor Fault Detectability
The conditions that characterize the minimum effects of

sensor faults in S(I,q) and/or propagated sensor faults that are
detectable by the module M(I,q) are given in the following
Lemma.

Lemma 6.1: The occurrence of faults in S(I,q) and/or S(I)
z is

guaranteed to be detected under worst-case conditions, if there
exists a time instant t◦ ≥ T ∗(T ∗ is the first time instant of
sensor fault occurrence) such that the effects of sensor faults
f (I,q) and/or f (I)

z on the j-th residual and adaptive threshold
satisfy the condition∣∣∣ε(I,q)yjF

(t◦)
∣∣∣− ε̄(I,q)yjF

(t◦) > 2ε̄(I,q)yjH
(t◦), (60)

where ε
(I,q)
yjF and ε̄

(I,q)
yjF are defined through (44) and (45).

Proof: Due to page limitations, the proof is omitted. A
similar proof can be found in [23].

It is important to note that the class of detectable sensor
faults satisfying (60) are obtained under worst-case detectabil-
ity conditions in the sense that they are valid for any modeling
uncertainty and measurement noise, given Assumptions 1-
4. This condition in combination with the effects of sensor
faults in S(I,q) and propagated sensor faults can be taken into
account during the design of the modules in M(I,q), since it
provides a relationship between the sensor faults f (I,q), f (I)

z

and the selected design parameters used for the implemen-
tation of the nonlinear observer O(I,q) (e.g. L(I,q)) and the
adaptive thresholds (ρ(I,q), ξ(I,q), α

(I,q)
j , ζ

(I,q)
j , j ∈ J (I,q)),

as well as system characteristics (η̄(I), d̄(I), λγI
, λhI

, ληI
).

For instance, assuming the occurrence of sensor faults only in
S(I)
z (f (I,q) = 0), the module M(I,q) is guaranteed to detect

them at some time instant t◦ if

2ε̄(I,q)yjH
(t◦) <

∣∣∣ε(I,q)yjF
(t◦)

∣∣∣− ε̄(I,q)yjF
(t◦)

&∣∣∣ε(I,q)yjF
(t◦)

∣∣∣− ε̄(I,q)yjF
(t◦) ≤

∣∣∣C(I)
j

∣∣∣λhI
g
(I,q)
j (|f (I)

z (t◦)|)

+ λhI
ḡ
(I,q)
Aj (|f (I)

z (t◦)|) + ḡ
(I,q)
Bj (|f (I)

z (t◦)|).

Thus, if λhI and ληI are small, then the threshold ε̄
(I,q)
yjH should

be small or |f (I)
z (t◦)| large enough in order for M(I,q) to

guarantee the detection of the propagated sensor faults.
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VII. SIMULATION EXAMPLE

In this section, we illustrate the two-level diagnosis decision
logic for detecting and isolating multiple sensor faults using a
two-zone Heating, Ventilation and Air-Conditioning (HVAC)
system (Fig. 3), which is a nonlinear system, comprised of
two separated zones and the electromechanical part.

Chiller

Chilled Water 

Tank

VAV

Box

Zone 1 Zone 2

Cooling 

Coil Fan

Supply Air Supply Air

Return Air

VAV

Box

(1) (2)

(3)
Physical 

interconnections

Fresh Air

Fig. 3. Two-zone HVAC system.

Let us denote Σ(1) and Σ(2) the two subsystems that
correspond to zone 1 and 2 and Σ(3) that corresponds to
the electromechanical part. The temperature dynamics in each
zone and the electromechanical part can be modeled based on
the fundamental mass and energy conservation equations; i.e.

Σ(I) : ẋ(I)(t) = A(I)x(I)(t) + γ(I)(x(I)(t), u(I)(t))

+ h(I)(z(I)(t), u(I)(t)) + η(I)(t), (61)

with A(I) = −UzI
AzI

MzI
Cv

,

γ(I)(x(I), u(I)) = − ρaCpa

MzICv
x(I)u(I) +

UzIAzI

MzICv
Tamb (62)

h(I)(z(I), u(I)) =
ρaCpa

MzICv
z(I)u(I) (63)

where x(I) ∈ R is the temperature of the I-th zone, I = 1, 2,
u(I) ∈ R is the volumetric flow rate of air entering into the
I-th zone generated by a feedback linearization controller,
and z(I) ∈ R is the interconnection signal that corresponds
to the temperature of output air of the cooling coil (i.e.
z(I) = x

(3)
1 defined below) that is transferred to the I-th zone

through the physical interconnections (Fig. 3) and η(I)(t) is a
disturbance signal related to the rate of internal heat gain due
to occupants and appliances in the I-th zone. The subsystem
Σ(3) is described by

Σ(3) : ẋ(3)(t) = A(3)x(3)(t) + γ(3)(u(3)(t))

+ h(3)(x(3)(t), z(3)(t), u(3)
z (t)), (64)

with

A(3) =

[
−UccAcc

MccCv

QwρwCpw

MccCv

0 −QwρwCpw+UtAt

VtρwCpw

]
,

(65)

γ(3)(u(3)) =

[
UccAcc

MccCv
Tamb − QwρwCpw

MccCv
Two

UtAt

VtρwCpw
Tamb +

QwρwCpw

VtρwCpw
Two

]

+

[
0

15000
VtρwCpw

]
u(3), (66)

h(3)(x(3), z(3), u(3)
z ) =

[
h
(3)
1 (x(3), z(3), u

(3)
z )

0

]
(67)

where x(3) =
[
x
(3)
1 , x

(3)
2

]⊤
is the state vector with x

(3)
1 , x

(3)
2

be the temperature of output air of the cooling coil and
the temperature of the water in the chiller storage tank,
respectively, the input u(3) is the chilled water mass flow rate,
generated by a backstepping controller, z(3) is the intercon-
nection vector whose elements are the temperature of the two
zones, i.e. z(3) = [x(1);x(2)], u

(3)
z (t) =

[
u(1)(t), u(2)(t)

]⊤
,

and h
(3)
1 (x(3), z(3), u

(3)
z ) is defined in (68) at the bottom of

this page. The parameters used for the simulation of Σ(I)

I = 1, 2 and Σ(3) are given [27]. The temperature of each
zone is measured by a sensor, denoted by S(I){1}, I = 1, 2,
while the temperature of the output air of the cooling coil and
the chilled water tank are measured by two sensors, denoted
by S(3){1}, S(3){2}, respectively.

For each of the interconnected subsystems, we design a
monitoring agent M(I), I = 1, 2, 3 (Fig. 4); the agents
M(1) and M(2) monitor the sensors S(1){1} and S(2){1},
respectively, using the measurements of S(3){1} as well (i.e.
y
(I)
z = y

(3)
1 , I = 1, 2). The agent M(3) is comprised of two

modules M(3,1) and M(3,2) that monitor the sensors S(3){1}
and S(3){2}, respectively; the observer of M(3,1) estimates
the state vector x(3) using the measurements of S(1){1} and
S(2){1} (i.e. y

(I)
z = [y

(1)
1 ; y

(2)
1 ]⊤); the estimator of M(3,2)

is used to estimate the state x
(3)
2 and is designed taking into

account the dynamic equation of x
(3)
2 described by (64)-(68)

without using any transmitted sensor information.
The sensor fault signature matrix F (I) designed in the agent

M(I), I = 1, 2 for detecting the presence of faults affecting
S(I){1} and/or S(3){1} is presented in the Table I. The sensor
fault signature matrix F (3) of the agent M(3) for isolating
multiple faults affecting S(3){1}, S(3){2} is presented in the
Table II, with F(3)

c1 =
{
f
(3)
1

}
, F(3)

c2 =
{
f
(3)
2

}
, F(3)

c3 =
{
f
(3)
1 , f

(3)
2

}
,

F(3)
c4 =

{
f
(3)
z

}
, F(3)

c5 =
{
f
(3)
z ,F(3)

c1

}
, F(3)

c6 =
{
f
(3)
z ,F(3)

c2

}
and

F(3)
c7 =

{
f
(3)
z ,F(3)

c3

}
and f

(3)
z = [f

(1)
1 , f

(2)
1 ]⊤ . The global decision

logic is based on the sensor fault signature matrix F z , shown
in Table III, with Fz

c1
=

{
f
(1)
1

}
, Fz

c2
=

{
f
(2)
1

}
, Fz

c3
=

{
f
(3)
1

}
,

h
(3)
1 (x(3), z(3), u

(3)
z ) =

 ρaCpa

MccCv

[
1

1

]⊤

u
(3)
z −

UccAcc

MccCv

[ 1
2
1
2

]⊤

z(3) +
ρa

MccCv

(
(hfg − Cpa)(wz − wao) −Cpax

(3)
1

)[
1

1

]⊤

u
(3)
z (68)
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(2)
1y

(3)
M

(2)
M

(1)
M

G

(3)
1y

(1)
1y

(3)
1y

(1)
zD (2)

zD
(3)
zD

(1){1}S
(2){1}S

(3){1}S
(3){2}S

(1)
1y (3)

1y
(2)
1y(3)

2y

Fig. 4. Distributed sensor fault diagnosis architecture.

Fz
c4

=
{
f
(1)
1 , f

(2)
1

}
, Fz

c5
=

{
f
(1)
1 , f

(3)
1

}
, Fz

c6
=

{
f
(2)
1 , f

(3)
1

}
and

Fz
c7

=
{
f
(1)
1 , f

(2)
1 , f

(3)
1

}
.

f
(I)
1 f

(3)
1 {f (I)

1 , f
(3)
1 }

E(I) 1 1 1
TABLE I

SENSOR FAULT SIGNATURE MATRIX F (I) OF M(I) , I = 1, 2.

F (3)
c1 F (3)

c2 F (3)
c3 F (3)

c4 F (3)
c5 F (3)

c6 F (3)
c7

E(3,1) 1 0 1 1 1 1 1
E(3,2) 0 1 1 0 0 1 1

TABLE II
SENSOR FAULT SIGNATURE MATRIX F (3) OF M(3) .

Fz
c1 F

z
c2 F

z
c3 F

z
c4 F

z
c5 F

z
c6 F

z
c7

E(1) 1 0 * 1 1 * 1

E(2) 0 1 * 1 * 1 1

E(3) * * 1 * 1 1 1
TABLE III

SENSOR FAULT SIGNATURE MATRIX F z IN G .

In this example, the modeling uncertainty of η(I)(t) for
I = 1, 2, is simulated as η(I)(t)=5%Y

(I)
1 sin(2πνt) and the

random, uniformly bounded noise of each sensor S(I){j},
characterized by (3), is simulated as d̄

(I)
j = 3%Y

(I)
j , I = 1, 2,

j = 1, 2, where Y
(I)
j , is the steady state value of y

(I)
j

under healthy conditions (Y (I)
1 = 24, I = 1, 2, Y (3)

1 = 10,
Y

(3)
2 = 5). Two fault scenarios were simulated; in the first

scenario, f
(1)
1 and f

(2)
1 occur simultaneously at T

(1)
f1

=

T
(2)
f1

= 5 000sec; in the second scenario, f
(3)
1 and f

(3)
2

occur simultaneously at T
(3)
f1

= T
(3)
f2

= 5 000sec. In both
scenarios, abrupt, bias sensor faults were simulated, where
ϕ
(1)
1 (t) = 15%Y

(1)
1 , ϕ(2)

1 (t) = 15%Y
(2)
1 , ϕ(3)

1 (t) = 10%Y
(3)
1

and ϕ
(3)
2 (t) = 10%Y

(3)
2 .

Figure 5 and 6 illustrate the result of the distributed SFDI
technique for the first and second simulated scenario, respec-
tively. According to Fig. 5, at the time instant 5000 sec,
the diagnosis set generated by the agents M(1) and M(2)

is D(1)
s (t) =

{
{f (1)

1 }, {f (3)
1 }, {f (1)

1 , f
(3)
1 }

}
and D(2)

s (t) ={
{f (2)

1 }, {f (3)
1 }, {f (2)

1 , f
(3)
1 }

}
for t ≥ 5000sec, while the
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Fig. 5. Distributed SFDI for the first sensor fault scenario. The observed
patterns D(1)(t), D(2)(t), and D(3) = [D(3,1)(t), D(3,2)(t)]⊤ are respec-
tively compared to the matrices F (1), F (2) and F (3) (Tables I and II).

agent M(3) does not detect any fault. The agents M(1) and
M(2) cannot isolate sensor faults, since, as shown in Table
I, a violation of the ARR may be due to any sensor fault
combination. Hence, their decisions along with the decision
of agent M(3) are combined and processed by applying the
global decision logic. The observed pattern of propagated
sensor faults is Dz(t) = [1, 1, 0]⊤ is consistent with the pattern
F z
4 of the matrix F z displayed in Table III, implying that

the diagnosis set is Dz
s =

{
{f (1)

1 , f
(2)
1 }

}
. Combining the

diagnosis sets D(1)
s (t), D(2)

s (t) and Dz
s(t), the agents M(1)

and M(2) infer that local sensor faults (f (1)
1 and f

(2)
1 ) have

occurred, excluding the occurrence of f (3)
1 .

According to Fig. 6, at the time instant 5000 sec
D(3) = [1, 1]⊤, thus based on Table II, the diagnosis set
is D(3)

s (t) =
{
{f (3)

1 , f
(3)
2 }, {f (3)

z , f
(3)
2 }, {f (3)

z , f
(3)
1 , f

(3)
2 }

}
,

while the agents M(1) and M(2) do not detect any fault.
Given D(3)

s (t), the agent M(3) isolates the sensor fault f (3)
2 ,

but it cannot infer the occurrence of the local fault f (3)
1 and/or

propagated faults f (1)
1 , f

(2)
1 . Based on the decisions of the three

monitoring agents, the observed pattern of propagated sensor
faults is Dz(t) = [0, 0, 1]⊤ for t ≥ 5000, which is compared
to the columns of the matrix F z displayed in Table III.
The observed pattern Dz(t) is consistent with the theoretical
pattern F z

3 , implying that the diagnosis set is Dz
s =

{
f
(3)
1

}
.

Combining the diagnosis set D3
s and Dz

s , we infer that sensor
faults f

(3)
1 and f

(3)
2 have occurred. It is noted that the effects

of sensor fault f
(3)
1 were too low to be detectable from

the agents M(1) and M(2), as presented in Fig. 6a and
6b (correspondingly for f

(1)
1 and f

(2)
1 in the first simulation

scenario, as shown in Fig. 5c), since the agents M(1) and
M(2) do not detect any sensor fault (correspondingly for M(3)

in the first simulation scenario). This happens due to the type
of interconnection function h(I) that weakens the effects of
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Fig. 6. Distributed SFDI for the second sensor fault scenario. The observed
patterns D(1)(t), D(2)(t), and D(3) = [D(3,1)(t), D(3,2)(t)]⊤ are respec-
tively compared to the matrices F (1), F (2) and F (3) (Tables I and II).

fault f
(3)
1 on the agents M(1) and M(2), as described in

Section VI (correspondingly for h(3) in the first scenario).

VIII. CONCLUSION

In this paper, we presented a distributed sensor fault detec-
tion and isolation technique for interonnected, cyber-physical
systems (CPS). The backbone of the proposed method is the
pursuit of two-level diagnosis in the cyber superstratum. The
first-level diagnosis is conducted by a bank of monitoring
agents, while a global decision logic is applied for conducting
the second-level diagnosis. Each monitoring agent is designed
to diagnose multiple faults in the sensors of the corresponding,
interconnected subsystem, while it is allowed to exchange
information with its neighboring agents. The goal of the global
decision logic is to isolate multiple sensor faults propagating
through the information exchanged between CPS. The pro-
posed methodology is analyzed with respect to propagated and
local sensor fault effects on the decisions of the monitoring
agents and the distributed sensor fault detectability. Future
work will involve the application of the proposed scheme to
large-scale examples of interconnected CPS, such as mobile
robotics, intelligent transportation, smart buildings.

REFERENCES

[1] P. J. Antsaklis, B. Goodwine, V. Gupta, M. J. McCourt, Y. Wang, P. Wu,
M. Xia, H. Yu, and F. Zhu, “Control of cyberphysical systems using
passivity and dissipativity based methods,” European Journal of Control,
vol. 19, no. 5, pp. 379 – 388, 2013.

[2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
fault-tolerant control. Springer Verlag, 2003.

[3] R. Isermann, Fault-diagnosis systems: An introduction from fault detec-
tion to fault tolerance. Springer Verlag, 2006.

[4] X. Yan and C. Edwards, “Robust decentralized actuator fault detection
and estimation for large-scale systems using a sliding mode observer,”
International Journal of Control, vol. 81, no. 4, pp. 591–606, 2008.

[5] X. Zhang and Q. Zhang, “Distributed fault diagnosis in a class of
interconnected nonlinear uncertain systems,” International Journal of
Control, vol. 85, no. 11, pp. 1644–1662, 2012.

[6] S. Klinkhieo, R. J. Patton, and C. Kambhampati, “Robust FDI for
FTC coordination in a distributed network system,” in 16th IFAC World
Congress, Seoul, Korea, 2008, pp. 13 551–13 556.

[7] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault
detection and isolation of large-scale discrete-time nonlinear systems:
An adaptive approximation approach,” IEEE Transactions on Automatic
Control, vol. 57, no. 2, pp. 275–290, 2012.

[8] F. Boem, R. M. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed
fault diagnosis for continuous-time nonlinear systems: The input-output
case,” Annual Reviews in Control, vol. 37, no. 1, pp. 163 – 169, 2013.

[9] H. Ferdowsi, D. L. Raja, and S. Jagannathan, “A decentralized fault de-
tection and prediction scheme for nonlinear interconnected continuous-
time systems,” in The 2012 International Joint Conference on Neural
Networks (IJCNN), 2012, pp. 1–7.

[10] S. Indra, E. Chanthery et al., “Decentralized diagnosis with isolation
on request for spacecraft,” in 8th IFAC SAFEPROCESS, Mexico City,
Mexico, 2012, pp. 283–288.

[11] I. Shames, A. M. Teixeira, H. Sandberg, and K. H. Johansson, “Dis-
tributed fault detection for interconnected second-order systems,” Auto-
matica, vol. 47, no. 12, pp. 2757–2764, 2011.

[12] M. Daigle, X. Koutsoukos, and G. Biswas, “Distributed diagnosis in
formations of mobile robots,” IEEE Transactions on Robotics, vol. 23,
no. 2, pp. 353–369, 2007.

[13] M. Davoodi, K. Khorasani, H. Talebi, and H. Momeni, “Distributed
fault detection and isolation filter design for a network of heterogeneous
multiagent systems,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 3, pp. 1061–1069, 2014.

[14] Q. Zhang and X. Zhang, “Distributed sensor fault diagnosis in a class
of interconnected nonlinear uncertain systems,” in 8th IFAC SAFEPRO-
CESS, Mexico City, Mexico, 2012, pp. 1101–1106.

[15] ——, “Distributed sensor fault diagnosis in a class of interconnected
nonlinear uncertain systems,” Annual Reviews in Control, vol. 37, pp.
170 – 179, 2013.

[16] V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Multiple sensor
fault detection and isolation for large-scale interconnected nonlinear
systems,” in European Control Conference (ECC2013), Zurich, Switzer-
land, 2013, pp. 1952–1957.

[17] ——, “Decentralized isolation of multiple sensor faults in large-scale
interconnected nonlinear systems,” IEEE Transactions on Automatic
Control, conditionally accepted.

[18] ——, “A distributed detection and isolation scheme for multiple sensor
faults in interconnected nonlinear systems,” in 52nd Conference on
Decision and Control (CDC2013), Florence, Italy, 2013, pp. 4991–4996.

[19] Q. Zhang, X. Zhang, M. M. Polycarpou, and T. Parisini, “Distributed
sensor fault detection and isolation for multimachine power systems,”
International Journal of Robust and Nonlinear Control, vol. 24, no. 8-9,
pp. 1403–1430, 2014.

[20] F. Zhu and Z. Han, “A note on observers for lipschitz nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1751–
1754, 2002.

[21] R. Rajamani, “Observers for lipschitz nonlinear systems,” IEEE Trans-
actions on Automatic Control, vol. 43, pp. 397–401, 1998.

[22] P. A. Ioannou and J. Sun, Robust Adaptive Control. Prentice-Hall,
1995.

[23] V. Reppa, M. Polycarpou, and C. Panayiotou, “Adaptive approximation
for multiple sensor fault detection and isolation of nonlinear uncertain
systems,” IEEE Transactions on Neural Networks and Learning Sys-
tems,, vol. 25, no. 1, pp. 137–153, 2014.
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