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Abstract—Traffic signal control is a key ingredient in intelli-
gent transportation systems to increase the capacity of existing
urban transportation infrastructure. However, to achieve opti-
mal system-wide operation it is essential to coordinate traffic
signals at various intersections. In this paper we model the
multiple-intersections traffic signal control problem using the
cell transmission model as a mixed integer linear program.
The solution of the problem is facilitated by its special struc-
ture which allows both temporal and spatial decomposition.
Temporal decomposition is employed to reduce problem size
by solving subproblems of smaller time-window compared to
the original problem. Temporal subproblems can be further
spatially decomposed into subproblems associated with different
intersections, which are jointly solved by exchanging messages
between neighboring intersections. The proposed distributed
solution strategy is comprised of two phases. First, the relaxed
linear problem is reformulated and distributedly solved via
the Alternating Direction Method of Multipliers. Second, two
distributed rounding schemes are developed to solve the original
problem. Simulation results indicate that the proposed solution
strategy is scalable to large transportation topologies, suitable
for online execution and provides close to optimal results.

Keywords: intelligent transportation systems, traffic signal
control, cell-transmission model, online, distributed, mixed-
integer linear programming, alternating direction method of
multipliers.

I. I NTRODUCTION

Over the past few decades there has been a steady growth of
vehicle and total miles traveled leading to an increase in traffic
congestion [2]. Given that major road constructions in cities
are both difficult and costly, one of the most effective ways to
alleviate congestion is to increase the capacity of the existing
infrastructure using traffic signal control. Traffic signalcontrol
can bring substantial reduction to traffic congestion, leading
to improved conditions both for the drivers (better travel
times, safety and convenience) and the environment (reduced
air pollution and energy consumption). Furthermore, recent
advancements in electronics, sensing, and ICT (information
and communication technology) allow the real-time collection
and processing of traffic data, as well as the deployment of
intelligent controllers for the efficient operation of a trans-
portation system.

Nevertheless, controlling the traffic signals of a transporta-
tion network constitutes a significant challenge due to the
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large-scale nature and complexity of the problem, the uncertain
and dynamic behavior of the network (e.g. weather, accidents,
events) and the patterns of different driver behaviors. Forthis
reason, several different approaches have been proposed; many
strategies apply to single intersections, others use historical
data to determine fixed plans, while a family of strategies
attempt to dynamically decide on the traffic signal timing plans
in a distributed and online manner. Traffic signal variables
typically controlled are the cycle length, split plan, and offset.
Cycle lengthis the time required for a complete sequence of
signal indications. Thesplit plan refers to the time assigned
to differentphases(simultaneous movement combinations that
have the right-of-way) during a signal cycle. Finally, theoffset
is used to coordinate phases of adjacent intersections to reduce
vehicle stops [3].

A large body of literature considers the single intersection
traffic signal control problem, neglecting interrelation effects
with other intersections. These approaches aim to optimize
some measure-of-interest (mean delay, mean stoppage time,
throughput) based on the state of the intersection and include
mathematical programming [4], stochastic control [5] as well
as computational and artificial intelligence techniques (e.g.
fuzzy logic [6], expert systems [7], etc.). Nonetheless, by
considering intersections atomically, the offset betweeninter-
sections is not optimized leading to frequent vehicle stops.
Also measures-of-interest are optimized locally instead of
globally and may lead to poor global performance.

The majority of techniques consider the multiple inter-
sections traffic signal control (MITSC) problem.Fixed or
pre-timedsignal control strategies optimizeoffline the signal
timing plans based on historical data so that fixed signal pro-
grams are applied for different periods of the day. Fixed-time
MITSC methods either attempt to adjust the offset between
adjacent intersections so as to maximize progression along
multiple corridors using MILP methods, e.g. in MULTIBAND
[8], and global optimization techniques [9], or optimize split
plans and cycle according to some measure of effectiveness
(MOE) that combines different traffic metrics such as delay,
minimum number of stops and throughput, e.g. TRANSYT
[10]. This is accomplished using some traffic model (e.g.
TRANSYT-13 uses both the platoon dispersion model and
the cell transmission model (CTM)) to capture traffic dynam-
ics and different optimization techniques to optimize signal
programs. CTM-based optimization approaches usually rely
on the development of MILP formulations [11], [12] which
are usually NP-hard; hence, meta-heuristic techniques such as



genetic algorithms [13] and greedy heuristics [14] are often
employed to achieve close to optimal and timely solutions.
Pre-timed signal control strategies can perform fairly well
during peak traffic periods, but their performance deteriorates
during off-peak periods or when unexpected events create
different traffic conditions than anticipated (e.g. accidents,
weather conditions, socio-cultural events).

To account for stochastic variations of traffic flows, several
online adaptive traffic signal control (ATSC) systems have
been developed. These approaches collect information from
different sources on-demand, and use them to adaptively
optimize traffic signal plan parameters such as splits, offsets
and cycle, (e.g. SCOOT, [15], MOTION [16]) or select the best
from a library of pre-calculated signal plans (e.g. SCATS [17]).
Early commercially deployed systems usually rely on central-
ized architectures where one computing unit decides for allin-
tersections (e.g. SCOOT, SCATS) or hierarchical architectures
where one part of the decision is central and another part is
decentralized. For example, in MOTION the cycle time and
offsets are centrally decided every 10-15 minutes for the whole
network, while traffic signal splits, phase sequence and small
cycle modifications are determined at individual intersections
based on real-time traffic fluctuations. RHODES system [18]
is also hierarchical with local and network decision modules,
but contrary to older ATSC systems that re-actively consider
real-time information, it predicts future traffic flows for pro-
active decision making. Model predictive control approaches
are also centralized proactive ATSC strategies that attempt
to determine system-wide optimal signal plans in a rolling
horizon fashion [19], [20]. To deal with the large-scale nature
of the problem in both space and time, these approaches
usually rely on a coarse representation of the transportation
infrastructure and continuous instead of binary green traffic
light allocations. Coarse infrastructure representationmeans
that large road segments between adjacent intersections are
modeled with single links, failing to capture rapidly evolving
traffic phenomena, while by avoiding the explicit modeling
of red/green switching for consecutive time-units suboptimal
solutions are derived.

Fully distributed online algorithms dynamically adjust the
signal parameters of multiple intersections based on the net-
work state without relying on a centralised computing unit.
Due to the complex and large-scale nature of the problem these
algorithms often rely on low-complexity but suboptimal artifi-
cial and computational intelligence techniques. One such tech-
nique is reinforcement learning (RL), which offers the ability
to learn relationships between observed states and actionsin
an uncertain and dynamic environment by maximizing a value
function. Thorpe [21] considered the traffic lights as the acting
agents and developed an approach which constructed a traffic-
light-based value function which approximates the aggregate
waiting time of cars (this can result in a huge number of
states), while Wiering et al. [22] considered car-based value
functions for the estimation of waiting times, while the traffic
signal plans were generated by car voting. A distributed com-
putational market-based technique that also considers vehicles
- intersection agent cooperation is presented in [23]; it was
suggested to form computational markets at each intersection

so that vehicles agents can trade the use of capacity. This
approach can be difficult to implement in practice as it requires
vehicle drivers to monetize access to road resources on-the-
fly. Multiagent learning with cooperation between neighboring
intersections has also been considered in [24], [25]; these
approaches adaptively improve the system-wide performance
of the network using game-theoretic and reinforcement learn-
ing methods, but do not provide optimal results. Recently,
a control approach based on backpressure routing, adopted
from communication networks, has been proposed [26]. This
approach eliminates the aforementioned problems by allowing
each intersection to decide on the right-of-way based only on
local information about the traffic states and queue lengths.
The authors prove that the proposed algorithm attains maxi-
mum network throughput for each time instance. Nevertheless,
the approach relies only on queue lengths and neglects vehicle
delay, while the information utilized are not sufficient to
optimize the offset between intersections.

In this paper a cooperative distributed online1 algorithm for
system-wide optimization of traffic signal control based on
CTM is proposed. This approach departs from the traditional
view of considering optimization techniques for the solution
of MITSC using fine-grained macroscopic models, such as
CTM, only for offline centralised systems. The algorithm is
based on spatially and temporally decomposing the problem
and iteratively solving the produced subproblems by individual
intersection controllers.Spatial decompositionis achieved by
dividing the considered transportation topology into single-
intersection areas;temporal decompositionis achieved by sep-
arating the time-horizon considered into small time-windows
(e.g. 10 mins). In this way, signal timing plans are adapted
online every one temporal time-window, while during this
time the subsequent signal plans are computed. Because the
subproblem solution presumes information associated with
neighboring intersections, intersection controllers cooperate
with each other by locally exchanging appropriate data. To
achieve this, the centralized problem is reformulated in a way
that facilitates decomposition, and the alternating direction
method of multipliers (ADMM) [27] is employed to arrive
at a distributed solution to the relaxed linear problem. After
the relaxed solution is obtained, distributed rounding schemes
are employed at each intersection to derive appropriate binary
values for the decision variables which determine the traffic
signal split plans. The fully distributed nature of the proposed
algorithm, overcomes the main disadvantages of centralized
and hierarchical systems such as SCOOT, SCATS, MOTION
and RHODES, that require the deployment of an expensive
communication network, are not scalable, while failure of the
centralized computer can bring down the entire traffic signal
network. In addition, contrary to other distributed algorithms
that myopically control traffic signals based on the current
network state, our approach proactively optimizes system-wide

1The key defining characteristic ofonline adaptationis that soon after input
information is received regarding the state of the system, decision making
takes place resulting in the adaptation of traffic signal plans. The proposed
system has this feature as it adapts every few minutes based onshort-term
prediction of the system state; nonetheless, it is not areal-time systemin the
sense that adaptation does not occur on a second-by-second basis.



performance for a look-ahead time-window using the CTM.
The contributions of this paper are the following:

• Introduction of a spatial and temporal decomposition
framework for CTM which can be used in several trans-
portation problems.

• Development of a distributed online cooperative solution
procedure of the MITSC Problem using CTM; the pro-
cedure can also be employed in a parallel fashion on a
single computing platform (e.g. multi-core computer or
computer-cluster at a traffic operations center) to speedup
the solution procedure.

• Efficient approximation of the optimal solution through
the development of two distributed solution rounding
schemes.

The reminder of this paper is organized as follows. Section
II-A, outlines the cell transmission model which captures the
traffic dynamics. Section III explains temporal decomposition
and presents the centralized formulation of the multiple-
intersection traffic signal control problem. In section IV,the
spatial decomposition framework is explained, while in section
V the distributed ADMM solution to the relaxed problem and
the two distributed rounding schemes are developed. Section
VI, describes the performance evaluation of the proposed
solution approach in terms of convergence, optimality and
scalability. Finally, section VII summarizes the paper and
discusses directions for future work.

Notation: All boldface letters indicate vectors (lower case)
or matrices (upper case), while calligraphic letters denote sets.
The superscripts(·)T and(·)−1, denote the transpose and the
matrix inverse respectively.||z||2 denotes the Euclidean norm
of a vectorz. OperatorsA ∪ B, A ∩ B, andA \ B, denote
the union, intersection and set difference of setsA and B,
respectively, while|A| denotes the cardinality of setA. |x|
denotes the absolute value of variablex. hC(x) is the indicator
function which is equal to zero ifx ∈ C and+∞ otherwise.

II. PRELIMINARIES

A. Cell Transmission Model

The Cell Transmission Model (CTM) [28] is a discrete ana-
log of the well-known first-order Lighthill-Whitham-Richards
(LWR) continuum flow model [29], [30] which is based on
the fundamental relationship for the conservation of flow and
supplemented by the assumption that traffic flow, at road
point x at time t is only a function of traffic density. The
form of this flow-density function is specified using a flow-
density model (e.g. Greenshields, Pipes, or Van Aerde models
[31]) and calibrated by estimating macroscopic traffic flow
parameters (such as thefree-flow speed, jam-density, maximum
flow or capacity and speed-at-capacity) for a specific road
configuration.

In the CTM both time and space are discrete. Each road
segment is divided into homogeneous sections calledcells,
while time is partitioned in a way that one vehicle takes
one time-unit to travel through one cell at free-flow speed
(the speed of vehicles when density is zero). When CTM
assumes a piecewise-linear flow-density relationship, theLWR

model is simplified to the following difference equations which
constitute the fundamental relationships of CTM.

yc,t = min(nc,t, Qc,t, Qc+1,t,Wc,t(Nc+1,t − nc+1,t)) (1)

ȳc+1,t = yc,t (2)

nc,t+1 = nc,t + ȳc,t − yc,t (3)

In the above equations,̄yc,t, yc,t and nc,t represent the
number of vehicles entering cellc, leaving cellc and are inside
cell c respectively, at time[t, t+1). Qc,t andNc,t represent the
maximum number of vehicles that can flow through and reside
into cell c at timet, respectively.Wc,t is the ratio between the
shock-wave propagation speed and the free-flow speed and
indicates how fast a vehicle queue is formed. In homogeneous
networks, it is true that quantitiesQc,t = Q, Nc,t = N and
Wc,t = W are constant for all cells. Eq. (1) indicates that
the number of vehicle leaving cellc is limited either by the
number of vehicles in the cell, the capacity of the cell for
outflow vehicles, the capacity of the successor cell for inflow
vehicles and the space left in the successor cell when a queue
is forming. Eqs. (2) - (3) ensure flow conservation at cellc.

The popularity of CTM is based on its simplicity, its
capacity to capture phenomena that are found in first-order
continuum flow models and its ability to model different
boundary phenomena such as origin, destination, merge, di-
verge and general intersection cells [32]. Although, the stan-
dard CTM model cannot capture platoon dispersion, it is quite
useful in modeling the spatial extent of queues and hence is
more appropriate for signalized networks with closely spaced
intersections as in urban environments [33]. For this reason,
it has been adopted in TRANSYT-13 as an alternative to the
platoon dispersion model [10]. In section III, CTM is utilized
to derive a MILP formulation for the optimal operation of
traffic light signals.

B. Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM)
is a powerful method for solving mathematical optimization
problems of the form

min f(x) + g(z) (4a)

s.t. Ax+Bz = d (4b)

x ∈ Cx, z ∈ Cz (4c)

wherex ∈ Cx ⊆ R
Mx×1, z ∈ Cz ⊆ R

Mz×1, A ∈ R
Md×Mx ,

B ∈ R
Md×Mz and d ∈ R

Md×1, f(x) and g(z) are convex
functions andCx, Cz are closed convex sets. ADMM has been
proposed in the 1970’s [34] as a method for solving large-scale
convex optimization problems by allowing the decomposition
of the original problem into simpler and/or smaller subprob-
lems. Recently, ADMM has found a resurgence of interest due
to its ability to provide fast, close to optimal and distributed
solutions to problems arising in several areas such as machine
learning [27] and signal processing [35].

For the solution of problem (4), ADMM uses the scaled
augmented Lagrangian form,Lρ(x, z, u):

Lρ(x, z, u) =f(x) + g(z) + hCx
(x) + hCz

(z)+

(ρ/2)‖Ax+Bz− d+ u‖22



whereu = ω/ρ are thescaled dual variables, ω ∈ R
Md×1

are thedual variablesor Lagrange multipliersand ρ ∈ R

is a penalty constant, whilehCx
(x) andhCz

(z) are indicator
functions. Starting from initial valuesz0 and u0, ADMM
iteratively minimizesLρ(x, z, u) with respect tox and z

followed by an update of the scaled dual variables in three
consecutive steps:

Step 1: xk+1 = argmin
x

Lρ(x, z
k, uk)

Step 2: zk+1 = argmin
z

Lρ(x
k+1, z, uk)

Step 3: uk+1 = Axk+1 +Bzk+1 − d+ uk

The procedure continues until a stopping criterion is sat-
isfied. Contrary to other decomposition methods that impose
strong convergence conditions, ADMM enjoys the superior
convergence properties of the method of multipliers and im-
poses mild technical conditions on the problem under investi-
gation. In the case of problem (4), the necessary and sufficient
conditions for optimality reduce to the satisfaction of primal
and dual feasibility which measure the extend of constraint
satisfaction and objective value suboptimality, respectively. To
monitor progress towards optimality, we define theprimal
residualrkpr anddual residualrkd of iterationk as (see [27]):

rkpr = Axk +Bzk − d (5)

rkd = ∇xf(x
k) + ρATuk = ρATB(zk − zk−1) (6)

As primal and dual feasibility indicate optimality, a reason-
able stopping criterion is to ensure that the primal and dual
residuals are small. The number of iteration is also used as a
stopping criterion, especially when an approximate solution is
needed. A comprehensive analysis of ADMM, its convergence
properties and stopping conditions appears in [27].

III. C ENTRALIZED PROBLEM FORMULATION

This section details the centralized mathematical formu-
lation for the considered multiple intersection traffic signal
control (MITSC) problem. MITSC involves the optimization
of split plans, cycle lengths and offset of the traffic signals of
multiple intersections over a time-horizonTh. Optimization
is performed for some measure-of-interest such as mean/total
vehicle delay, stoppage time and throughput. Traffic dynamics
are incorporated into the optimization problem through the
CTM described in section II-A. Our formulation builds on
existing centralized approaches such as [11] and [12], by
relaxing the assumption of an initially zero-state system;this
allows the temporal decomposition of the original problem into
smaller subproblems. This implication is particularly important
when one wants to solve problems over a large time period,
as such problems are prohibitively large.

Temporal problem decompositionrefers to the process of
separating the time horizonTh over which MITSC is op-
timized into smaller time-windows of generated traffic,Tw,
and solving the problem sequentially over those periods.
Nevertheless, the considered optimization time,To, over which
each subproblem is solved is actually larger to allow all the
vehicles to exit the network, as shown in Fig. 1. In fact,
when online decision makingis sought, traffic signal plans

Fig. 1. Temporal decomposition of MITSC. The array of 1s and 0s represents
the split plan of a particular intersection for one time window. The bold 1s and
0s indicate the decision part that will be realized for the next time-window.

must be updated everyTw time units, using only the solution
corresponding to the the firstTw time units. For instance,
instead of optimizing the problem over a 4-hour period, one
could compute the solution every 10 minutes. In this case,
a solution would have to be attained every 10 minutes, and
applied to each intersection for the next 10-minute period.
Apart from reducing the computational effort for the solution
of the problem, temporal decomposition takes advantage of
accurate prediction of traffic demand, which can only be
achieved for short-term traffic predictions (10-15 minutes)
[36].

Before arriving at the final MITSC formulation, the objec-
tive and constraints of the problem are introduced.

A. Objective

For the MITSC formulation, the objective is the minimiza-
tion of the total travel-time (TTT) (the cumulative travel time
of all vehicles). Assuming that the road network is empty both
at the start and the end of the optimized time periodTo, the
total travel delay can be expressed as:

∑

c∈D

∑

t∈T

tyc,t −
∑

c∈O

∑

t∈T

tDc,t, (7)

whereT = {1, ..., To}, andDc,t denote the exogenous inflow
traffic from an origin cell,c, t ∈ T . As all vehicles enter and
leave the road network, the entrance and exit times of each
vehicle is included in the above expression, so that the total
travel time is the sum of the travel times of all vehicles. The
second term can be eliminated from the optimization problem
since the starting time of each vehicle’s journey is fixed a
priori. Note that other objective functions can be described
using CTM such as the minimization of the number of stops,
or the maximization of throughput, or weighted combinations
of these objectives [11]. Also it is important to consider a
large enoughTo to ensure an empty network at the end of
the considered period, as explained in Fig. 1; otherwise the
optimal solution may involve the undesirable effect of holding-
back vehicles from exiting the network because in this case
their travel time will be excluded from the objective value.

B. CTM constraints

To model the traffic dynamics we consider four types of
CTM cell sets:ordinary (E), origin (O), destination(D) and
intersection(I). Ordinary cells have both inflow and outflow
of vehicles as well as non-zero capacity at all times. Origin
cells are similar to ordinary cells but instead of receiving
inflow traffic from other cells they receive exogenous inflow
traffic Dc,t, c ∈ O, t ∈ T . Destination cells sent their outflow
traffic outside the network without restriction on capacityand



infinite space at their destination. Finally, intersectioncells
have variable capacity,qc,t, imposed by the traffic signals
phases. Despite the presence of the min operator in Eq. (1)
which is nonlinear, Eqs. (1)-(3) can be transformed into the
following linear programming (LP) formulation forc ∈ A =
E ∪ O ∪ D ∪ I, t ∈ T :

max yc,t (8a)

s.t. yc,t ≤ nc,t, (8b)

0 ≤ yc,t ≤ qc,t, (8c)

yc,t ≤ Wc,tn̄c+1,t, (8d)

nc,t+1 = nc,t + ȳc,t − yc,t, (8e)

wheren̄c+1,t = Nc,t − nc+1,t, if c ∈ A\D and∞ otherwise,
ȳc,t = yc−1,t if c ∈ A\O and ȳc,t = Dc,t if c ∈ O, while
capacityqc,t is given by:

qc,t =















Qc,t, c ∈ E ∪ O,
wi,tQc,t, i ∈ R, c ∈ I1,i,
(1− wi,t)Qc,t, i ∈ R, c ∈ I2,i,
∞, c ∈ D,

(9)

whereI1,i andI2,i denote the set of cells that receive a green
light during the first and second phase of theith intersection
split plans,R = {1, ..., NI} denotes the set of intersections,
NI the total number of intersections, andwi,t, i ∈ R, t ∈ T
indicates whether phase 1 (wi,t = 1) or phase 2 (wi,t = 0)
has the right-of-way. These variables are themain decision
variablesof the considered problem, implicitly optimizing the
traffic signal split plans and cycle lengths of all intersections,
and the offsets between them (also see Fig. 1). In the above
LP program, constraints (8b) - (8d) forceyc,t to be in the
range[0,min{nc,t, Wc,tn̄c+1,t, qc,t}], while the maximization
objective guarantees thatyc,t will take the maximum value in
this range. Without loss of generality, we will assume for the
rest of the paper that the network is homogeneous.

To incorporate the different maximization expressions
(8a) into our problem, a penalty minimization term
α
∑

c/∈D

∑

t∈T tyc,t is introduced into our primary objective
function, whereα is a penalty constant, eliminating to a certain
extent theunindented vehicle holding-back problem[37].

C. Additional constraints

Apart from the constraints associated with the CTM model,
we need to introduce more constraints regarding the traffic
signal operation.

1) Maintaining minimum green/red time:For the operation
of traffic lights, a minimum green/red time,Gmin, is usually
assumed for each phase. To check that the minimum green
time constraint is preserved, it must be ensured that for
Gmin + 1 consecutive time units there is no more than one
modification in the value ofwi,t. In mathematical terms this
can be expressed fori ∈ R as:

wi,t − wi,t−1 ≤ ui,t, − wi,t + wi,t−1 ≤ ui,t, (10)

wi,t + wi,t−1 ≥ ui,t, 2− wi,t − wi,t−1 ≥ ui,t, (11)
t+Gmin
∑

τ=t

ui,τ ≤ 1, t = 1, ..., To −Gmin (12)

Inequalities (10)-(11) are equivalent toui,t = |wi,t − wi,t−1|,
when wi,t ∈ {0, 1}, implying that ui,t indicates whether a
signal change has occurred betweent− 1 and t (green-to-red
or red-to-green).

2) Maintaining maximum green/red time:Similar to the
minimum green time, the maximum green time constraint is
maintained when the same sign is not preserved for more than
Gmax time units, which can be expressed fori ∈ R as:

t+Gmax−1
∑

τ=t

wi,τ ≤ Gmax, t = 1, ..., T −Gmax + 1 (13)

t+Gmax−1
∑

τ=t

wi,τ ≥ 1, t = 1, ..., T −Gmax + 1 (14)

Constraints (13) and (14) indicate that we cannot haveGmax+
1 consecutive 1s and 0s, respectively.

3) Ensuring flow conservation:To ensure flow conservation
in the network we must make sure that all entering and initially
existing traffic must exit the network. Equivalently, it must be
ensured that the network is empty at the end of the considered
time horizon. This can be expressed as:

∑

c∈A

nc,To+1 = 0. (15)

D. Initial Condition Constraints

The system stateat any timet is comprised of thecell
states, denoted bync,t, c ∈ A, t ∈ T , as well as the state
of the traffic lightswi,t, i ∈ R, t ∈ T . Computing the next
cell state requires only the current cell states in CTM, hence
having the initial cell states

nc,1 = ninit
c , c ∈ A (16)

is sufficient for the evolution of the traffic dynamics. On the
contrary, for the correct evolution of the traffic signal decisions
we need to consider at leastGmax time units. Hence,

wi,t = winit
i,t , i ∈ R, t = −Gmax + 1, ..., 0. (17)

E. MILP formulation

In summary, the MITSC problem formulation is the follow-
ing:

MIT SC : min
∑

c∈D

∑

t

tyc,t + α
∑

c/∈D

∑

t

tyc,t

s.t.: - CTM constraints for all cells (8b)-(8e)

- constraints (10)-(15)

- initial conditions (16) and (17)

In formulationMIT SC, the main decision variables are the
traffic light stateswi,t ∈ {0, 1}, which appear in the capacity
expressions (9) of intersection cells, while there are also
auxiliary variablesyc,t, nc,t, qc,t, ui,t that allow the evolution
of CTM dynamics and the representation of the traffic signal
constraints. Because the problem is composed of both binary
(wi,t) and continuous variables (ui,t, yc,t, nc,t, qc,t) it belongs
to the class of Mixed Integer Linear Programming (MILP) and
it is NP-hard to solve. By relaxing the binary variables to take
continuous values (wi,t ∈ [0, 1]), a lower bound on the optimal
solution is obtained by solving an LP problem. The relaxed
version ofMIT SC will be referred to asRMIT SC.



IV. SPATIAL DECOMPOSITION

Solving the system-wide problemMIT SC in a distributed
setting, requires proper geographical partitioning of thenet-
work in a way that the optimal solution is obtained through the
iterative solution of easy subproblems and the local exchange
of information between neighboring areas. A good policy
towards this direction, is to divide the considered networkin
areas of one intersection so that sensing, decision making,
local communication (with adjacent intersections) and control
is handled locally by the intersection controller (IC) of the
area, similar to [24], [25]. Sensing is necessary to monitorand
measure the traffic state of its controlled area. Computation is
needed for predicting its incoming flows (from the outside
of the network) and also for deciding about traffic signal
timing plans. Targeting globally optimal solutions, ICs need to
exchange messages with immediately adjacent intersections to
collaboratively derive their traffic signal timing plans. Finally,
control capabilities are essential for the online realization of
the computed plans.

This spatial decomposition is motivated by the nature of
transportation networks, as explained through the example
topology in Fig. 2, which depicts the CTM of a 2x2 grid topol-
ogy with four intersections and two-way arterials. In the figure,
the dashed lines indicate a possible spatial decompositionof
the network which partitions the topology into four areasAi,
i = 1, ..., 4 so that each area is associated to exactly one
intersection. In this distributed setting, areaAi is controlled by
intersection controllerICi, while interaction between adjacent
intersections can take place only through boundary cells.

This can be understood by observing the linear eqs. (8)
which describe the state evolution of an ordinary cellc,
from which it is clear that the computation of its variables
(yc,t, nc,t+1) at one particular time-stept, information is only
needed from cellsc−1 andc+1. Specifically, eq. (8d) requires
variablenc+1,t from its successor cell, while eq. (8e) requires
yc−1,t from its predecessor cell. This important observation,
implies that the cell states can evolve independently for each
area, apart from boundary cells which require information
about variables that belong to predecessor or successor cells
not belonging to the particular area. Particularly, in Fig.2 cell
105 of areaA1 requires the number of vehicles in its successor
cell 106 ofA2, while cell 705 ofA1 requires the number of
vehicles leaving out of its predecessor cell 704 ofA4.

It is clear from this example that ordinary cells give rise
to two different types of boundary cells: (a) input and (b)
output boundary cells. Aninput boundary cellc ∈ BI

i is
any boundary cell of areaAi that receives inflow traffic from
a cell of a neighboring area (e.g. cell 705). Similarly, an
output boundary cellc ∈ BO

i is any boundary cell of area
Ai that sends outflow traffic to a cell of a neighboring area
(e.g. cell 105). We also define the extended input and output
boundary cell sets of areaAi, BIE

i and BOE
i respectively,

which include all input/output cells associated with areaAi

and input/output cells that are directly adjacent toAi, as well
as the set of all boundary cells of areaAi, Bi = BI

i ∪ BO
i

and the corresponding extended setBE
i = BIE

i ∪ BOE
i .

For instance, for areaA1 we have thatBI
1 = {705, 506},

Fig. 2. CTM for a 2-by-2 intersection topology. The dashed lines indicate
the spatial decompositionof the network into four areas, each one controlled
by the corresponding intersection controller.

BO
1 = {105, 305}, B1 = {705, 506, 105, 305}, BIE

1 =
{705, , 306, 506, 106}, BOE

1 = {105, 305, , 505, 704} and
BE
1 = {705, , 306, 506, 106, 105, 305, , 505, 704}.
The defined boundary cells are essential in spatially decom-

posing a given transportation network for the CTM model, and
can be applied for the decomposition of several transportation
problems such as the freeway ramp metering and the dynamic
traffic assignment problems. Here, this spatial decomposi-
tion is utilised for the distributed solution ofMIT SC via
ADMM. It should be emphasized that an arbitrary number
of intersections could be considered for each area, given that
a controller can manage the entire area, without affecting
the final derived solution. That is because each area does
not decide independently, but a global decision is reached
through collaboration, contrary to existing systems, suchas
[17] and [9], where subsystems are designed to be jointly
optimized in a central manner and share common characteris-
tics (e.g. common cycle length and interrelated phase splits).
Nevertheless, spatial decomposition controls the amount of
communication exchanged and the computation required from
each area controller. The choice of decomposing the system
in single-intersection areas is to allow a fully distributed
architecture. Also, it should be emphasized that such a problem
need not necessarily involve all intersections of a city but
rather parts of the city where traffic is interrelated [38].

V. D ISTRIBUTED FORMULATION AND SOLUTION OF

MITSC

The centralized solution of the MITSC problem may pro-
vide better performance if it can be derived, but it has
several shortcomings as a solution strategy. Firstly, solving
this problem is usually intractable and hence not suitable for
online decision making because the problem is complex (NP-
hard) and of large-scale (especially when the problem involves
a large time horizon and several intersections). Secondly,cen-
tralized solutions require global information about the status of
the network and hence may be prone to communication related
failures. Thirdly, solving the problem centrally is not robust,
as failure of the central unit will result in complete failure of
the system. On the other hand, distributed strategies can be
more robust to failures. For example, communication failure



between certain intersections may result in partial coordination
loss, but intersections can continue working either individually
or in subgroups. Additionally, by temporally and spatially
decomposing the problem into subproblems of smaller size,
although global optimality is not maintained, computationally
efficient and good quality solutions can be obtained.

A distributed solution to theMIT SC problem is obtained
by performing two consecutive phases. Inphase 1, the relaxed
problem,RMIT SC, is solved distributedly via ADMM so
as to avoid the exponential complexity ofMIT SC. This
is achieved by transformingRMIT SC into an appropri-
ate ADMM form and providing close-form solutions to the
optimization problems arising in the three iterative ADMM
steps, as explained in section V-A; a distributed algorithm
summarizing the ADMM steps and explaining the information
neighboring subsystems is also provided (Algorithm 1). In
phase 2, a distributed rounding scheme is used to obtain
a close to optimal solution toMIT SC by rounding-off
fractional values of decision variables obtained from the
solution of RMIT SC in phase 1. Section V-B describes
two novel distributed rounding schemes based on minimizing
the cumulative departure rate error from the relaxed solution
(section V-B1) and the roundoff error of the fractional decision
variables (section V-B2).

A. Phase 1: Distributed Solution ofRMIT SC

To derive a distributed formulation forRMIT SC, we need
to convert the problem into a form that is decomposable for
each intersection. This implies that each IC should only solve
subproblems associated with variables belonging to its area.
Towards this direction, we rewrite the centralisedRMIT SC
problem into the following form that distinguishes decoupled
constraints for each intersection (Eqs. (18b), (18c) and (18f)),
from coupled constraints that involve variables from more than
one intersections (Eqs. (18d) and (18e)):

min

NI
∑

i=1

f
T
i xi (18a)

s.t.Aixi = ai,, i ∈ R, (18b)

Bixi ≤ bi, i ∈ R, (18c)

yc,t + sc,t = WN −Wnc+1,t, c ∈ BO
i , t ∈ T , i ∈ R, (18d)

nc,t+1 = nc,t + yc−1,t − yc,t, c ∈ BI
i , t ∈ T , i ∈ R, (18e)

x
l
i ≤ xi ≤ x

u
i , i ∈ R, (18f)

where xi = [nT
i ,y

T
i ,w

T
i ,u

T
i , s

T
i ]

T denotes the vector of
variables of areaAi, ni ∈ R

|Ai|(To+1)×1, yi ∈ R
|Ai|To×1,

wi ∈ R
To×1, ui ∈ R

(To−1)×1 are vectorized versions of vari-
ablesnc,t, yc,t, wi,t andui,t, c ∈ Ai, i ∈ R, t ∈ T , xl

i andxu
i

are the lower and upper bounds of the corresponding variables,
while dummy variablessi ∈ R

|BO
i |To×1 are introduced to

convert inequalities (8d) for output boundary cells of areaAi

into equalities2. Expression (18a) captures the linear objective
function, where vectorfi denotes the cost associated with
variablesxi, while Eqs. (18b) and (18c) capture all decoupled
equality and inequality constraints whose variables belong to
the same area i.e. Eqs. (8b), (8c), (10)-(17), (8d) excluding

2Area-related sets will be denoted with the same symbol and a subscript
index to indicate the area. For example, setsE and Ei denote the set of
ordinary cells in the whole topology and areaAi respectively.

output boundary cells and (8e) excluding input boundary
cells. The excluded constraints are represented by the coupled
equalities (18d) and (18e) which involve variables from two
different areas and hence cannot be handled directly by the
same IC. Note that the flow constraint

∑

c∈A nc,To+1 = 0, as
well as any initialization constraints have been included in the
above formulation as bound constraints; for example the flow
constraint can be written as:nc,To+1 = 0 or 0 ≤ nc,To+1 ≤ 0,
c ∈ A.

To be able to solve the problem in a distributed manner via
the ADMM algorithm, we rewrite it into the equivalent form:

min
NI
∑

i=1

f
T
i xi (19a)

s.t.Aixi = ai, i ∈ R, (19b)

Bixi + ζi = bi, i ∈ R, (19c)

yc,t + sc,t = WN −Wξnc+1,t , c ∈ BO
i , t ∈ T , i ∈ R, (19d)

nc,t+1 = nc,t + ξyc−1,t − yc,t, c ∈ BI
i , t ∈ T , i ∈ R, (19e)

ξi = xi, i ∈ R, (19f)

x
l
i ≤ ξi ≤ x

u
i , ζi ≥ 0, i ∈ R, (19g)

where the equivalence is apparent from the fact thatξi =
xi, i ∈ R, while variablesζi are introduced to transform
inequalities (18c) into equalities (19c). For better clarity, we
abuse the notation and imply that variablesξnc,t

indicate
correspondence to variablesnc,t; the same applies to the other
variable sets.

The above formulation adheres to ADMM formulation (4)
with x = [xT

1 , ...,x
T
NI

]T and z = [ζT
1 , ..., ζ

T
NI

, ξT1 , ..., ξ
T
NI

]T ,
while Cx andCz are given by:

Cx = {x|Aixi = ai, i ∈ R} ,

Cz =
{

z|z = {ξ, ζ},xl ≤ ξ ≤ xu, ζ ≥ 0
}

.

Constraints (19c)-(19f) are coupling constraints betweenx and
z, representing eq. (4b) of ADMM formulation.

According to the ADMM algorithm we rewrite the problem
into the augmented lagrangian form to obtain:

minL(x, ζ, ξ,κ,λ,µ,ν) =
NI
∑

i=1

(

f
T
i xi + hCxi

(xi) + hCξi
(ξi) + hCζi

(ζi)
)

+
ρ

2

NI
∑

i=1

(

‖Bixi + ζi − bi + κi‖
2
2 + ‖xi − ξi + νi‖

2
2

+
∑

c∈BO
i

To
∑

t=1

(

yc,t + sc,t +Wξnc+1,t −WN + λc,t

)2

+
∑

c∈BI
i

To
∑

t=1

(

nc,t+1 − nc,t + yc,t − ξyc−1,t + µc,t

)2

)

,

whereκ, ν, λ, andµ are the scaled Lagrange multipliers of
constraints (19c), (19f), (19d), and (19e), respectively.Hence,
ADMM consists of iteratively solvingL(x, ζ, ξ,κ,λ,µ,ν)
over x (step 1), thenξ and ζ in parallel (step 2), and then
updatingκ,λ,µ,ν (step 3). After thekth iteration of the
ADMM algorithm, vectorsxk, ζk, ξk, κk, λk, µk, νk have



been attained; next, we show how the problems that appear in
iterationk + 1 can be solved.

Step1 of ADMM consists of solving the problem overx.
The problem to be solved can be defined as:

x
k+1 = argminL(x, ζk

, ξ
k
,κ

k
,λ

k
,µ

k
,ν

k) =
NI
∑

i=1

{

f
T
i xi + hCxi

(xi)

+
ρ

2

(

‖Bixi + ζ
k
i − bi + κ

k
i ‖

2
2 + ‖xi − ξ

k
i + ν

k
i ‖

2
2

+
∑

c∈BO
i

To
∑

t=1

(

yc,t + sc,t +Wξ
k
nc+1,t

−WN + λ
k
c,t

)2

+
∑

c∈BI
i

To
∑

t=1

(

nc,t+1 − nc,t + yc,t − ξ
k
yc−1,t

+ µ
k
c,t

)2
)

}

The above formulation is decomposable for eachxi, mean-
ing that we can solveNI smaller subproblems, one for each
intersection. The only limitation is that the values ofξknc+1,t

and ξkyc−1,t
that appear in the last two terms are not known

to ICi. However, these quantities can easily be communicated
to ICi as they belong to immediate neighboring intersections.
Hence, assuming that these quantities are known to the ap-
propriate intersections,xk+1 can be computed by solvingNI

problems in parallel, one at each intersection. To simplifythe
notation, let us define the following:

eki1 = −ζk
i + bi − κk

i , (20)

eki4 = ξki − νk
i , (21)

∑

c∈BO
i

To
∑

t=1

(yc,t+sc,t+Wξknc+1,t
−WN+λk

c,t)
2 = ‖Cixi−eki2‖

2
2, (22)

∑

c∈BI
i

To
∑

t=1

(nc,t+1−nc,t+yc,t−ξkyc−1,t
+µk

c,t)
2 = ‖Hixi−eki3‖

2
2. (23)

Based on the above definitions,ICi needs to solve the
problem:

min
xi

1
2x

T
i Fixi − xT

i p
k
i (24)

Aixi = ai,

where Fi = BT
i Bi + CT

i Ci + HT
i Hi + Ii, with Ii being

the identity matrix of appropriate dimensions, andpk
i =

BT
i e

k
i1 +CT

i e
k
i2 +DT

i e
k
i3 + eki4 − (1/ρ)fi. Problem (24) is a

convex quadratic programming problem with linear equality
constraints whose solution can be obtained by solving the
linear system of equations resulting from the KKT conditions
(see ch. 16 of [39]):
[

Fi AT
i

Ai 0

] [

xk+1
i

σ

]

= Ki

[

xk+1
i

σ

]

=

[

pk
i

ai

]

, (25)

where σ are dual variables associated with the equality
constraints, andKi ∈ R

(Mx,i+MAeq,i)×(Mx,i+MAeq,i), with
Mx,i = (2|Ai| + |BO

i | + 2)To + |Ai| − 1 and MAeq,i =
(|Ai| − |BO

i | + |Di|)To, being the number of rows inxi and
Ai, respectively.

Eq. (25) needs to be solved several times atICi, one
per iteration, so it is important to reduce the computational

complexity of solving this system. Because matrixKi is
constant for different iterations , we can decompose and store
it once during initialization; in this way the solution of (25)
can be computed an order of magnitude cheaper. An efficient
and robust decomposition method suitable for sparse matrices
is LDLT [40]. Using this method, we can derive matrices
Li,Di,Pi such that:

Ki = PiLiDiL
T
i P

T
i ,

whereLi is lower triangular,Di is block diagonal with blocks
of dimension 1 or 2, andPi is an orthogonal permutation
matrix chosen according to the sparsity pattern ofKi. The
solution of (25) is then:

[

x
k+1

i
σ

]

= Pi

(

(LT
i )−1

(

D
−1

i

(

L
−1

i

(

PT
i

[

pk
i

ai

]))))

(26)

To compute eq. (26) multiple times, we need to storeLi,D
−1
i

and Pi. The computation ofD−1
i can be performed during

initialization and only requires the inversion of matricesof
dimension 1 or 2, while the computation of termsL−1

i χ2 and
(LT

i )
−1χ1 can be performed in each iteration using forward

and backward substitution, asLi andLT
i are lower and upper

triangular respectively.
Step2 of ADMM consists of solving the problem overζ

andξ. The problem to be solved can be defined as:

[ζk+1; ξk+1] = argminL(xk+1
, ζ, ξ,κ

k
,λ

k
,µ

k
,ν

k) =
NI
∑

i=1

(

hCξi
(ξi) + hCζi

(ζi) +

ρ

2

(

‖Bix
k+1

i + ζi − bi + κ
k
i ‖

2
2 + ‖xk+1

i − ξi + ν
k
i ‖

2
2 +

∑

c∈BI
i

To
∑

t=1

(

y
k+1

c−1,t + s
k+1

c−1,t +Wξnc,t −WN + λ
k
c−1,t

)2

+

∑

c∈BO
i

To
∑

t=1

(

n
k+1

c+1,t+1 − n
k+1

c+1,t + y
k+1

c+1,t − ξyc,t + µ
k
c+1,t

)2 )
)

The above formulation is separable for variablesζi

and ξi. Similar to step 1, the only limitation is that
yk+1
c−1,t, s

k+1
c−1,t, λ

k
c−1,t, c ∈ BI

i and yk+1
c+1,t, n

k+1
c+1,t, µ

k
c+1,t, c ∈

BO
i , t = 1, ..., To, are not known toICi and need to be

communicated toICi from adjacent intersections. Hence,
assuming that these quantities are known to appropriate in-
tersections,ζk+1 and ξk+1 can be computed analytically by
solvingNI problems in parallel, one at each intersection. The
following analytical solutions can easily be obtained:

ζk+1
i = min

{

0,−
(

Bix
k+1
i − bi + κk

i

)}

(27)

ξk+1
i = min

{

xu
i ,max

{

xl
i, x

k+1
i + νk

i

}}

, (28)

Special attention should be given to the fact that eq. (28)
applies to allξi variables, except fromξnc,t

, c ∈ BI
i , t ∈ T

and ξyc,t
, c ∈ BO

i , t ∈ T . For the former variables we need
to solve the problem:

min
(

yk+1
c−1,t + sk+1

c−1,t +Wξnc,t
−WN + λk

c−1,t

)2
+

(

nk+1
c,t − ξnc,t

+ νknc,t

)2

(29)

s.t. xl
nc,t

≤ ξnc,t
≤ xu

nc,t



Problem (29) can be solved analytically by finding the value
of ξnc,t

that zeroes the derivative of the objective function and
projecting onto the feasible set, which yields:

ξk+1
nc,t

=min
{

xu
nc,t

, max
{

xl
nc,t

, (1 +W 2)−1
(

nk+1
c,t + νknc,t

−W (yk+1
c−1,t + sk+1

c−1,t −WN + λk
c−1,t)

)}}

. (30)

For variablesξyc,t
, c ∈ BO

i , t ∈ T we need to solve:

min
(

nk+1
c+1,t+1 − nk+1

c+1,t + yk+1
c+1,t − ξyc,t

+ µk
c+1,t

)2
+

(

yk+1
c,t − ξyc,t

+ νkyc,t

)2

(31)

s.t. xl
yc,t

≤ ξyc,t
≤ xu

yc,t

whose solution is given by:

ξk+1
yc,t

=min
{

xu
nc,t

, max
{

xl
nc,t

,
1

2

(

nk+1
c+1,t+1 − nk+1

c+1,t+

yk+1
c+1,t + µk

c+1,t + yk+1
c,t + νkyc,t

)

}}

. (32)

Step3 of ADMM consists of updating the dual variables
associated with the coupled equality constraints.ICi needs to
perform the following updates, fort ∈ T :

κ
k+1

i = Bix
k+1

i + ζ
k+1

i − bi + κ
k
i (33)

λ
k+1

c,t = y
k+1

c,t + s
k+1

c,t +Wξ
k+1
nc+1,t

−WN + λ
k
c,t, c ∈ BO

i , (34)

µ
k+1

c,t = n
k+1

c,t+1 − n
k+1

c,t + y
k+1

c,t − ξ
k+1
yc−1,t

+ µ
k
c,t, c ∈ BI

i , (35)

ν
k+1

i = x
k+1

i − ξ
k+1

i + ν
k
i . (36)

The computation of updates (33) and (36) are based only
on local information, while updates (34) and (35) require
knowledge of termsξk+1

nc+1,t
, c ∈ BO

i andξk+1
yc−1,t

, c ∈ BI
i t ∈ T

which can be obtained from neighboring intersections.
From the above analysis, it is clear that in each iteration of

ADMM we need to perform three computation steps followed
by three local communication steps. Communication step 1 can
be eliminated as valuesξknc+1,t

, c ∈ BO
i and ξkyc−1,t

, c ∈ BI
i ,

t ∈ T needed in thekth iteration have already been obtained
from communication step 3 of the previous iteration. In addi-
tion, communication step 3 can be avoided ifICi explicitly
computes theξ-values it needs for computation step 3. In our
case, computing the necessaryξ-values of boundary cells of
neighboring intersections carries very little computational cost
compared to the overall cost of computation steps 1 and 2, so
it is beneficial to trade-off one communication step with some
extra computation. To summarize, each iteration of ADMM
requires three computation steps and one communication step
after computation step 1.

Algorithm 1 outlines ADMM for the solution of
RMIT SC. Although, Algorithm 1 is iterative, it is important
to highlight the fact that all three steps of each iteration
are analytically computed according to Eqs. (26), (28)-(32),
and (33)-(36) respectively. Obtaining distributed analytical
solutions to all steps of the ADMM algorithm is not a standard
result, but emanates from the structure of the problem and the
targeted introduction of variablesξ and ζ into formulation
(19).

Algorithm 1 : Distributed ADMM algorithm for the
solution of RMIT SC problem

for (each intersection controllerICi) do
Init.: Setζ0

i = ξ0i = κ0
i = λ0

i = µ0
i = ν0

i = 0.
repeat

1. Computexk+1
i using eq. (26)(Step 1).

2. Communicate to neighboring intersectionj ∈ Ni

the values ofyk+1
c,t , sk+1

c,t , nk+1
c,t , c ∈ {Bi∩B

E
j },t ∈ T .

3. Computeζk+1
i using eq. (27) andξk+1

i using Eqs.
(28), (30) and (32). Additionally, compute values for
ξnc,t

and ξyc,t
, c ∈

{

BE
i \ Bi

}

, t ∈ T using Eqs.
(30) and (32) (Step 2).
4. Update the values of dual variables
κk+1
i ,λk+1

i ,µk+1
i ,νk+1

i using eqs. (33)-(36).
Additionally updateλc,t and µc,t, c ∈

{

BE
i \ Bi

}

,
t ∈ T using Eqs. (34) and (35) (Step 3).
5. Compute primal and dual residuals (eqs. (5), (6))
and check stopping conditions.

until (Convergence achieved)
end for

B. Phase 2: Distributed rounding

Having obtained a distributed solution toRMIT SC via
ADMM, the next step is to round the main decision variables
(wi,t, i ∈ R, t = 1, ..., Tw) so as to obtain a close to optimal
solution to MIT SC. It is important to note that rounding
should be performed in a distributed manner in accordance
to the variables that are known to each IC, and also that
the decision variables need to be rounded-off only for the
time-window Tw and not for the whole optimization period
To. In the next sections we describe two different distributed
rounding schemes.

1) Distributed Cumulative Departure Rate Rounding (DC-
DRR) Scheme: In the cumulative departure rate (CDR)
method, originally proposed as a heuristic for rounding solu-
tions in a centralized setting [14], the main idea is to attempt
to match the cumulative departure rate (CDR), resulting from
RMIT SC with the CDR obtained from binary decisions
for each movement of an intersection. Considering two phase
intersections of one way arterials (e.g. Fig. 2), the CDR of
phasep of intersectioni at timeτ is defined as:

Cp,τ,i =

τ
∑

t=1

∑

c∈Dp,i

yc,t = Cp,τ−1,i +
∑

c∈Dp,i

ycp,τ

whereDp,i denotes the set of cells immediately downstream
all movements of phasep of intersectioni.

DCDRR is outlined in Algorithm 2. Note that DCDRR
requires two rounds of communication between adjacent in-
tersections for each time unit which are necessary for the
distributed computation of variablesyc,t andnc,t respectively.

2) Distributed Decision Variable Rounding (DDVR)
Scheme: The solution of the relaxed problem provides
fractional decision variableswi,t which indicate the optimal
portion of green or red light for each time unit and phase.
One way to roundoff the decision variables is to minimize



Algorithm 2 : DCDRR Scheme
for (each intersection controllerICi, i ∈ R) do

Init.: ComputeC̄p,t,i, ∀t, of RMIT SC and set CDR
of binary decision to:Cp,0,i = 0, p = {1, 2}.
for (τ = 1, ..., Tw) do

Communicatenc,τ , c ∈ BI
i to ICj wherec−1 ∈ BO

j .
Wait for reception ofnc+1,τ , c ∈ BO

i from other ICs.
if (Constraints (10) - (14) are not violated)then

For wi,τ = k, k ∈ {0, 1} computeykc1,t andykc2,t,
c1 ∈ I1,i andc2 ∈ I2,i, based on Eq. (1).
SetCk

p,τ,i = Cp,τ−1,i +
∑

c∈Dp,i
ykc,t, p = {1, 2}.

Setwi,τ = arg min
k∈{0,1}

{

2
∑

p=1

|Ck
p,τ,i − C̄p,τ,i|

}

.

else
Setwi,τ to a value that violates no constraint.

end if
Updateyc,τ , c ∈ Ai andCp,τ,i based onwi,τ .
Communicateyc,τ , c ∈ BO

i to ICj wherec+1 ∈ BI
j .

Wait for reception ofyc−1,τ , c ∈ BI
j from other ICs.

Updatenc,τ+1 c ∈ Ai using Eq. (3).
end for

end for

…
..

…
..

Fig. 3. Transition into and out of vertex(t, 1) of the constructed graph for
the decision variable rounding scheme for a two phase intersection.

the roundoff error subject to the satisfaction of the minimum
and maximum green time constraints. In mathematical
programming terms this problem can be expressed as:

min
∑

i∈R

∑To

t=1 w
B
i,tf1,i,t + (1− wB

i,t)f2,i,t (37)

s.t. - traffic light constraints (10)-(14),

- initial traffic light conditions (17),

wB
i,t ∈ {0, 1}, i ∈ R, t ∈ T ,

where f1,i,t = |1 − wi,t| and f2,i,t = |0 − wi,t|, are the
costs of having a green light at intersectioni and time t
for phases 1 and 2 respectively. Note that the problem is
separable for different intersections so that the problem is
equivalent toNI independent problems, each involving the
decision variables of one intersection. Despite the problem
being MILP and combinatorial in nature, we have developed
an optimal solution procedure of problem (37), which is based
on building an appropriate graph and solving a shortest path
problem using Dijkstra’s algorithm for each intersection.

For a two phase intersection, the graph is comprised of
vertices (t, p), t ∈ T , p ∈ {1, 2} indicating the possibility

that a green light for phasep starts at timet. The edges
of the graph represent the transition between phases while
the associated costs indicate the cumulative cost of making
the particular transition. Fig. 3 shows the transitions into and
out of state(t, 1) for an arbitrary areaAi. As can be seen,
this state can be reached if the green light of phase 2 started
at t′ ∈ {t − Gmax, . . . , t − Gmin} and the duration of the
green is of lengtht − t′. In this case the transition cost is
fe(t, t− t′, 2) =

∑t−1
τ=t′ f2,i,τ which indicates the cumulative

cost resulting from the deviation between the continuous and
binary values of the decision variables. Similarly, edges out
of state(t, 1) and into state(t′, 2) can be defined with costs
fe(t, t

′− t, 1) =
∑t′−1

τ=t f1,i,τ , t′ ∈ {t+Gmin, . . . , t+Gmax}.
For example, a transition from state (10,1) to state (15,2)
implies a green light of phase 1 for time units 10, 11, 12,
13 and 14, for the considered intersection,c. Therefore, the
rounding cost for time units 10-14 is equal tofe(10, 5, 1) =
∑14

t=10 f1,i,t =
∑14

t=10 |1 − wi,t|. By properly building the
graph of traffic light states and phase transitions, the minimal
rounding cost of problem (37) is obtained by finding the path
of the optimal combination of transitions for the time period
considered. This can be achieved by computing the shortest
path (e.g. using Dijkstra’s algorithm) from a source node added
at the start to a destination node added at the end of the
optimization time period. The edges that are visited indicate
the best transitions between the two phases of the considered
intersection that also respect the minimum and maximum
green constraints. Special attention should be paid at the first
few time units to integrate any initial traffic light conditions,
and also at the end of the considered time to incorporate
incomplete transitions. This solution procedure results in the
same decision with problem (37), at a fraction of the execution
time (2-3 orders of magnitude faster), as solving a shortestpath
problem is of low polynomial complexity. Another attractive
characteristic of DDVR is that it can be obtained independently
for different intersections, resulting in a completely decentral-
ized rounding scheme with no communication requirements.

C. Computational and communication complexity

The main computational step of both DCDRR and DDVR
is the first step of each iteration of Algorithm 1 that requires
the solution of the linear equations system (25), which is
of computational complexityO((Mx,i + MAeq,i)

3). Steps 2
and 3 of Algorithm 1 and the distributed rounding schemes
have negligible cost compared to step 1. As already men-
tioned, because matrixKi appearing in (25) is the same
for all iterations, by computing offline and cachingKi’s
LDL decomposition, which is of computational complexity
O((Mx,i+MAeq,i)

3), the computational complexity of solving
(25) is reduced toO((Mx,i + MAeq,i)

2) for dense matrices.
Note that this complexity implies that the solution of (25)
would scale quadratically to the number of cells|Ai| and
the optimization horizonTo, if Ki was dense. Nonetheless,
LDL decomposition exploits the sparsity ofKi to reduce the
computational complexity even further; in Section VI-C, itis
shown that each iteration of Algorithm 1, approximately scales
to the power of 1.25 for bothTo and |Ai|, which implies that
the practical computational complexity of DCDRR and DDVR



is O(MI(|Ai|To)
1.25), whereMI is the number of ADMM

iterations.
Regarding the communication complexity of the proposed

approaches, in thekth iteration of ADMM algorithm,ICi,
i ∈ R has to communicate the newly computed values of
yc,t, sc,t, nc,t, t ∈ T of the cells on the boundary between
two adjacent areas. Hence, the iteration communication cost
of ICi is O(3|Bi|To) and the total communication cost
of ADMM is O(3MITo

∑

i∈R |Bi|). DCDRR involves two
communication steps forICi with cost O(|Bi|) for each of
the Tw iterations, while DDVR requires no communication.
Hence the total communication cost of DCDRR and DDVR
is O((3MITo + Tw)

∑

i∈R |Bi|) and O(3MITo

∑

i∈R |Bi|),
respectively.

VI. SIMULATION RESULTS

The effectiveness of the proposed distributed strategies was
evaluated for a four-intersection base topology of two-way,
two-lane alternating direction arterials as shown in Fig. 2. The
free-flow speed is 50km/h and each time-step is equivalent
to 5s, resulting in 70m-long cells. Adjacent intersectionsare
4 cells apart which implies that the distance between them
is 280m. The capacity of all cells is Q = 5 veh./time unit,
and the jam density is N = 20 veh./cell. The ratio of shock-
wave speed over free flow speed isW = 0.75. The maximum
and minimum green time are assumed to be equal to 15s and
45s respectively, i.e.Gmin = 3 and Gmax = 8. The time
horizon considered isTh = 1440 time units (2h), with traffic
being generated for360 time units (0.5h). The time horizon is
temporally decomposed into 10min intervals (Tw = 120). In
the evaluation, we consider three traffic scenaria corresponding
to low (10% congestion level3), moderate(50% congestion
level), andhigh congestion (90% congestion level) randomly
generated incoming traffic. Next we examine the effectiveness
of the proposed distributed strategies in terms of convergence,
optimality and scalability. In the ADMM algorithm, we set
ρ = NI , while for faster convergence we consider an over-
relaxation parametera = 1.6 (see [27]). The centralized
optimal solution to all LP and MILP problems considered
was obtained using Gurobi [41], while close to optimal
problem solutions via genetic algorithms (GA) were obtained
using the global optimization toolbox of Matlab using both
random (GARI) and deterministic initialization (GADI) from
the obtained DCDRR and DDVR solutions. All experiments
were conducted on a desktop computer with an Intel i5-3470
processor (3.2GHz) with 8GB of DDR3 RAM running 64-bit
Windows 7.

A. Convergence Properties

Fig. 4 illustrates the convergence properties of the dis-
tributed ADMM algorithm for the base topology when the
moderate traffic scenario is employed when considering one
time-window for optimization. The left y-axis shows the
relative deviation of the objective value ofRMIT SC ob-
tained using the distributed ADMM algorithm compared to the

3Congestion levelis defined as the ratio of the average to the maximum
arrival rate over the considered traffic generation period at all traffic sources.
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Fig. 5. Convergence of the distributed rounding schemes withrespect to the
corresponding centralised rounding schemes.

optimal objective value obtained from a centralised LP solver,
while the right y-axis depicts the primal residual (defined in
Appendix II-B, Eq. (5)) normalised over the total number of
primal variables (Mpr). As can be seen, there is very good
convergence with respect to both metrics as a reduction of 4-
5 orders of magnitude is achieved, attaining values less than
10−3 for both primal feasibility and relative suboptimality
after 1000 iterations. Such convergence is sufficient for our
application because the solution ofRMIT SC is just an inter-
mediate step towards the solution toMIT SC via distributed
rounding. Hence, we have adopted a stopping criterion of 2000
iterations for all considered problem instances.

To examine the convergence of the distributed rounding
schemes, Fig. 5 compares the solution to the original problem
obtained by rounding the centralised relaxed solution and
the one from the distributed ADMM algorithm for different
iterations. It can be seen that the solutions of both distributed
rounding schemes converges to the corresponding centralised
solutions in about 800 iterations; for the particular scenario, it
appears that CDR rounding is better than DVR both in terms
of performance and solution fluctuation after convergence (1%
and 5% fluctuation respectively).

B. Distributed Scheme Comparison

Fig. 6 depicts the relative deviation of the two distributed
rounding schemes from the optimal total travel time obtained
via a MILP solver for the base topology. As can be seen,
the DCDRR scheme is superior to the DDVR scheme achiev-
ing results within 8% of the optimal solution for all traffic



scenarios considered. This deviation from optimality results
from the sub-optimality of both the DCDRR scheme due to
the NP-hardness of theMIT SC problem and the temporal
decomposition of the original problem. DDVR scheme is
relatively good for the low and high traffic scenarios (10%,
30%, 70%, 90% congestion level) achieving performance
within 15% of optimality, but for the moderate traffic scenario
its performance is very low (76.5% of optimality). Fig. 6 also
depicts the performance of the two centralised computational
intelligence schemes GARI and GADI. As can be seen, the
GARI scheme performs worse than DCDRR but better than
DDVR while the GADI is the best performing suboptimal
scheme attaining performance within 1.2% of optimality. That
is because GADI uses the solutions of the distributed heuristics
for initialization giving always equal or better performance that
DCDRR and DDVR. Solution comparison to the optimal has
not been possible for larger topologies due to the prohibitive
computational cost of optimally solving the resulting MILP
problems.

The performance of the distributed schemes has also been
compared for larger topologies with up to 72 intersections
against the performance of GARI and GADI. Fig. 7 illustrates
the total travel time of the different heuristic schemes relative
to GADI. As expected DCDRR is significantly superior to
DDVR by up to 30% achieving performance within 6% from
the best value obtained via GADI, while in most cases the
performance of the two is the same. It is also interesting
to observe that the relative performance of the distributed
schemes is significantly affected by the level of congestion
with DCDRR having the best performance over DDVR for the
moderate congestion level case. However, it should be noted
that the solution of DDVR is completely decentralised and
requires no communication while DCDRR requires two rounds
of communication for each time unit considered. Thus, there
is a clear tradeoff between performance and communication
overhead for the proposed distributed rounding schemes. Fi-
nally, the GARI is the worse performing scheme in almost
all scenarios considered. Figs. 6 and 7 illustrate that the
performance of the different solution schemes depends on the
congestion level, with the 50% congestion level case yielding
the worst results. The reason is that at 50% congestion level
the system is on the verge of building congestion so that a
“good” strategy will prevent it, while a “bad” one will not,
resulting in large performance differences.

C. Scalability

The ability of the distributed ADMM algorithm to scale
well for increasing problem sizes is also examined for the
base topology under the moderate traffic scenario. Fig. 8(a)
depicts the execution time with increasing number of cells
per intersection. Because iterations must be performed syn-
chronously for all intersections, each data point in the figure
represents the maximum execution time of any intersection for
a specific iteration. It can be observed that for a fixed topology
the variation of the execution time for different iterations is
quite small. The dotted line shows the nonlinear least-squares
fit of the polynomial modela1xa2 + a3, which indicates that
the execution time scales almost linearly to the number of

10% 30% 50% 70% 90%
0

5

10

15

20
76.5% 45.2%

(T
T

T
he

ur
 −

 T
T

T op
t)/

T
T

T
op

t[%
]

Congestion level

 

 

DCDRR
DDVR
GARI
GADI

Fig. 6. Comparison between the optimal solution of MITSC and the solutions
from different heuristic schemes for a 2x2 intersection topology.

0

5

10

15

Low congestion level

 

 

0

10

20

30

40
Moderate congestion level

(T
T

T
he

ur
 −

 T
T

T G
A

D
I)/

T
T

T
G

A
D

I [%
]

6x2 6x3 6x4 6x5 6x6 6x7 6x8 6x9 6x10 6x11 6x12
0

10

20

30
High congestion level

Number of intersections

DCDRR
DDVR
GARI

Fig. 7. Comparison of heuristic schemes with scheme GADI for large
intersection topologies; absence of a bar for DCDRR implies attainment of
same performance with GADI.

cells. Similar behavior can be observed about the effect of the
optimization horizon time in Fig. 8(b). In fact, the exponent
of the fitted model (a2 = 1.27) is nearly identical to the one
obtained when varying number of cells (a2 = 1.24). This
result implies that the computational complexity of solving
the linear system of equations (25) has been reduced from
O(N3) to O(N1.25) via the selected matrix decomposition
technique and the caching of the decomposition matrices. The
effect of the number of intersections on the execution time
is also examined in Fig. 8(c). Ideally, the execution time per
iteration and intersection, should not be affected by the number
of intersections. Nevertheless, different overheads can increase
the maximum iteration time. The figure, clearly indicates that
this overhead is relatively small, as increasing the numberof
intersections from 4 (2x2) to 144 (12x12) results in a 20%
increase of execution time.

The demonstrated scalability results (Figs. 8(a) - 8(c))
clearly indicate that the proposed algorithm scales well to
realistic problem sizes and also maintains the online nature
of the proposed technique. Even if each iteration takes100ms
to complete, running 2000 iterations would require approxi-
mately 3mins of computation time (plus the communication
overhead), whereas the algorithm has a deadline of 10mins to
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provide the result.

VII. C ONCLUSIONS& FUTURE WORK

In this paper, we have developed distributed online solution
strategies for the multiple intersection traffic signal control
problem achieved via spatial and temporal decomposition. The
considered problem is addressed in two phases. In the first
phase, the relaxed problem is solved in a distributed fashion
by an ADMM algorithm after appropriate reformulation and
decomposition of the problem. In the second phase, the relaxed
solution is exploited to attain solutions to the original problem
through the development of two distributed rounding schemes.
DCDRR scheme attempts to match the cumulative departure
rates at each intersection, while DDVR minimizes the roundoff
error of decision variables while satisfying the traffic light
constraints. Performance evaluation has shown that ADMM
has good convergence and scaling properties which allows the
online distributed solution of large-scale problems. Regarding
optimality, DCDRR produced results within 8% from the opti-
mal for the considered scenaria and significantly outperformed
DDVR and genetic algorithms with random initialization.

There are a number of issues that can be further investigated.
One direction is to examine the effect on convergence and opti-
mality when directly solving the original problem via ADMM.
Another direction is to examine how other transportation prob-
lems such as the optimal coordinated ramp metering and the
network traffic state estimation can be solved in an online and
distributed fashion. Furthermore, higher order macroscopic
models can be considered that take into consideration more
complex phenomena arising in urban road networks such
as the acceleration/deceleration of vehicles and the platoon
dispersion effect. Finally, the proposed approach should be
tested in the context of a microsimulator to compare its
performance against other distributed methods, e.g. basedon
multiagent reinforcement learning, and also test its robustness
under traffic perturbations due to modeling uncertainties,noise
and disturbances, to investigate the accommodation extendof
such perturbations.
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