
1

Optimizing Container Loading with Autonomous

Robots
Demetris Stavrou∗, Member, IEEE, Stelios Timotheou†, Senior Member, IEEE, Christos G. Panayiotou†, Senior

Member, IEEE, and Marios M. Polycarpou†, Fellow Member, IEEE

Abstract—In this work, we investigate a problem associated
with transferring a set of containers from the storage to the
loading area of a warehouse using autonomous robots. In addition
to assigning robots to containers, the special topology consid-
ered in this work requires coordinated planning of the robots’
movement to avoid conflicts. We formulate the joint problem of
robot assignment and movement coordination with the objective
of minimizing the time required for all robots to carry their
assigned containers to the destination, subject to conflict-free
movement of all robots. We use the concept of Abstract Time-
Windows to represent the movement of robots. The conditions for
detecting conflicts in the Abstract Time-Window representation
are introduced along with the necessary operations for resolving
conflicts. For the solution of the problem, two approaches are
developed. The first, is a mathematical programming approach
that formulates the problem as a Mixed Integer Linear Program
that allows optimal solution using appropriate solvers, while the
second, is a heuristic approach that allows fast, close-to-optimal
solutions. Even though the proposed approaches focus on the case
where the number of robots is equal to the number of containers,
we also discuss how to solve the problem when having unequal
number of robots and containers. Simulation results show that the
heuristic approach provides a solution within 5% of the optimal
solution with the minimum time of completion of all tasks being
the performance metric, and executes six orders of magnitude
faster than a state-of-the-art mathematical programming solver.

Note to Practitioners: Abstract—Robotic systems are increas-
ingly used in logistics facilities such as warehouses and container
terminals. Nonetheless, achieving improved efficiency in this
context poses several challenges in terms of real-time execution,
coordinated resolution of robot conflicts and adaptation to
unpredictable events in operational environments. This work
examines a problem related to the coordination of a team of
autonomous robots operating in a container handling facility,
where containers need to be transferred from the storage area
to a loading station. The considered topology involves containers
arranged in lanes for efficient storage, but imposes limitations
on the movement of autonomous robots. Such a topology is
commonly found in container terminals where straddle carriers
have to transfer containers from a storage yard to quay cranes
or trucks and vice-versa, but have limitations on moving on the
same or even adjacent container lanes. To address this problem,
we develop a novel method that efficiently assigns containers to
robots and defines appropriate timings for collective coordination
of robot movements. We illustrate that the proposed method
provides very efficient results (within 5% from the optimal)

∗ D. Stavrou is with Phoebe Innovations, Nicosia, Cyprus (email:
stavrou.demetris@ucy.ac.cy)
† S. Timotheou, C. G. Panayiotou and M. M. Polycarpou are with KIOS Re-

search Center for Intelligent Systems and Networks, and the Dept. Electrical
and Computer Engineering, University of Cyprus. (emails: {timotheou.stelios,
christosp, mpolycar}@ucy.ac.cy)

This work is partially funded by the European Research Council Advanced
Grant FAULT-ADAPTIVE (ERC-2011-ADG-291508).

for multiple configuration scenarios. Even more importantly, the
method is suitable for real-time execution as it solves problems
with hundreds of robots/containers within a few milliseconds; this
further offers the ability for solution adaptation in dynamically
varying environments, e.g. in situations of robot delays or
breakdowns.

Index Terms—Autonomous robots, multi-robot assignment and
coordination, container handling facility, optimization.

I. INTRODUCTION

A
UTOMATION is a key factor for improving efficiency in

logistics applications. For this reason, robotic systems are

extensively used in various facilities such as warehouses, con-

tainer terminals and transportation systems [1]–[4]. A facility

as such, consists of multiple autonomous mobile robots used

as carriers for transporting containers from storage areas to

handling stations by following physically or virtually defined

paths.

To reduce the storage costs, operators have an incentive

to increase the number of containers that are stored in the

facility, which limits the available space left for the robots

to travel into. Also, increasing the number of robots operat-

ing simultaneously, increases the throughput of the facility.

However, as the number of robots increases and the available

travel space decreases, contention becomes greater issue. For

example, a conflict situation can occur when two robots travel

towards each other in opposite directions, in a path wide

enough to fit only one of them. In this context, we examine a

problem requiring the assignment and movement coordination

of multiple robots in a container warehouse to minimize the

maximum time needed to complete all tasks.

Due to similarities, one may relate this problem to the

Vehicle Routing Problem (VRP) [5] which considers a fleet of

vehicles, all with the same capabilities, used to deliver goods to

a set of customers located at different locations and then return

back to the depot. This problem has received great attention

by many researchers and many solutions have been proposed

for the VRP [6] as well as its variants such as: Vehicle

Routing Problem with Time Windows, Capacitated Vehicle

Routing Problem and Vehicle Routing Problem with Pick-

Up and Delivery. However, there are significant differences

with the problem considered in this work. The spatial scale

of the VRP is much broader than the considered problem,

since nodes in the network usually represent locations within

a city. This draws the attention of the problem away from

collisions or congestion that may occur when vehicles are

operating. In a facility with limited free space such as a

2

warehouse, conflicts and congestion have to be explicitly

taken into account. Furthermore, in the VRP case the shortest

path normally generates the fastest time but in a facility

with multiple vehicles this is not the case. These significant

characteristics motivate us to treat this problem differently.

Automating a facility with mobile robots involves solving

the scheduling and routing problems [7]. The purpose of

scheduling is to coordinate the available vehicles by designat-

ing which container should be handled by each vehicle, usually

under the constraint of priority and with the objective of

minimizing the time. Given successful scheduling, the purpose

of routing is to discover an efficient path, with respect to time,

between each vehicle and it’s destination. The algorithms must

ensure that the vehicles reach their destination.

One way to approach this problem is through the design

of the path network on which the autonomous robots move

between pick-up and delivery stations prior to the setup of

the facility. By focusing on the path network design, more

efficient routing solutions can be obtained at the expense of

less flexibility in the configuration of the facility [8], [9]. A

second approach decomposes the facility into non-overlapping,

single vehicle loops that operate in tandem, in a way that the

exchange of containers is achieved through transfer stations

positioned between adjacent loops [10]–[12]. This implies that

each container is handled by more than one vehicles before

reaching its destination, introducing significant overhead due

to the multiple loading/unloading procedures. A third approach

is to segment the path network into logical zones and then

impose rules on each zone to predict and avoid deadlocks,

e.g. restricting the number of vehicles allowed within a specific

zone [13], [14] or employing a Petri-net formalism to model

and control deadlocks [15], [16]. Zones can result in sub-

optimal utilization of spatial resources, as zones can only be

occupied by one vehicle at a time. Reducing the zone size

down to vehicle size addresses this issue, but increases the

computational complexity of the routing. A fourth approach

jointly considers the design of the facility and the path

network, as well as the routing of the robots to maximize

the performance of the overall system [17].

In cases that the movement of the vehicles is not restricted,

i.e. they are able to move anywhere within the facility, vehicle

paths can be calculated a-priori or on-line. Conflicts can

be avoided by extensive planning and utilizing the spatial

resources [18] or both spatial and temporal resources of

the path network [19]–[22]. Such methods generate efficient

solutions but the solution space expands rapidly as the number

of network paths and the number of vehicles increases, requir-

ing significant computational power, making them unsuitable

for real-time execution. To deal with real-time constraints, a

common practice is to calculate these paths a-priori. However,

unexpected events such as delayed movement, running ahead

of schedule or temporary hardware malfunction, may lead

to conflicts which invalidate the precomputed paths, hence

requiring a new solution. In an effort to lower the complex-

ity, researchers describe a conservative myopic strategy i.e.

vehicles are routed one-by-one while all the previous route

decisions are respected [23].

In this work, we consider a problem associated with au-

tonomous robots loading and delivering containers located in

a warehouse facility. In terms of scheduling, an assignment

problem needs to be solved indicating which robot should

undertake each task. In terms of routing, a coordination

problem needs to be addressed describing how the robots

should coordinate their movements in order to avoid conflicts

and reach their destination. The topology considered in this

work has specific characteristics in terms of container ar-

rangement, loading/unloading procedures and movement con-

straints. These characteristics introduce a number of challenges

that distinguish the considered problem from problems ad-

dressing assignment and coordination of autonomous robots

in relevant applications. First, the facility topology does not

allow alternative paths for the loading and delivery of each

container. In fact, a large percentage of containers may have

conflicting path segments which makes conflict resolution

highly complex. This requires very careful a-priori coordinated

planning of the robot paths to avoid conflicts, contrary to most

methods that attempt to resolve conflicts on-the-fly with the

risk of ultimately not reaching a conflict-free solution. Second,

achieving an efficient solution in this confined environment

poses a significant challenge; online rerouting in such a

highly confined environment is expected to introduce further

rerouting causing serious inefficiencies to the facility [24]–

[26]. The same issue extends to the assignment of containers to

robots, as many approaches employ simple algorithms such as

first-come-first-served [7]. Third, solutions provided by high-

complexity a-priori approaches are not desirable in our case,

because the dynamic nature of such facilities requires real-time

decision making.

The contributions of this work are the following:

• Formulation and optimal solution of the assignment and

coordination problem using Mixed Integer Linear Pro-

gramming (MILP) tools

• Development of a low time-complexity polynomial al-

gorithm for solving the assignment and coordination

problem that provides close to optimal results

• Description of a reduced time-complexity algorithm for

a special container arrangement

• Outline of a heuristic rolling horizon methodology for the

case where multiple tasks need to be executed by each

robot

• Theoretical analysis of the computational performance

of the heuristic algorithm with respect to the optimal

solution and other conflict resolution strategies

Each of the two developed approaches serves an important

role. On the one hand, the MILP approach provides optimal

performance, is suitable for the solution of problems where

task execution requests arrive ahead of time, and serves as a

performance benchmark against other developed algorithms.

On the other hand, the heuristic approach provides close-to-

optimal performance, has low computational complexity, and

is suitable for the solution of problems where requests arrive

at the last minute or unexpected events take place such as

robot delays and breakdowns. Although both approaches are

developed for the case where the number of containers is equal

to the number of robots, it is also described how the heuristic

3

algorithm can be modified to solve the problem when having

unequal number of robots and containers.

Section II describes the problem formulation, including

the objective and constraints. Section III explains how the

movement of robots can be transformed into abstract time-

windows that allow conflict detection and resolution, and also

defines the conditions that provide conflict-free movement for

all robots. Section IV formulates and solves the problem using

Mixed-Integer Linear Programming (MILP), while Section

V develops the proposed low time-complexity polynomial

algorithm for the solution of the problem. Section VI inves-

tigates the performance of the proposed heuristic algorithm

compared to the optimal solution in terms of solution quality

and execution speed. Finally, Section VII concludes the paper.

Notation: We use the upper case boldface letters for ma-

trices, lower case boldface letters for vectors and calligraphic

letters for sets. (·)⊤ denotes the transpose of a matrix or vector.

|S| denotes the cardinallity of set S , while the i-th element of

set S is denoted by S(i). Operators ∧, ∨, ⊕ denote the logical

functions AND, OR and XOR.

II. PROBLEM STATEMENT

The motivation of this work emanates from a common

problem encountered in container terminals where contain-

ers are stacked into lanes: straddle carriers that handle the

containers cannot move next to each other on adjacent lanes,

as the space between lanes is enough only for one straddle

carrier, as depicted in Fig. 1. This space limitation creates

the challenge of simultaneously loading multiple containers

without any movement conflicts between straddle carriers.

Fig. 1. Straddle carriers operating in container terminal. (Used with permis-
sion by the owner, Sergio Morchon).

In this work, we consider a topology inspired from the

one used in container terminals as illustrated in Fig. 2. In

general, container flow involves two interfaces: the quayside

where ships are loaded and unloaded and the land-side where

containers are loaded and unloaded to/from trucks and trains.

The illustrated area in Fig. 2 is a representation of the

straddle carrier container stack which is the buffer between the

quayside and land-side interfaces [2], [27]. The area is divided

in two distinct regions, the storage region where all containers

are stored and the free-moving region which is the shaded

region in the figure. Containers need to be transported from the

storage area to the loading area. A robot, similar to the straddle

carrier, is equipped with wheels located along its two sides. In

order to load a container the robot needs to be positioned above

it, placing its wheels to its two sides and finally lifts it up.

The robot is tall enough such that when carrying a container,

there is enough clearance underneath to move over other

containers without hitting them. To save space, containers

are stacked into long lanes, and the limited space between

two consecutive lanes forms the transportation aisles of the

warehouse. The free-moving region has no constrained paths

therefore a robot can move freely in any direction. In this

region, robots can maneuver and avoid collisions, assuming

that the robots are equipped with obstacle detection sensors.

Given the approximate positions of the robots, appropriate

paths can be calculated to prevent any potential collisions

between them. This however, is outside the scope of this work,

therefore we rely on existing algorithms to resolve such issues

[28]–[30].

Fig. 2. The specific facility topology considered in this work. The limited
space between the container lanes can cause conflict between two opposite
moving robots, as illustrated in this figure with robots 1 and 2.

The facility is equipped with a set R, |R| = n, of

interchangeable robots for transporting the containers. We

define task s ∈ S as the process during which robot transports

container s from its location in the storage area to the loading

area, with S, |S| = n, being the set of tasks that the operator

of the facility requests to be transported and loaded. Requests

arrive either ahead of time or at the last-minute. Hence, while

there is enough time to find the best solution for transporting

the containers in the first case, the second case requires

immediate computation of an effective solution. Notice that

for simplicity we have assumed that the number of robots is

equal to the number of containers. The case |S| 6= |R| is

discussed in Section V-B.

In terms of storage space, this topology is efficient. How-

ever, due to the extremely limited space in the container

storage region, special constraints exist that distinguish this

problem from other general topology problems. The long

container lanes have a single entry/exit point at the lower end.

This means there is only one way to reach any given container

and also it is not possible to switch lanes once a robot enters

4

a lane. In order for a robot to switch a lane, it has to travel all

the way to the exit of the current lane, move to the entrance

of the desired lane and then move up to the desired container.

Therefore, even two spatially close containers in different lanes

are actually very far in terms of robot path.

Another constraint that arises due to the limited resources,

is the movement of two or more robots in adjacent lanes. The

aisles are wide enough for only one robot to use, so it is not

possible for two robots to be on adjacent lanes, i.e. side-by-

side. An example of this situation is shown in Fig. 2. Robot 1

is moving upwards while robot 2 is moving downwards. When

they meet they enter into a conflict because each one opposes

the progress of the other. Later on, robots 3 and 4 which also

travel downwards will join the conflict, and this shows how

fast it can escalate in the facility.

A. Problem Decomposition

Addressing our problem, requires the consideration of two

related problems: assignment and coordination. Even though

the two problems could be treated separately, joint considera-

tion of these provides better results.

Regarding the assignment problem, the binary matrix X ∈
{0, 1}n×n denotes the assignments of robots to tasks with

element xi,s being equal to 1 if task s has been assigned

to robot i and 0 otherwise. In addition, each robot should be

assigned only one task and no two robots should be assigned

to the same task, and every task should be assigned to only

one robot i.e.:

n
∑

i=1

xi,s = 1, s ∈ S and

n
∑

s=1

xi,s = 1, i ∈ R.

Due to the constraints of the problem, a robot assigned to

task s in lane ls ∈ L may conflict with robots assigned to

tasks on the same or directly adjacent lanes, i.e. ls − 1, ls
and ls + 1. We define set Ci as the set of robots which may

conflict with robot i, i.e. those located on directly adjacent or

on the same lane with robot i. Because it is possible to have

many robots moving on each lane, conflicts may propagate

across the entire facility, so that conflict resolution has to be

considered simultaneously for all lanes. The robots have to

coordinate with respect to their entrance/exit order in different

lanes as well as their movement strategy (when to move and

when to stand still). Initially, each robot may have to wait for

a certain period of time before moving towards its defined lane

in order to respect the decided entrance/exit order. During this

period, the robot will remain within the free-moving area so

that other robots are able to maneuver around it, avoiding a

possible collision. It is also possible for a robot to wait at the

location of its designated task for another robot to exit before

exiting the specific lane.

B. Objective Function

After being assigned a task, each robot starts to move

towards the entrance of the lane the container is in. It proceeds

to move and pickup the container, then exits the lane and

finally delivers the container at the loading area. The time

required for robot i to finish its complete movement is defined

as:

Ti(xi, w
e
i , w

x
i) =

∑

s∈S

T e
i,sxi,s+w

e
i+T

l+2
∑

s∈S

T v
s xi,s+w

x
i +T

d,

(1)
where xi is the assignment vector for robot i, i.e. xi,s = 1 if

robot i is assigned to task s and 0 otherwise, T e
i,s ∈ R

+ is the

travel time to the lane entrance where task s is located, we
i ∈

R
+ is the entrance waiting time, i.e., the time before robot i

begins its movement from its initial position in the free-moving

area, T v
s ∈ R

+ is the travel time from the lane entrance to the

s-th container’s position, and wx
i ∈ R

+ is the exit waiting time,

i.e., the waiting time at the location of the container before

the robot travels towards the lane exit. The objective function

is subject to the conflict-free condition which is described in

detail in Section III. All robots require the same time to load a

container which is defined as T l ∈ R
+. In addition, T d ∈ R

+

is the travel time from each lane exit to the loading area. Note

that when robots enter and exit the lanes, they should keep a

time-distance apart defined as guard time T g ∈ R
+ for safety

reasons. Guard time also treats potential small delays imposed

by obstacle avoidance maneuvers in the free-moving area.

There are different metrics for performance such as min-

imum makespan, maximum throughput, minimum travel and

even distribution of workload [31]. In this work we consider

the minimum makespan as the objective of interest which

is equivalent to the minimization of the time at which the

last task is completed or equivalently the minimization of the

maximum time required by any robot to complete its task, i.e.:

Λ(X,we,wx) = max
i∈R

Ti(xi, w
e
i , w

x
i) (2)

This equation is subject to having no conflicts between any of

the robots. Under certain conditions, robot i may conflict with

one or more robots defined as the set Ci. The objective is to

find a set of values {X,we,wx} such that

{X∗,we∗,wx∗} = argmin
{X,we,wx}

Λ(X,we,wx) (3)

In order to derive the optimal values for X,we and w
x

therefore, an optimization problem has to be solved. Note that

time T d increases the completion time of all tasks equally,

but does not affect the specification of the optimal solution as

the assignment and waiting times remain the same irrespective

of the presence of T d in the problem. The reason is that the

particular parameter is associated with traveling in the free-

moving area at the end of movement of each robot so that no

conflict is created as a result of this parameter.

C. Illustrative Example

To gain a better insight into the problem, in this paragraph

we investigate three different cases that can arise in a simple

configuration. We assume a small facility composed of only

one lane of containers, two robots and two tasks, and assume

that each robot moves 1 grid cell per iteration. The initial

configuration at iteration τ = 0 is shown in Fig. 3(a). In this

example, s1 is assigned to robot 1 and s2 to robot 2. For

simplicity we consider T l = 0.

5

(a) (b) (c) (d) (e) (f)

Initial

Configuration
Scenario 1 Scenario 2 Scenario 3

Fig. 3. Illustrative example with 2 robots, 2 containers and 1 lane. (a) The
initial configuration. (b) Scenario 1 (c) Scenario 2 (d)(e)(f) Scenario 3

• First we consider the case where both robots start moving

towards their assigned tasks without any waiting times,

i.e. we = [0, 0]⊤ and w
x = [0, 0]⊤. At τ = 7, robot 2

reaches its task, loads the container and is ready to start

moving towards the exit. Robot 1 on the other hand is still

traveling towards its container, as shown in Figure 3(b).

Inevitably, the robots will conflict at τ = 9.

• Let us consider a second case where the waiting times are

adjusted as w
e = [0, 25]⊤ in order to prevent conflicts

and have the appropriate guard time T g = 4. Robot 1

starts moving first towards its task while robot 2 waits.

Robot 1 reaches its task at τ = 14 and exits the lane at

τ = 23. Robot 2 will only start moving at τ = 25 and

enters the lane at τ = 27 as shown in Fig. 3(c). The time

between robot 1 exiting and robot 2 entering is enough

to satisfy the guard time constraint. Finally, robot 2 will

exit at τ = 38.

• In the third case, we solve the same problem differently,

using w
e = [0, 8]⊤ and w

x = [2, 0]⊤. Robot 1 starts

moving first, while robot 2 waits. At τ = 6 robot 1 enters

the lane and at τ = 9 robot 2 starts moving as well so

it enters the lane at τ = 10 so they respect T g . This is

shown in Fig. 3(d). After robot 1 loads its container, it has

to wait until robot 2 reaches its task at τ = 16 (shown in

Fig. 3(e)) and start moving at τ = 17. This way robot 2

exits at τ = 21, shown in Fig. 3(f), and robot 1 at τ = 25
and therefore respect the guard time.

The above example demonstrates the solution of the prob-

lem using different sets of waiting times. Apart from the

considered assignment, there is also the option for s1 assigned

to robot 2 and s2 assigned to robot 1. The assignment changes

the initial conditions of the problem significantly affecting

the solution. For exploring the full set of solutions, one

would need to consider all possible assignment combinations.

However, this example is meant to demonstrate the impact of

waiting times in eq. (1) on the solution of the problem, there-

fore only one assignment combination is considered. Also note

that the use of time and space discretization in this example

is for illustration purposes; both the MILP and approaches

developed in Sections IV and V, employ continuous time and

space.

Fig. 4. Schematic representation of robot movement in the container lane
topology. The Abstract Time-Windows (ATW) transformation provides a tool
for studying the problem, detecting conflicts between robots and for resolving
conflicts with the allowed ATW operations.

III. ABSTRACT TIME-WINDOWS

In this section we describe how the time-line of a robot’s

movement can be graphically represented, inspired by the

concept of Time Windows used in Operational Research. This

representation is called Abstract Time Windows (ATW) and

provides a method to study the movement of all robots

collectively, detect conflicts and resolve them. At this point,

for notational clarity we define tei =
∑

s∈S T
e
i,sxi,s and

t̂ei = tei + we
i as the time required for robot i to reach the

storage region without/with initial waiting time, respectively.

Also tvi =
∑

s∈S T
v
s xi,s is the travel time that robot i

requires to move from the entrance of the storage region to

its assigned container. Finally, we define txi = 2tvi + tei + T l

and t̂xi = txi + we
i + wx

i , which denote the exit time of robot

i from the container area without and with waiting.

An ATW represents the time-line of the movement of a

specific robot and indicates all traveling and waiting times.

An ATW is schematically represented by a line with distinct

start and end parts as depicted in Fig. 4. Initially, an ATW

describes the best-case scenario of a robot moving from its

starting position to the container location and then exiting

the lane. Therefore, given an assignment, an ATW starts at

time te then extends by 2tv depending on the location of

the container and finally ends. If required, an ATW can be

modified to include waiting times we and wx. The ATW ends

at t̂x + T d.

In a facility where n > 1, ATWs are used to detect conflicts

using the following condition.

Conflict-Free Condition (CFC): Consider any pair of

conflicting robots i and k such that tei ≤ tek and k ∈ Ci.
Then, these robots can navigate with no conflicts with respect

to each other, if exactly one of the following two cases is true:

1) t̂xi + T g < t̂ek
2) (t̂ei + T g < t̂ek) ∧ (t̂xi + T g > t̂xk)

6

Fig. 5. There are only 3 possible configurations between two ATWs that
satisfy the CFC.

Fig. 6. An example illustrating conflict resolution using ATWs.

A solution satisfies the Conflict-Free Condition if all pair-

wise conflicting robot combinations satisfy the above condi-

tion.

This holds because if robot i enters the lane before robot

k then there are only two possible outcomes in order to

progress without conflicts. The first is when robot i exits safely

before robot k enters and the second is when robot k safely

enters after robot i and exits before robot i exits. In general,

when having ATWs i and k then there are only 3 possible

configurations between them that satisfy the CFC which are

shown schematically in Fig. 5.

If CFC is violated then one can use the following two

operations in order to resolve the conflict and make the

solution CFC viable:

Shift: Shift ATW by increasing its we value.

Extend: Extend ATW by increasing its wx value.

In other words, the ATW can be shifted upwards or it can

be extended but it cannot be compressed. A shift upwards

implies that the robot needs to wait before starting to move

for we time units, while extension implies that the robot needs

to wait at the task location for wx time units. Fig. 6(a) shows

an example with three ATWs where the CFC is violated in two

cases. ATW 2 conflicts with ATW 3 and also ATW 1 conflicts

with both ATW 2 and 3. To resolve the first conflict we can

use operation Shift and shift ATW 3 as shown in Fig. 6(b),

i.e. robot 3 will need to wait before starting its movement so

that it enters the storage section after robot 2 has exited. To

resolve the second conflict, ATW 1 is extended using operation

Extend as shown in Fig. 6(c). The solution satisfies CFC.

IV. MILP FORMULATION

The optimal solution of the considered problem is achieved

by incorporating the derived CFCs into a Mixed-Integer Linear

Programming (MILP) formulation. MILP formulations for

achieving deadlock-free operation have also been considered

in various configurations with different requirements such as

for job-shop scheduling with a stationary robot distributing

jobs to a set of machines [32]. To achieve this, certain logical

constraints (LC1–LC4) need to be transformed into equivalent

MILP constraints as shown in Table I1. In the table, constants

Mu
k (M l

k) is an upper (lower) bound on
∑

i xiai,k− bk, while

ǫ is a small tolerance beyond which the associated constraint

is not true. For instance, the logical constraint LC3 which

indicates that “if z = 1 then exactly one constraint (XOR (⊕)

operation) between
∑

i xiai,1 ≤ b1 and
∑

i xiai,2 ≤ b2 is

true”, can be equivalently expressed from the two associates

inequalities where variable δ indicates whether the first (δ = 1)

or the second (δ = 0) constraint is true.

The MILP formulation of the considered problem is based

on the fact that the assignment matrix X, and the waiting

vectors w
e and w

x must be optimally selected in order to

minimize the total cost, defined as fT = maxi∈R t̂
x
i , and at

the same time ensure that there is no conflict between any

pair of robots. Towards this direction, the approach taken is to

define appropriate MILP constraints based on the equivalent

representation of LC1–LC4 with MILP constraints ensuring

that whenever two robots are potentially conflicting, i.e. they

have been assigned tasks in the same or neighboring lanes,

exactly one of the two CFC cases holds true. The developed

MILP formulation for the optimal solution of the considered

problem is given below:

min
{X, we, wx, ζ, t̂x, t̂e, δ, δ̂, δ̃, ψ, ξ}

ζ (4a)

s.t. t̂xi ≤ ζ, i ∈ R, (4b)

t̂xi = 2
∑

s∈S

T v
s xi,s + t̂ei + T l + wx

i , i ∈ R, (4c)

t̂ei =
∑

s∈S

T e
i,sxi,s + we

i , i ∈ R, (4d)

∑

s∈S

xi,s = 1, i ∈ R, (4e)

∑

i∈R

xi,s = 1, s ∈ S, (4f)

∑

s∈S

xi,sls −
∑

s∈S

xk,sls − (M l
2 − ǫ)δ̂i,k ≥ 1 + ǫ,

i, k ∈ R, k 6= i, (4g)

−
∑

s∈S

xi,sls +
∑

s∈S

xk,sls − (M l
2 − ǫ)δ̃i,k ≥ 1 + ǫ,

i, k ∈ R, k 6= i, (4h)

δi,k ≥ δ̂i,k + δ̃i,k − 1, i, k ∈ R, k 6= i, (4i)

t̂ei − t̂ek ≤Mu
1 (1− ψi,k)− T g, i, k ∈ R, k 6= i, (4j)

ψi,k + ψk,i = δi,k, i, k ∈ R, k < i, (4k)

1For details about the derivation of the equivalence between these logical
and MILP constraints see [33].

7

ID Logical Constraint Equivalent MILP Expressions

LC1 z = 1→
∑

i xiai ≤ b
∑

i xiai − b ≤ Mu(1− z)

LC2
z = 1 →(

∑
i xiai,1 ≤ b1)⊕

∑
i xiai,1 − b1 ≤ Mu

1
(1− z) +Mu

1
(1− δ)

⊕ (
∑

i xiai,2 ≤ b2)
∑

i xiai,2 − b2 ≤ Mu
2
(1− z) +Mu

2
δ, δ ∈ {0, 1}

LC3
z = 1 →(

∑
i xiai,1 ≤ b1)∧... ∑

i xiai,k − bk ≤ Mu
k
(1− z), k = 1, ...,K.

∧ (
∑

i xiai,k ≤ bk), k = 1, ...,K

LC4
(
∑

i xiai,1 ≤ b1) ∧
∑

i xiai,k − bk ≥ (M l
k
− ǫ)δk + ǫ, k = 1, 2.

∧ (
∑

i xiai,2 ≤ b2) → z = 1 z ≥ δ1 + δ2 − 1, z, δ1, δ2 ∈ {0, 1}

TABLE I
EQUIVALENT MILP EXPRESSIONS OF SPECIFIC LOGICAL CONSTRAINTS.

t̂xi − t̂ek ≤ −T g +Mu
1 (1− ψi,k) +Mu

1 (1− ξi,k),
i, k ∈ R, k 6= i, (4l)

∑

s∈S

T v
s xk,s −

∑

s∈S

T v
s xi,s ≤Mu

1 (1− ψi,k) +Mu
1 ξi,k,

i, k ∈ R, k 6= i, (4m)

t̂xk − t̂xi ≤ −T g +Mu
1 (1− ψi,k) +Mu

1 ξi,k,

i, k ∈ R, k 6= i, (4n)

we
i ≥ 0, wx

i ≥ 0, i ∈ R, (4o)

δi,k, δ̂i,k, δ̃i,k, ψi,k, ξi,k ∈ {0, 1} , i, k ∈ R, k 6= i, (4p)

xi,s ∈ {0, 1} , i ∈ R, s ∈ S. (4q)

In formulation (4) constants M l
2 and Mu

1 denote lower and

upper bounds of quantities xi,sls−
∑

s∈S xk,sls− 1 and t̂xk −
t̂xi +T g , respectively. In particular, M l

2 = −maxs∈S{ls}− 2,

while Mu
1 is obtained by finding a lower bound for t̂xi =

wx
i + 2tvi + T l + tei +we

i and an upper bound for t̂xk = wx
k +

2tvk + T l + tek + we
k. In particular, a lower bound for t̂xi is

obtained by setting the two waiting times equal to zero and

selecting the minimum value of 2tvi + tei ; this yields t̂xi ≥
2T v

š + T e
ǐ,š

+ T l, where {̌i, š} = argmini∈R,s∈S{2T v
s + T e

i,s}.
An upper bound for t̂xk corresponds to the objective value of a

feasible solution. One such solution can be constructed using

a simple strategy where robot k enters into the loading area

before and exists after robot i if tvk > tvi . In this case, it is

important to impose enough entrance and exit waiting times

to robot k, we
k and wx

k , such that the associated abstract time-

window (ATW) embeds all other ATWs i with tvi < tvk. Let

sm = argmaxs∈S{T v
s } denote the task with the largest T v

s

value and im the robot that executes the particular task. In

this setting, it is true that im needs to have enough entrance

waiting time such that we
im + teim ≥ tei + T g , i 6= im. This is

true when we
im ≤ Ŵ e = maxi∈R,s∈ST

e
i,s+(n−1)T g . In term

of exit waiting time, it is true that wx
im ≤ Ŵ x = (n − 1)T g

as the particular ATW needs to have at least T g gap above all

other ATWs. Hence, it is true that Mu
1 ≥ t̂xk − t̂xi + T g when:

Mu
1 = Ŵ e + Ŵ x + 2T v

sm − (2T v
š + T e

ǐ,š
) + T g

= max
i∈R,s∈S

{T e
i,s}+ (2n− 1)T g + 2T v

sm − (2T v
š + T e

ǐ,š
)

Expressions (4a)-(4b) are equivalent to the desired objective

minmaxi∈R t̂
x
i , while equalities (4c) and (4d) define the

values for t̂xi and t̂ei , respectively. Assignment constraints

(4e) and (4f) indicate that only one task is assigned to each

robot and that each task is assigned to exactly one robot,

respectively. Constraints (4g) - (4i) indicate whether robots

i and k are in consecutive lanes which is expressed with

the logical constraint, “if |∑s∈S xi,sls −
∑

s∈S xk,sls| ≤ 1
then δi,k = 1”. This condition is equivalent to condition

“if (
∑

s∈S xi,sls −
∑

s∈S xk,sls ≤ 1) ∧ (
∑

s∈S xi,sls −
∑

s∈S xk,sls ≤ 1) then δi,k = 1 which can be expressed using

(4g) - (4i) according to LC4. Constraint (4j) ensures that if

ψi,k = 1 then t̂ek ≥ t̂ei + T g according to LC1. Constraint

(4k) establishes the precedence between robots i and k; if the

particular pair of robots is potentially conflicting (δi,k = 1)

then either t̂ek ≥ t̂ei +T g or t̂ei ≥ t̂ek+T g indicating that robot i
precedes robot k with the necessary guard time and vice-versa.

Constraints (4l) - (4n) ensure that if ψi,k = 1 then exactly one

of the non-conflict conditions holds (LC2 and LC3); CFC case

1 holds when ξi,k = 1 and CFC case 2 when ξi,k = 0. Finally,

constraints (4o) - (4q) ensure the non-negativity of the waiting

times and the binary nature of the indicator and assignment

variables.

The developed MILP solution approach guarantees optimal-

ity and serves as the baseline for the performance evaluation of

other developed algorithms. In addition, it can be deployed as

the preferred optimization approach in cases where the solu-

tion is available prior to the time that is needed. Nonetheless,

the mixed-integer nature of the formulation implies that in

certain cases the MILP solver may need exponentially large

time to complete or reach a certain optimality gap. This is

also empirical verified from the simulation results presented

in Section VI, which indicate that the execution time of the

MILP solver is quite large in certain cases. As the MILP

optimization approach is not ideal for real-time optimization,

we also develop a close-to-optimal low polynomial complexity

heuristic in the next section.

V. LOW TIME-COMPLEXITY SOLUTION

In this section, we develop a low time-complexity heuristic

approach suitable for very fast solution of the considered

problem. The approach taken is to decouple the assignment

and coordination problems and solve them sequentially.

To deal with the assignment problem, the objective is to

find the best allocation of robots to tasks that minimizes the

assignment cost, defined as

fA = max
i∈R

txi ,

which denotes the time at which all tasks have been completed

ignoring potential conflicts; this issue will be addressed in the

coordination problem. Therefore, we and wx are always zero,

and the time robot i takes to complete its task is now reduced

to txi + T d = tei + 2tvi + T l + T d. The cost matrix C has

elements

cis = T e
i,s + 2T v

s + T l + T d

8

which represent the time required by robot i to complete a

candidate task s. The assignment problem is defined as

min
X

max
1≤i,s≤n

cisxis

s.t.

n
∑

i=1

xi,s = 1, s ∈ S,

n
∑

s=1

xi,s = 1, i ∈ R,

xi,s ∈ {0, 1}, i ∈ R, s ∈ S.

This problem is equivalent to the Linear Bottleneck Assign-

ment Problem (LBAP) [34], [35] which describes the assign-

ment of n jobs to n machines such that the latest completion

time is as early as possible. This problem can be solved using

a threshold algorithm in O(n2.5/
√
log n) time [34, Theorem

6.4].

To deal with the coordination problem, it is important to find

an efficient strategy that shifts and/or extends ATWs in order

to complete all tasks with no conflicts, in order to minimize

the coordination cost defined as

fC = max
i∈R

(we
i + wx

i − γi),

where γi = maxj∈R t
x
j − txi , γi ≥ 0, is the waiting time

that can be added without increasing the total cost. Next, we

examine the two-robot problem in order to select an appro-

priate coordination strategy for the multi-robot problem. To

solve the two-robot problem, four cases need to be considered

depending on the relative arrangement of the corresponding

ATWs: (i) (tei < tek)∧ (tvi > tvk) (ii) (tei > tek)∧ (tvi > tvk) (iii)

(tei > tek)∧ (tvi < tvk) (iv) (tei < tek)∧ (tvi < tvk). Note that we

only need to examine cases (i) and (ii), as cases (iii) and (iv)

are their mirror cases which can be addressed by swapping

indices i and k. Any initial configuration of two ATWs has

3 possible solutions with different performance (solution 1,

2 and 3) presented in Fig. 5. Solutions 1-3 are obtained by

applying strategies 1-3, respectively:

Strategy 1 shifts the ATW with the smallest tv and extends

the ATW with the largest tv

Strategy 2 only shifts the ATW with the smallest tv

Strategy 3 only shifts the ATW with the largest tv

Strategies will shift and/or extend the ATWs only when

necessary, in order to achieve the best performance in terms of

the objective value. The following lemmas are used to choose

the best strategy for coordination.

Lemma 1: The best case scenario performance of Strategy 2

is better than the worst case scenario performance of Strategy 1

by tei − tek + 2T g for case (i) and T g − 2tvi − T l for case (ii),

given that the particular quantity is positive.

Proof: The proof can be found in Appendix B. �

Lemma 1 indicates that Strategy 2 is better than Strategy 1

by at most 2T g for case (i), in the best case; for case (ii) it is

better only in the unlikely event that T g − 2tvi − T l > 0.

Lemma 2: The best case scenario performance of Strategy 3

is better than the worst case scenario performance of Strategy 1

by tei − tek + T g − 2tvi − T l for case (i), and 2tvk − 2tvi + 2T g

for case (ii).

Proof: The proof can be found in Appendix C. �

Lemma 2 indicates that Strategy 3 is better than Strategy

1 for case (i) in the unlikely case where T g − 2tvi − T l > 0,

as the conditions that govern the particular scenarios require

0 < tek − tei < T g , and by at most 2T g for case (ii).

Lemma 3: The best case scenario performance of Strategy 1

is better than the worst case scenario performance of Strategy 2

by 2tvk +T l +T g for case (i) and 2tvk +T l +T g for case (ii).

Proof: The proof can be found in Appendix D. �

Lemma 4: The best case scenario performance of Strategy 1

is better than the worst case scenario performance of Strategy 3

by tek−tei+2tvk+T
l+T g for case (i) and tek−tei+2tvk+T

l+T g

for case (ii).

Proof: The proof can be found in Appendix E. �

Lemma 4 indicates that Strategy 1 is always better than

Strategy 3 because tei < tek for case (i) and tei < tek + 2tvk +
T l + T g for case (ii)

Based on the above analysis, we have chosen Strategy 1

for the solution of the coordination problem. That is because,

Lemmas 1 and 2 indicate that when Strategies 2 and 3 are

better than Strategy 1, the additional time imposed if Strategy

1 is used instead, is bounded by 2T g which is very small

compared to the other parameters. Lemmas 3 and 4 further

indicate that the benefit of using Strategy 1 instead of the

other strategies is more substantial because it depends on

the values of tv >> T g . In sum, Strategy 1 provides the

best performance from the three strategies irrespective of the

ATW configuration. Furthermore, by solely using Strategy

1 in the algorithm, the time-complexity is simplified when

the problem scales up as |R| increases. Strategy 1 involves

the sequential execution of the Shift and Extend operations;

hence, our coordination algorithm also involves the sequential

execution of these operations as described in Algorithm 1.

Note that Algorithm 1 is not expected to always be optimal,

as the optimal solution may involve a mixture of strategies

regarding the relative arrangement of different ATWs.

In the ATW context, the first part of the algorithm resolves

conflicts at the entering part of ATWs. The algorithm starts

by sorting the robot ATWs with respect to the tv time,

in descending order i.e. the ATW with the larger tv value

is placed first. Starting from the first ATW in the set, the

conflicting ATWs are determined and stored in the Cr set.

Depending on which conditions hold, the appropriate waiting

time we is calculated for robot ATW k. Sorting the ATWs in

the R←−s reduces the complexity because when Shift is applied

starting from the ATW with the largest tv , ensures that a

specific ATW will not have a conflict later and therefore needs

to be checked only once. This applies because according to

lemmas 3 and 4, when two ATWs are conflicting, it is more

efficient to apply Shift (add waiting time we) to the ATW

with the smallest tv in order to resolve the conflict. Therefore,

starting from the ATW with the largest tv , any arising conflicts

will affect ATWs that have yet to be examined; hence the first

part of the algorithm will terminate in one iteration.

The second part of the algorithm resolves the conflicts on

the exiting part of ATWs. This time, the tv values are sorted

in ascending order to obtain set R−→s . The Extend operation is

applied starting from the ATW with the smallest tv , ensures

9

Algorithm 1 Coordination Algorithm

1: /* Operation Shift */

2: R←−s = sort(R, tv, ’descending’)
3: for r ∈ R←−s do

4: for c ∈ Cr do

5: i = argmax {tvz |z ∈ {r, c}};
6: k = argmin {tvz |z ∈ {r, c}};
7: if t̂ei + T g > t̂ek then

8: we
k = t̂ei − t̂ek + T g;

9: else

10: we
k = 0;

11: end if

12: end for

13: end for

14: /* Operation Extend */

15: R−→s = sort(R, tv, ’ascending’)
16: for r ∈ R−→s do

17: for c ∈ Cr do

18: i = argmaxi {tvz |z ∈ {r, c}};
19: k = argmini {tvz |z ∈ {r, c}};
20: if t̂xk + we

k + T g > t̂xi then

21: wx
i = t̂xk + we

k − t̂xi + T g;

22: else

23: wx
i = 0;

24: end if

25: end for

26: end for

that an examined ATW need not be re-examined. This applies

because according to lemmas 3 and 4, when two ATWs are

conflicting, it is more efficient to apply Extend (add waiting

time wx) to the ATW with the largest tv in order to resolve

the conflict. Depending on what conditions hold between the

two ATWs, waiting time wx is calculated for robot ATW i.
When this operation finishes, all ATWs are conflict free and

the solution of the problem is reached.

The algorithm involves the Shift and Extend operations

which are of the same time-complexity. Each operation re-

quires sorting the elements which is of time-complexity

O(n log n) and two nested for-loops each of time-complexity

O(n2). Hence, total time-complexity of Algorithm 1 is domi-

nated by the nested for-loops resulting in O(n2). Note that

the original problem is solved using an LBAP assignment

algorithm from the literature, and the novel coordination

algorithm described in Algorithm 1.

To theoretically examine the performance of Algorithm 1

with respect to the optimal, we define f∗A, f∗C and f∗T =
f∗A + f∗C as the assignment, coordination and total cost re-

sulting from the optimal solution (obtained through MILP),

respectively. Also, let fhA, fhC and fhT = fhA + fhC denote the

assignment, coordination and total cost resulting from LBAP

and Algorithm 1, respectively. Next, we derive theoretical

bounds for the assignment, coordination and total cost of the

heuristic algorithm.

Lemma 5: For the assignment cost, it is true that fhA ≤ f∗A.

Proof: The heuristic algorithm solves the assignment prob-

lem using LBAP which by definition provides the minimum

assignment cost. Hence, fhA is smaller than or equal to the

assignment cost of any other algorithm that can be proposed

to solve the problem including the MILP approach. �

The fact that Lemma 5 ensures that the heuristic algorithm

has minimum assignment cost, does not mean that it also has

minimum total cost. Hence, although fhA ≤ f∗A it is true that

f∗T ≤ fhT .

Lemma 6: The solution of Algorithm 1 yields a coordination

cost fhC ≤ 2(n− 1)T g .

Proof: The proof can be found in Appendix F. �

Theorem 1: The solution of the heuristic algorithm yields

an additional total cost of at most 2(n−1)T g when compared

with the optimal i.e. fhT ≤ f∗T + 2(n− 1)T g .

Proof: From Lemma 5 it is true that fhA ≤ f∗A; also, from

Lemma 6 it is true that fhC ≤ 2(n−1)T g ≤ 2(n−1)T g +f∗C ,

as f∗C ≥ 0. Adding the two inequalities yields fhA + fhC ≤
f∗A + f∗C + 2(n− 1)T g which completes the proof. �

Corollary 1: It is true that fhT → f∗T as T g → 0.

The above results provide bounds for the performance of the

heuristic algorithm with respect to the optimal and indicate that

as the guard time tends to zero the performance tends towards

optimality. The fact that a polynomial complexity algorithm

yields the optimal solution for T g = 0, indicates that the

problem is not NP-hard for the particular case.

The reasoning behind Corollary 1 is that Strategy 1 yields

fhC = 0 for any assignment in the limit where T g = 0. This

is achieved by shifting and extending certain ATWs resulting

in an increase of certain txi values; nonetheless, the increase

is such that txi ≤ txmax, i ∈ R, where txmax = maxi∈R{txi } is

the maximum time to finish any task with no waiting. Hence,

since the LBAP algorithm yields minimal assignment cost, the

solution to the problem tends to optimality.

A. Case: |L| = 1

A special case of the problem is when all tasks are located in

a single lane. In this case the assignment problem is simplified

and leads to faster computation [36]. To solve this problem

efficiently we exploit the fact that every robot has to reach

the same lane entrance. Therefore, we can derive the relative

closeness of robots from the tasks based only on their distance

from the entrance e.g. if i is closer to the entrance than k then

i is closer to any task compared to k.

The assignment and coordination problems for the one-lane

case are solved according to Algorithm 2. In this case the robot

set is sorted with respect to the distance from the entrance such

that tei < tei+1 defined as Re (line 1 of Alg. 2). The task set is

sorted as well such that tvs > tvs+1 defined as Se (line 2). When

these two vectors have this specific arrangement, the cost

matrix ci =
∑

s∈S T
e
i,sxi,s+T

l+2
∑

s∈S T
v
s xi,s+T

d fulfills

the bottleneck Monge property. An n-by-m matrix A is called

bottleneck Monge matrix if max{aγδ, aθξ} ≤ max{aγξ, aθδ}
for all 1 ≤ γ < θ ≤ n, 1 ≤ δ < ξ ≤ m. Therefore the

assignment matrix X = In provides the optimal solution [34]

by assigning the farthest task to the closest robot, the second

farthest task to the second closest robot and so on (lines 3-

5). The complexity of the assignment reduces to O(n log n)
dominated by sorting.

10

Algorithm 2 Assignment and Coordination Algorithm for the

One-lane Case

1: R−→e = sort(R, te, ’ascending’)
2: Se = sort(S, tv, ’descending’)
3: for i = 1 . . . n do

4: xR−→
e (i),Se(i) = 1

5: end for

6: for r ∈ R−→e do

7: if ter + T g > ter+1 then

8: we
r+1 = ter − ter+1 + T g

9: else

10: we
r+1 = 0

11: end if

12: end for

13: R←−e = sort(R, te, ’descending’)
14: for r ∈ R←−e do

15: if txr+1 + we
r+1 + T g > txr then

16: wx
r = txr+1 + we

r+1 − txr + T g

17: else

18: wx
r = 0

19: end if

20: end for

Note also that while Alg. 1 handles only the coordination

problem, Alg. 2 handles both the assignment (lines 3-5) and

coordination problems (lines 6-20). Although the coordination

algorithm for this special case is similar to Alg. 1, operations 1
and 2 are simplified because all robots conflict with each other.

This requires iteration through the robot list only once for

each operation and hence the complexity of the coordination

algorithm to O(n). Hence, the overall complexity of Alg. 2 is

O(nlog(n)).

B. Case: |S| 6= |R|
When the number of robots is not equal to the number of

tasks (|S| 6= |R|) two cases can arise: (a) |S| < |R|, and

(b) |S| > |R|. In the first case where the number of tasks

is smaller than the number of robots, the heuristic algorithm

remains almost identical. With respect to the assignment phase,

the only difference is that |R| − |S| “virtual” tasks need to

be defined with cost equal to zero for all robot-task pairs,

before the assignment algorithm can be applied. In the returned

solution, the robots executing the virtual tasks will do nothing

in the coordination phase as no task is assigned to them. The

coordination phase will involve |S| robots and |S| tasks; hence,

it can be dealt with using Alg. 1.

In the second case where the number of tasks is larger

than the number of robots, the heuristic needs to be altered

substantially as each robot needs to execute multiple tasks.

In this case, challenges arise both in the assignment phase

from the allocation of multiple tasks to each robot and in the

coordination phase from the existence of loaded or unloaded

robots in both the free-moving and storage areas complicating

the conflict resolution significantly.

Alg. 3 outlines a rolling horizon strategy for solving this

problem. The main idea behind this strategy is to solve

Algorithm 3 Assignment and Coordination when |S| > |R|
1: Compute T e

i,s based on initial locations of robots.

2: Set ci,s = T e
i,s + 2T v

s + T l + T d;

3: Solve the assignment and coordination problems using

LBAP and Alg. 1.

4: Set t = 0, tsti = 0, i ∈ R and Srem = S .

5: repeat

6: Set r = argmini∈R{tsti + t̂xi }, t = mini∈R{tsti + t̂xi +
T d}.

7: Set Srem ← Srem − {S(r)} where S(r) denotes the

task of robot r.

8: Define sets RF and RR at time t.
9: Determine times tci = tsti + t̂xi − t, i ∈ RR to clear

occupying lanes.

10: Set tal = maxi∈R(l){max{0, tci + T g}}, l ∈ L, where

R(l) ⊆ RR is the set of robots in lane l or adjacent

lanes.

11: Set di = tsti + t̂xi − t, i ∈ RR and di = 0, i ∈ RF .

12: Compute ci,s = max{taL(s), di+T
e
i,s}+2T v

s +T l+T d,

where L(s) is the lane of task s, and T e
i,s is computed

based on the current locations of robots for i ∈ RF or

the locations of robots upon completing their current

task for i ∈ RR.

13: Solve the assignment problem based on LBAP.

14: Solve the coordination problem for the new assignments

using Alg. 1.

15: Set tsti = t for i ∈ RF .

16: until (|Srem| = 0)

the assignment and coordination problem every time a robot

completes a task, taking into consideration all robots even

if they are currently executing a task. For the set of robots

that are unloaded and in the free-moving area, RF , the newly

assigned task cancels the current assignment, while for the set

of robots that are reserved, RR, (i.e. loaded or located in the

storage area) the newly assigned task has to be executed upon

completion of the current assignment. Moreover, the additional

time from time t before entrance in lane l is allowed, tal ,

is computed which depends on the time needed for reserved

robots in lane l and adjacent lanes to clear the storage area,

tci , i ∈ RR; note that tci < 0 for robots that are loaded and in

the free-moving area. For each reserved robot i ∈ RR, time di
also needs to be computed which accounts for the time needed

to complete their current task in order to start a new task. Note

that the entire procedure outlined in Alg. 3 is executed prior to

the start of the movement of the robots. In addition, the rolling

horizon approach is a potential solution for the case |S| > |R|,
but requires further study to demonstrate its efficiency in a

range of settings, which is beyond the scope of this paper.

VI. SIMULATION RESULTS

In this section we present results for evaluating the perfor-

mance of the proposed method. Simulations were executed

on a Intel Core i7-4790K CPU at 4.0GHz with 16GB of

RAM. For the modeling and solution of the MILP formu-

lation the Gurobi Optimizer 6.5.2 mathematical programming

solver was used [37], while the parameters M l
2 and Mu

1 are

11

Fig. 7. The cumulative distribution function of the relative optimality gap
between the optimal and heuristic solution.

defined according to the analysis of Section IV. The simulated

warehouse was designed based on the topology of Fig. 2. The

length of the warehouse is 300 m, with the lower 100 m being

the free- moving space. The width of each lane is 3 m and

they are spaced 4 m apart leaving 1 m for the aisles. The

warehouse width depends on the number of lanes used and

because that number varies in our experiments so does the

warehouse width. To compare the performance of the heuristic

algorithm relative to the MILP one we employ the relative

optimality gap metric which is defined as:

Relative Optimality Gap =

(

fhT
f∗T
− 1

)

× 100%

Figure 7 is the cumulative distribution function of the

relative optimality gap between the optimal and heuristic

solution, which is the result of a set of 1200 problems with

n = 20 and 10 lanes. The heuristics algorithm solved 40%

of the problems optimally and 95% of them with at most 6%

optimality gap.

Figure 8(a) demonstrates the relative optimality gap with

respect to the number of robots in the form of a box-

plot2. To obtain the results, we simulated 200 problems for

each n = {5, 10, 15, 20, 25}. The initial conditions of each

simulation i.e. the positions of robots and tasks, were chosen

randomly. The number of lanes is 4 and is kept constant for

all simulations. In all considered cases the mean optimality

gap is less than 4%, while 75% and 100% of the problems

in each case have relative optimality gap within 6% and 15%,

respectively. As the number of robots increases the relative

optimality gap also increases. This is because as the number

of robot increases, more robots have to move in conflicting

lanes resulting in more conflicts, making the problem harder

to solve.

The next experiment demonstrates the relative optimality

gap with respect to the number of lanes while the number of

robots is kept constant at n = 15. The results presented in

Fig. 8(b), show that 75% of all problems in each case have at

2The bottom and top of each box indicate the first and third quartiles
(25% and 75%) of a ranked data set, while the horizontal line inside the
box indicates the median value (second quartile). The horizontal lines outside
the box indicate the lowest/highest datum still within 1.5 inter-quartile range
of the lower/upper quartile; for normally distributed data this corresponds to
approximately 0.35%/99.65%.

(a) (b)

Fig. 8. Relative optimality gap with respect to the number of (a) robots/tasks,
and (b) lanes.

(a) (b)

1 2 3 4

Lane

0

100

200

300

400

500

T
im

e

(1
,7

)

(2
,3

)

(3
,6

)

(4
,8

)

(5
,2

)

(6
,9

)

(7
,5

)

(8
,1

)

(9
,4

)

(1
0
,1

0
)

1 2 3 4

Lane

0

100

200

300

400

500

T
im

e

(1
,8

)

(5
,3

)

(4
,2

)

(2
,1

)

(8
,7

)

(6
,4

)

(7
,5

)

(9
,9

)

(1
0
,1

0
)

(3
,6

)

Fig. 9. Solution comparison of the same scenario between (a) MILP solver
and (b) the heuristic. Numbers in parenthesis correspond to the robot ID and
task ID respectively.

most 6% gap, while the mean value of each group is below

3%. As the number of lanes decreases i.e. the average number

of robots per lane increases (similarly to Fig 8(a)), it causes

more conflicts and therefore more gap between the optimal

and heuristic solution.

Simulation results shown in Fig. 9 demonstrates the assign-

ment and coordination solution of one problem instance when

|S| = |R| = 10 and |L| = 4, using (a) the MILP solver, and

(b) the heuristic algorithm. In the chosen scenario, the optimal

objective value, obtained through MILP, is equal to 507, while

the heuristic yields a cost of 512. The slightly better solution

produced by the MILP solver was achieved by first assigning

robot 9 rather than 6 (of the heuristic) to task 4. In comparison

to the heuristic solution, this assignment causes a slight delay

in delivering task 4, but improves the delivery time of task 9

which is now assigned to robot 6. This ultimately improves the

objective value since robot 3 delivering task 6 benefits from

the improved delivery time of task 9.

Figure 10 depicts relative optimality gap for varying guard

time. It can be seen that the relative optimality gap drops from

5% at T g = 32 to 0.004% at T g = 0.1, about three orders of

magnitude. This behavior is in agreement with the theoretical

result that as the guard time decreases the performance of our

heuristic algorithm tends to optimality (Corollary 1).

Execution time is an important criterion for the ability of

an algorithm to perform in real time. The results presented

in Fig. 11(a), show that in about 40% of problems the MILP

solver required more that 50 s to reach a solution. Note that the

reported MILP execution time is purely solver time and does

not include the mathematical modeling time. Also about 8%

of problems took between 200 and 1800 s while about 15%

of problems did not finish within the time limit of 30 minutes.

The results are significantly better when a 5% optimality gap

is allowed, with 95% of the problems solved within 250s.

12

Fig. 10. Relative optimality gap for varying guard time; the results are
averaged over 200 random problems with n = 15 and 10 lanes.

(a) (b)

Fig. 11. Cumulative distribution function of the execution time of the (a)
MILP solver, and (b) proposed heuristic solution.

However, the rest 5% require a significantly larger execution

time, while about 1% of the problems are not solved within the

30 minute deadline. These results indicate that the MILP solver

is not ideal for real-time applications due to the large execution

times and unpredictable performance, evident from the large

variability of the execution time of all problems. Figure 11(b)

shows the heuristic performance on the same problem set of

Fig. 11(a). All problems were solved by the algorithm within

0.25 ms, with fastest solution reached within 0.1 ms. Hence,

the developed algorithm is very fast and with small execution

time variability making it suitable for real-time applications.

Compared to the MILP solver, the proposed algorithm is over

one million times faster (six-orders of magnitude).

To demonstrate that the implemented algorithm complexity

follows the theoretical complexity analysis, execution times

were recorded for 200 simulations of varying n as shown in

Fig 12(a). Each point in the figure denotes the execution time

for each simulation, while the solid line depicts the mean

values which illustrates the increase trend. The dashed line

shows the nonlinear least-squares fit of the polynomial model

a1x
a2 + a3. The fitted value of the exponent a2 = 2.14 indi-

cates that the execution time scales almost quadratically to the

number of robots/tasks, as expected from the theoretical time-

complexity analysis in Section V. Figure 12(b) is the result

of the same method but with varying lanes number. As shown

from the characteristics of the fitted model, the execution time

is almost independent from the number of lanes. Finally, Figs.

12(a) and 12(b) show that the developed algorithm can solve

problems with a large number of robots/tasks or lanes very fast

(in less than 1.5 ms for 200 robots), illustrating scalability and

potential for real-time deployment.

(a) (b)

Fig. 12. Heuristic algorithm execution time with respect to the number of
(a) robots/tasks, and (b) lanes. Each point on the graph represents a different
simulation.

(a) (b)

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

(5
,9
)

(3
,5
)

(3
,8
)

(2
,1
0
)

(4
,6
)

(1
,2
)

(5
,4
)

(2
,3
)

(4
,7
)

(1
,1
)

T
im
e

Lane
1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(2
,2
)

(4
,8
)

(1
,1
6
)

(4
,1
7
)

(3
,3
) (4
,5
)

(2
,1
2
)

(2
,7
)

(3
,1
3
)

(1
,9
)

(5
,6
)

(1
,1
0
)

(3
,1
1
)

(4
,1
8
)

(5
,4
)

(3
,1
4
)
(1
,1
9
)

(1
,1
)

(5
,1
5
)

(2
,2
0
)

T
im
e

Lane

Fig. 13. Solution illustration with ATWs, for the case |S| > |R| using
Alg. 3. In both problems |R| = 5, T l = 20, T g = 25. (a) |S| = 10 and
(b) |S| = 20. Note that all ATWs satisfy the CFC i.e. there are no conflicts
between the robots.

The simulation results shown in Fig. 13 demonstrate the

solution to the problem when the number of task is larger

than the number of robots i.e. |S| > |R|. As shown in the

figures, after a robot delivers its task to the loading station, it

proceeds to pick-up the next one. A robot does not have to

wait for the rest of the robots to deliver their tasks; Alg. 3

will immediately assign a new task to any robot that delivers

its task. The algorithm considers the current task and position

of all robots in order to make an efficient assignment and

coordination decision. Figure 13(a) shows that robots deliver

their tasks in “waves” of five (which is the number of robots

in the simulation) i.e. there is a distinct separation between the

delivery of the first five tasks from the following five tasks.

This happens because the spatial separation of the robots is

small in the early stages of the simulation. However, when

more time is allowed, the robots break-out of the “waves”

pattern and work independently. In Fig. 13(b) for example,

where the number of tasks 20, after a couple of iterations

robot 3 happens to be in a more suitable position therefore by

the end of the simulation delivers more tasks than the rest of

the robots.

VII. CONCLUSIONS

In this work we investigate a problem associated with

transferring a set of containers from the storage to the loading

area of a warehouse using autonomous robots. We define the

considered problem incorporating the constraints imposed by

the topology. The problem is formulated and solved optimally

using Mixed Integer Linear Programming tools. Furthermore, a

low time-complexity heuristic algorithm is developed and the-

oretically investigated. It is shown that its performance relative

to optimality is upper bounded by the product of the number

of robots and the guard time, implying that the heuristic tends

13

to optimality when the guard time tends to zero. Simulation

results indicate that the developed heuristic approach provides

solutions on average within 5% relative optimality gap, with

about 40% of the problems solved optimally. In terms of

execution time, the heuristic approach executes in the order

of milliseconds and is six orders of magnitude faster than a

state-of-the-art Mixed Integer Linear Programming solver.

An interesting future direction is to determine the complex-

ity class of the problem for different cases. This work has

shown that the developed polynomial complexity algorithm

solves the problem optimally when there is no guard time;

nonetheless, the complexity of the problem in the general case

is still an open question.

APPENDIX

A. Analysis of Strategies

This section analyses the performance of the three strate-

gies in all possible conditions. This analysis is used for the

derivation of Lemmas 1 – 4; hence, it is presented in advance.

Strategy 1 shifts the ATW with the smallest tvk and extends

the ATW with the largest tvi to achieve the solution illustrated

in Fig. 5(a). First, the condition C1: tek − tei < T g is used

to determine whether waiting time we
k is needed. A second

condition is then needed to determine whether waiting time

wx
i is needed. This condition is either C2: txi < txk + we

k +
T g or C3: txi > txk + T g depending on C1 being True or

False, respectively. This leads to four possible combinations:

(a) C1&C2, yielding w
e = [0, tei − tek + T g]⊤, wx = [2tvk −

2tvi + 2T g, 0]⊤ and Λ1a = txi + 2tvk − 2tvi + 2T g (b) C1&C2

yielding w
e = [0, tei − tek + T g]⊤, wx = [1, 0]⊤ and Λ1b = txi

(c) C1&C3 yielding w
e = [0, 0]⊤, wx = [txk − txi + T g, 0]⊤

and Λ1c = txk + T g (d) C1&C3 yielding w
e = [0, 0]⊤, wx =

[0, 0]⊤ and Λ1d = txi .

Strategy 2 shifts only the ATW with the smallest tv to

achieve the solution illustrated in Fig. 5(b). Condition C4 :
txi + T g > tek is used to determine whether we

k is needed.

This leads to two possible outcomes: (a) C4, yielding w
e =

[0, txi − tek +T g]⊤, wx = [0, 0]⊤ and Λ2a = txk + t
x
i − tek +T g

(b) C4, yielding w
e = [0, 0]⊤, wx = [0, 0]⊤ and Λ2b = txk .

Strategy 3 shifts only the ATW with the largest tv to

achieve the solution illustrated in Fig. 5(c). The solution of

strategy 3 is non-conditional yielding w
e = [txk − tei + T g]⊤,

w
x = [0, 0]⊤ and Λ3 = txi + txk − tei + T g .

For case (ii), Strategy 1 always requires waiting time w
e =

[0, tei −tek+T g]⊤ and using the condition C5: txk+w
e
k+T

g >
txe it determines whether exit waiting time is needed. This leads

to two possible outcomes (a) C1, yielding w
x = [2tvk−2tvi+

2T g, 0]⊤ and Λ1a = txi + 2txk − 2tvi + 2T g (b) C1, yielding

w
x = [0, 0⊤] and Λ1b = txi .

The solution of Strategy 2 is non-conditional yielding w
e =

[0, txi − tek + T g]⊤, wx = [0, 0]⊤ and Λ2 = tei + 2tvi + 2tvk +
2T l + T g .

Finally for Strategy 3 condition C6 is required to determine

whether waiting time we
i is needed. This leads to two possible

outcomes (a) C6, yielding w
e = [txk − tei + T g, 0]⊤, wx =

[0, 0]⊤ and Λ3a = tek + 2tvk + tvi + 2T l + T g (b) C6, yielding

w
e = [0, 0]⊤, wx = [0, 0]⊤ and Λ3b = txi .

B. Proof of Lemma 1

For the initial conditions of case (i), the best case scenario

for Strategy 2 is when C4 occurs, and the worst case scenario

for Strategy 1 is when C1&C2 occurs. Comparing the solutions

of the two scenarios, yields Λ1a − Λ2b = tei − tek + 2T g . For

case (ii), the solution of Strategy 2 is non-conditional and the

worst case scenario for Strategy 1 is when C5 occurs. Hence,

we have that Λ1a − Λ2 = T g − 2tvi − T l.

C. Proof of Lemma 2

For the initial conditions of case (i), Strategy 3 solution is

non-conditional therefore it always yields Λ3. The worst case

scenario for Strategy 1 is when C1&C2 occurs. Comparing the

two, provides Λ1a−Λ3 = −2tvi −T l +T g − (tek − tei), where

0 < T g − (tek − tei) < T g . For case (ii), the best case scenario

for Strategy 3 is when C6 occurs. For the same conditions,

the worst case scenario for Strategy 1 is when C5 occurs.

Comparing the two solutions, Strategy 3 performs better by

Λ1a − Λ3 = 2tvk − 2tvi + 2T g .

D. Proof of Lemma 3

For case (i), the best case scenario for Strategy 1 is when

C1&C2 occurs. For the same conditions, worst case scenario

for Strategy 2 is when C4 occurs. Strategy 1 performs better by

Λ2−Λ1 = 2tvk+T
l+T g . For case (ii), best case scenario for

Strategy 1 is when C5 occurs and the solution for Strategy 2

is non-conditional. Therefore, Strategy 1 solution is better by

Λ2 − Λ1 = 2tvk + T l + T g .

E. Proof of Lemma 4

For case (i), the best case scenario for Strategy 1 is

when C1&C2 occurs, and the solution for Strategy 3 is

non-conditional. Therefore, Strategy 1 performs better by

Λ3 − Λ1 = tek − tei + 2tvk + T l + T g which is always

positive because of the case (ii) condition tei < tek. For

case (ii), best case scenario solution for Strategy 1 is is when

C5 occurs. For the same conditions, worst case scenario for

Strategy 3 is when C6 occurs. Strategy 1 performs better by

Λ3 − Λ1 = tek − tei + 2tvk + T l + T g .

F. Proof of Lemma 6

Let us define t̂ei,m = tei +
∑m

τ=1 w
e
i,τ and t̂xi,m = t̂ei,m +

2tvi +
∑m

τ=1 w
x
i,τ + T l, where we

i,τ and wx
i,τ are the entrance

and exit waiting time of ATW i in step τ of the algorithm,

respectively. Note that the m-th external for-loop iteration of

the Shift and Extend operations are the m-th and (n+m)-th
step of the algorithm, respectively.

Algorithm 1 is comprised of the Shift and Extend opera-

tions. The Shift operation examines ATWs in descending tvi
value order; assuming that ATW i is examined during the m-th

iteration of the Shift operation, other ATWs belonging to the

set j ∈ Ci are appropriately shifted (we
j,m > 0 and wx

j,m = 0)

to ensure that t̂ei,m ≤ t̂ej,m − T g , j ∈ Ci and tvi > tvj . This

condition is ensured by appropriately shifting ATW j by

we
j,m = max(0, t̂ei,m−1 − t̂ej,m−1 + T g). (5)

14

To show that the total cost increase for this ATW pair is

bounded by T g , it suffices to prove that

t̂xj,m −max(t̂xi,m−1, t̂
x
j,m−1) ≤ T g. (6)

In the case that t̂xi,m−1 > t̂xj,m−1, condition (6) can be written

as t̂ej,m + 2tvj − t̂ei,m−1 − 2tvi ≤ T g . After substituting t̂ej,m =

t̂ej,m−1+w
e
j,m the equation is t̂ej,m−1+2tvj +max(0, t̂ei,m−1−

t̂ej,m−1 + T g) − t̂ei,m−1 − 2tvi ≤ T g which is always true

because tvj − tvi < 0. In the case that t̂xi,m−1 < t̂xj,m−1,

condition (6) can be written as t̂xj,m−t̂xj,m−1 = we
j,m ≤ T g . By

substituting t̂eκ,m−1 = t̂xκ,m−1−2tvκ, κ = {i, j}, into (5) yields

max
(

0, t̂xi,m−1 − t̂xj,m−1 + 2(tvj − tvi) + T g
)

≤ T g , which is

true because t̂xi,m−1 − t̂xj,m−1 < 0 and 2(tvj − tvi) < 0.

The Extend operation examines ATWs in ascending tvi value

order; assuming that ATW i is examined during the m-th

iteration of the Extend operation, i.e. step l = n + m of

the algorithm, other ATWs belonging to the set j ∈ Ci are

appropriately extended (wx
j,l > 0 and we

j,l = 0) to ensure that

t̂xi,l ≥ t̂xj,l + T g , j ∈ Ci and tvi > tvj . This condition is ensured

by appropriately shifting ATW j by

wx
i,l = max(0, t̂xi,l−1 − t̂xj,l−1 + T g). (7)

To show that the total cost increase for this ATW pair is

bounded by T g , it suffices to prove that

t̂xi,l −max(t̂xi,l−1, t̂
x
j,l−1) ≤ T g. (8)

In the case that t̂xi,l−1 > t̂xj,l−1, condition (8) can be written as

t̂xi,l− t̂xi,l−1 = wx
i,l ≤ T g; this is equivalent to max(0, t̂xj,l−1−

t̂xi,l−1 + T g) ≤ T g which is true because t̂xj,l−1 − t̂xi,l−1 < 0.

In the case that t̂xi,l−1 < t̂xj,l−1, condition (8) can be written

as t̂xi,l−1 − t̂xj,l +max(0, t̂xj,l−1 − t̂xi,l−1 + T g) ≤ T g which is

true because t̂xi,l−1 < t̂xj,l = t̂xj,l−1.

The algorithm needs 2n steps in order to complete and

results in a maximum cost increase of 2(n− 1)T g as in each

phase only n−1 pairwise comparisons are needed. Hence, the

result fhC ≤ 2(n− 1)T g .

REFERENCES

[1] H. Fazlollahtabar and M. Saidi-Mehrabad, “Methodologies to optimize
automated guided vehicle scheduling and routing problems: a review
study,” Journal of Intelligent & Robotic Systems, vol. 77, no. 3-4, pp.
525–545, 2015.

[2] H. J. Carlo, I. F. Vis, and K. J. Roodbergen, “Transport operations in
container terminals: Literature overview, trends, research directions and
classification scheme,” European Journal of Operational Research, vol.
236, no. 1, pp. 1–13, 2014.

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI magazine, vol. 29,
no. 1, p. 9, 2008.

[4] L. Sabattini, V. Digani, C. Secchi, G. Cotena, D. Ronzoni, M. Foppoli,
and F. Oleari, “Technological roadmap to boost the introduction of
AGVs in industrial applications,” in Proceedings of IEEE International

Conference on Intelligent Computer Communication and Processing,
2013.

[5] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[6] G. Laporte, “Fifty years of vehicle routing,” Transportation Science,
vol. 43, no. 4, pp. 408–416, 2009.

[7] L. Qiu, W.-J. Hsu, S.-Y. Huang, and H. Wang, “Scheduling and routing
algorithms for AGVs: a survey,” International Journal of Production

Research, vol. 40, no. 3, pp. 745–760, 2002.
[8] P. J. Egbelu and J. M. Tanchoco, “Potentials for bi-directional guide-

path for automated guided vehicle based systems,” International Journal

of Production Research, vol. 24, no. 5, pp. 1075–1097, 1986.

[9] R. Gaskins and J. M. Tanchoco, “Flow path design for automated guided
vehicle systems,” International Journal of Production Research, vol. 25,
no. 5, pp. 667–676, 1987.

[10] Y. A. Bozer and M. M. Srinivasan, “Tandem configurations for auto-
mated guided vehicle systems and the analysis of single vehicle loops,”
IIE Transactions, vol. 23, no. 1, pp. 72–82, 1991.

[11] K. S. Kim and B. Do Chung, “Design for a tandem AGV system with
two-load AGVs,” Computers & Industrial Engineering, vol. 53, no. 2,
pp. 247–251, 2007.

[12] R. Z. Farahani, G. Laporte, E. Miandoabchi, and S. Bina, “Designing
efficient methods for the tandem AGV network design problem using
tabu search and genetic algorithm,” International Journal of Advanced

Manufacturing Technology, vol. 36, no. 9-10, pp. 996–1009, 2008.

[13] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Transactions,
vol. 32, no. 7, pp. 647–659, 2000.

[14] R. L. Moorthy, W. Hock-Guan, N. Wing-Cheong, and T. Chung-Piaw,
“Cyclic deadlock prediction and avoidance for zone-controlled AGV
system,” International Journal of Production Economics, vol. 83, no. 3,
pp. 309–324, 2003.

[15] N. Wu and M. Zhou, “Deadlock resolution in automated manufacturing
systems with robots,” IEEE Transactions on Automation Science and

Engineering, vol. 4, no. 3, pp. 474–480, 2007.

[16] T. Brunsch, J. Raisch, and L. Hardouin, “Modeling and control of high-
throughput screening systems,” Control engineering practice, vol. 20,
no. 1, pp. 14–23, 2012.

[17] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordi-
nation approach in multi-agv systems applied to industrial warehouses,”
IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 3, pp. 922–934, 2015.

[18] S. C. Daniels, “Real time conflict resolution in automated guided vehicle
scheduling,” Ph.D. dissertation, Dept. of Industrial Eng., Penn. State
University, PA, USA, 1988.

[19] C. W. Kim and J. M. Tanchoco, “Conflict-free shortest-time bidirectional
AGV routeing,” International Journal of Production Research, vol. 29,
no. 12, pp. 2377–2391, 1991.

[20] J. Huang, U. Palekar, and S. Kapoor, “A labeling algorithm for the
navigation of automated guided vehicles,” Journal of Engineering for

Industry;(United States), vol. 115, no. 3, 1993.

[21] R. H. Möhring, E. Köhler, E. Gawrilow, and B. Stenzel, “Conflict-free
real-time AGV routing,” in Proceedings of Operations Research, 2005,
pp. 18–24.

[22] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, and T. Petrovic, “Time win-
dows based dynamic routing in multi-AGV systems,” IEEE Transactions

on Automation Science and Engineering, vol. 7, no. 1, pp. 151–155,
2010.

[23] C. W. Kim and J. M. Tanchoco, “Operational control of a bidirectional
automated guided vehicle system,” International Journal of Production

Research, vol. 31, no. 9, pp. 2123–2138, 1993.

[24] C.-C. Lee and J. T. Lin, “Deadlock prediction and avoidance based
on petri nets for zone-control automated guided vehicle systems,”
International Journal of Production Research, vol. 33, no. 12, pp. 3249–
3265, 1995.

[25] C.-O. Kim and S. Kim, “An efficient real-time deadlock-free control
algorithm for automated manufacturing systems,” International Journal

of Production Research, vol. 35, no. 6, pp. 1545–1560, 1997.

[26] N. Wu and M. Zhou, “Shortest routing of bidirectional automated guided
vehicles avoiding deadlock and blocking,” IEEE/ASME Transactions on

Mechatronics, vol. 12, no. 1, pp. 63–72, 2007.

[27] D. Steenken, S. Voß, and R. Stahlbock, “Container terminal operation
and operations research-a classification and literature review,” OR Spec-

trum, vol. 26, no. 1, pp. 3–49, 2004.

[28] H. Martı́nez-Barberá and D. Herrero-Pérez, “Autonomous navigation of
an automated guided vehicle in industrial environments,” Robotics and

Computer-Integrated Manufacturing, vol. 26, no. 4, pp. 296–311, 2010.

[29] H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, and G. Nelmes,
“Field and service applications-an autonomous straddle carrier for move-
ment of shipping containers-from research to operational autonomous
systems,” IEEE Robotics & Automation Magazine, vol. 14, no. 3, pp.
14–23, 2007.

[30] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-
ranging multivehicle systems: A resource allocation paradigm,” IEEE

Transactions on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[31] I. F. Vis, “Survey of research in the design and control of automated
guided vehicle systems,” European Journal of Operational Research,
vol. 170, no. 3, pp. 677–709, 2006.

15

[32] S. E. Ramaswamy and S. B. Joshi, “Deadlock-free schedules for
automated manufacturing workstations,” IEEE Transactions on Robotics

and Automation, vol. 12, no. 3, pp. 391–400, 1996.
[33] L. Magatao, “Mixed integer linear programming and constraint logic

programming: towards a unified modeling framework,” Ph.D. disserta-
tion, University of Curitiba, May 2005.

[34] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2009.

[35] D. R. Fulkerson, I. Glicksberg, and O. Gross, A production line assign-

ment problem. Sta. Monica, CA: The Rand Corporation, 1953.
[36] D. Stavrou and C. Panayiotou, “Task assignment and agent coordination

in a warehouse environment,” in Proceedings of 20th Mediterranean

Conference on Control & Automation, 2012, pp. 1341–1346.
[37] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.

[Online]. Available: http://www.gurobi.com

Demetris Stavrou has received M.Eng. in Electrical
and Electronic Engineering in 2005 and M.Sc. in
Modern Digital Communication Systems in 2006
from the University of Sussex, UK. He has received
his Ph.D. degree in Electrical and Computer Engi-
neering from the University of Cyprus in 2016. He is
currently a senior researcher at Phoebe Innovations,
Nicosia, Cyprus. He is a member of IEEE and IEEE
Robotics and Automation Society.

Stelios Timotheou (S’04-M’10-SM’17) received a
B.Sc. from the Electrical and Computer Engineering
(ECE) School of the National Technical Univer-
sity of Athens, and an M.Sc. and Ph.D. from the
Electrical and Electronic Engineering Department of
Imperial College London. He is currently a Research
Associate at the KIOS Research Center for Intel-
ligent Systems and Networks of the University of
Cyprus (UCY). In previous appointments, he was a
Visiting Lecturer at the ECE Department of UCY,
a Research Associate at the Computer Laboratory

of the University of Cambridge and a Visiting Scholar at the Intelligent
Transportation Systems Center & Testbed, University of Toronto. His research
focuses on the modeling and system-wide solution of problems in complex and
uncertain environments that require real-time and close to optimal decisions
by developing optimization, machine learning and computational intelligence
techniques.

Christos G. Panayiotou is an Associate Professor
with the Electrical and Computer Engineering (ECE)
Department at the University of Cyprus (UCY). He
is also the Deputy Director of the KIOS Research
Center for Intelligent Systems and Networks for
which he is also a founding member. Christos has
received a B.Sc. and a Ph.D. degree in Electri-
cal and Computer Engineering from the University
of Massachusetts at Amherst, in 1994 and 1999
respectively. He also received an MBA from the
Isenberg School of Management, at the aforemen-

tioned university in 1999. Before joining UCY in 2002, he was a Research
Associate at the Center for Information and System Engineering (CISE)
and the Manufacturing Engineering Department at Boston University (1999
- 2002). His research interests include distributed and intelligent control
systems, wireless, ad hoc and sensor networks, computer communication
networks, fault diagnosis, optimization and control of discrete-event systems,
resource allocation, transportation networks and intelligent buildings. Christos
has published more than 190 papers in international refereed journals and
conferences and is the recipient of the 2014 Best Paper Award for the
journal Building and Environment (Elsevier). He is an Associate Editor for
the Conference Editorial Board of the IEEE Control Systems Society, the
IEEE Transactions on Control Systems Technology, the Journal of Discrete
Event Dynamical Systems and the European Journal of Control. He held
several positions in organizing committees and technical program committees
of numerous international conferences.

Marios M. Polycarpou is a Professor of Electrical
and Computer Engineering and the Director of the
KIOS Research Center for Intelligent Systems and
Networks at the University of Cyprus. He received
the B.A degree in Computer Science and the B.Sc.
in Electrical Engineering, both from Rice University,
USA in 1987, and the M.S. and Ph.D. degrees
in Electrical Engineering from the University of
Southern California, in 1989 and 1992 respectively.
His teaching and research interests are in intelligent
systems and networks, adaptive and cooperative con-

trol systems, computational intelligence, fault diagnosis and distributed agents.
Dr. Polycarpou has published more than 300 articles in refereed journals,
edited books and refereed conference proceedings, and co-authored 7 books.
He is also the holder of 6 patents. Prof. Polycarpou is a Fellow of IEEE and
IFAC. He is the recipient of the 2016 IEEE Neural Networks Pioneer Award
and the 2014 Best Paper Award for the journal Building and Environment
(Elsevier). He has served as the President of the IEEE Computational
Intelligence Society (2012-2013), and as the Editor-in-Chief of the IEEE
Transactions on Neural Networks and Learning Systems (2004-2010). He is
currently the Vice President of the European Control Association (EUCA).
Prof. Polycarpou has participated in more than 60 research projects/grants,
funded by several agencies and industry in Europe and the United States,
including the prestigious European Research Council (ERC) Advanced Grant.

