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Abstract—Traffic signal control is a key ingredient in intelli- large-scale nature and complexity of the problem, the daiter
gent transportation systems to increase the capacity of existing and dynamic behavior of the network (e.g. weather, accigent
urban transportation infrastructure. However, to achieve opti- events) and the patterns of different driver behaviors. thisr

mal system-wide operation it is essential to coordinate traffic | diff t hes h b .
signals at various intersections. In this paper we model the reason, several different approaches have been propoaeg; m

multiple-intersections traffic signal control problem using the Strategies apply to §ing|e imerseCtionS, othgrs use rhjalo-
cell transmission model as a mixed integer linear program. data to determine fixed plans, while a family of strategies

The solution of the problem is facilitated by its special struc- attempt to dynamically decide on the traffic signal timingrs
ture which allows both temporal and spatial decomposition. 4 5 distributed and online manner. Traffic signal variables

Temporal decomposition is employed to reduce problem size . .
by solving subproblems of smaller time-window compared to typically controlled are the cycle length, split plan, arftset.

the original problem. Temporal subproblems can be further Cycle lengthis the time required for a complete sequence of
spatially decomposed into subproblems associated with different signal indications. Thesplit plan refers to the time assigned
intersections, which are jointly solved by exchanging messagesto differentphasegsimultaneous movement combinations that
between neighboring intersections. The proposed distributed have the right-of-way) during a signal cycle. Finally, tféset

solution strategy is comprised of two phases. First, the relaxed . . . . :
linear problem is reformulated and distributedly solved via is used to coordinate phases of adjacent intersectionsltwee

the Alternating Direction Method of Multipliers. Second, two Vehicle stops [3].
distributed rounding schemes are developed to solve the original A large body of literature considers the single intersectio
problem. Simulation results indicate that the proposed solution traffic signal control problem, neglecting interrelatioffieets
strategy is scalable to large transportation topologies, suitable \yiih other intersections. These approaches aim to optimize
for online execution and provides close to optimal results. some measure-of-interest (mean delay, mean stoppage time,
Keywords: intelligent transportation systems, traffic signal throughput) based on the state of the intersection anddeclu
control, cell-transmission model, online, distributed, mixed- mathematical programming [4], stochastic control [5] adl we
integer linear programming, alternating direction method of as computational and artificial intelligence techniques.(e
multipliers. fuzzy logic [6], expert systems [7], etc.). Nonetheless, by
considering intersections atomically, the offset betwier-
sections is not optimized leading to frequent vehicle stops
Also measures-of-interest are optimized locally instedd o
Over the past few decades there has been a steady growt5|85a||y and may lead to poor global performance.
vehicle and total miles traveled leading to an increaseafficr The majority of techniques consider the multiple inter-
congestioq [2]. Given that major road constructio_ns inesiti gactions  traffic signal control (MITSC) problenfixed or
are both difficult and costly, one of the most effective ways tyre-timedsignal control strategies optimizaffline the signal
alleviate congestion is to increase the capacity of thetiagis timing plans based on historical data so that fixed signal pro
infrastructure using traffic signal control. Traffic sigraintrol grams are applied for different periods of the day. Fixeaketi
can bring substantial reduction to traffic congestion, ile@d pTSC methods either attempt to adjust the offset between
to improved conditions both for the drivers (better traveigjacent intersections so as to maximize progression along
times, safety and convenience) and the environment (réduggytiple corridors using MILP methods, e.g. in MULTIBAND
air pollution and energy consumption). Furthermore, recef] and global optimization techniques [9], or optimizditsp
advancements in electronics, sensing, and ICT (informatigjans and cycle according to some measure of effectiveness
and communication technology) allow the real-time col&@tt (\OE) that combines different traffic metrics such as delay,
and processing of traffic data, as well as the deployment gfnimum number of stops and throughput, e.g. TRANSYT
intelligent controllers for the efficient operation of ariga [10]. This is accomplished using some traffic model (e.g.
portation system. TRANSYT-13 uses both the platoon dispersion model and
Nevertheless, controlling the traffic signals of a tran&por the cell transmission model (CTM)) to capture traffic dynam-
tion network constitutes a significant challenge due to thes and different optimization techniques to optimize sign
A preliminary version of this work appears in [1] programs. CTM-based optimization approaches usually rely

This work is partially funded by the European Research Cibétvanced 0N the development of MILP formUIati_on_s [11], [12] which
Grant FAULT-ADAPTIVE (ERC-2011-AdG-291508). are usually NP-hard; hence, meta-heuristic techniques asic
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genetic algorithms [13] and greedy heuristics [14] arerofteso that vehicles agents can trade the use of capacity. This
employed to achieve close to optimal and timely solutionapproach can be difficult to implement in practice as it rezgli
Pre-timed signal control strategies can perform fairly Iwelehicle drivers to monetize access to road resources on-the
during peak traffic periods, but their performance detates fly. Multiagent learning with cooperation between neiglhibgr
during off-peak periods or when unexpected events creatdersections has also been considered in [24], [25]; these
different traffic conditions than anticipated (e.g. acoide approaches adaptively improve the system-wide performanc
weather conditions, socio-cultural events). of the network using game-theoretic and reinforcemennlear
To account for stochastic variations of traffic flows, selering methods, but do not provide optimal results. Recently,
online adaptive traffic signal control (ATSC) systems hava control approach based on backpressure routing, adopted
been developed. These approaches collect information frérmm communication networks, has been proposed [26]. This
different sources on-demand, and use them to adaptivelyproach eliminates the aforementioned problems by allpwi
optimize traffic signal plan parameters such as splits,etdfs each intersection to decide on the right-of-way based only o
and cycle, (e.g. SCOOQT, [15], MOTION [16]) or select the besbcal information about the traffic states and queue lengths
from a library of pre-calculated signal plans (e.g. SCAT#|J1 The authors prove that the proposed algorithm attains maxi-
Early commercially deployed systems usually rely on céntranum network throughput for each time instance. Nevertiseles
ized architectures where one computing unit decides fanall the approach relies only on queue lengths and neglectsleehic
tersections (e.g. SCOOT, SCATS) or hierarchical architest delay, while the information utilized are not sufficient to
where one part of the decision is central and another partoigtimize the offset between intersections.
decentralized. For example, in MOTION the cycle time and In this paper a cooperative distributed onfirsgorithm for
offsets are centrally decided every 10-15 minutes for thelevh system-wide optimization of traffic signal control based on
network, while traffic signal splits, phase sequence andlsmg@TM is proposed. This approach departs from the traditional
cycle modifications are determined at individual intergg® view of considering optimization techniques for the salati
based on real-time traffic fluctuations. RHODES system [18f MITSC using fine-grained macroscopic models, such as
is also hierarchical with local and network decision moduleCTM, only for offline centralised systems. The algorithm is
but contrary to older ATSC systems that re-actively considpased on spatially and temporally decomposing the problem
real-time information, it predicts future traffic flows forg@ and iteratively solving the produced subproblems by irchiiai
active decision making. Model predictive control appraachintersection controllersSpatial decompositiors achieved by
are also centralized proactive ATSC strategies that attengjividing the considered transportation topology into &nag
to determine system-wide optimal signal plans in a rollingitersection areasemporal decompositiois achieved by sep-
horizon fashion [19], [20]. To deal with the large-scaleutat arating the time-horizon considered into small time-windo
of the problem in both space and time, these approachiesy. 10 mins). In this way, signal timing plans are adapted
usually rely on a coarse representation of the transportationline every one temporal time-window, while during this
infrastructure and continuous instead of binary greerfi¢raftime the subsequent signal plans are computed. Because the
light allocations. Coarse infrastructure representatioeans subproblem solution presumes information associated with
that large road segments between adjacent intersecti@ns ragighboring intersections, intersection controllers prvate
modeled with single links, failing to capture rapidly evioly with each other by locally exchanging appropriate data. To
traffic phenomena, while by avoiding the explicit modelingichieve this, the centralized problem is reformulated inagt w
of red/green switching for consecutive time-units subopti that facilitates decomposition, and the alternating dioac
solutions are derived. method of multipliers (ADMM) [27] is employed to arrive
Fully distributed online algorithms dynamically adjuseth at a distributed solution to the relaxed linear problem.eAft
signal parameters of multiple intersections based on tlte nghe relaxed solution is obtained, distributed roundingesobs
work state without relying on a centralised computing unitire employed at each intersection to derive appropriatrpin
Due to the complex and large-scale nature of the probleneth&glues for the decision variables which determine the traffi
algorithms often rely on low-complexity but suboptimalifrt signal split plans. The fully distributed nature of the pepd
cial and computational intelligence techniques. One sech-t algorithm, overcomes the main disadvantages of centdhlize
nique is reinforcement learning (RL), which offers the @il and hierarchical systems such as SCOOT, SCATS, MOTION
to learn relationships between observed states and adtionsind RHODES, that require the deployment of an expensive
an uncertain and dynamic environment by maximizing a valég@mmunication network, are not scalable, while failurehsf t
function. Thorpe [21] considered the traffic lights as thérac centralized computer can bring down the entire traffic digna
agents and developed an approach which constructed a-traffistwork. In addition, contrary to other distributed algoms
light-based value function which approximates the aggeegahat myopically control traffic signals based on the current
waiting time of cars (this can result in a huge number afetwork state, our approach proactively optimizes sysiede-
states), while Wiering et al. [22] considered car-basedeval
functions for the estimation of waiting times, while thefiia 1The key defining characteristic ofiline adaptatioris that soon after input
signal plans were generated by car voting. A distributed-connformation is received regarding the state of the systemisibec making

putational market-based technique that also consideiiglggh takes place re_sulting in the 'adaptation of traffic si_gnahsJaThe proposed
system has this feature as it adapts every few minutes basstiatiterm

- Intersection agent coopera_ltlon is presented in [23]; 15 W?:rediction of the system state; nonetheless, it is n@ta&time systenn the
suggested to form computational markets at each inteogectsense that adaptation does not occur on a second-by-seasisd b



performance for a look-ahead time-window using the CTM.model is simplified to the following difference equationsigfh
The contributions of this paper are the following: constitute the fundamental relationships of CTM.

« Introduction of a spatial and temporal decomposition — min(n.;, Qcr, Qe Wet (New1t — ner1.4)) (1)
framework for CTM which can be used in several trans- _

. Yet+1,t = Yeot (2)
portation problems.

« Development of a distributed online cooperative solution’e.t+1 = et + Yet = Yoyt ®)
procedure of the MITSC Problgm using CTM; the pro- |n the above equationsj,;, y.. and n., represent the
cedure can also be employed in a parallel fashion onp@mber of vehicles entering ceil leaving cellc and are inside
single computing platform (e.g. multi-core computer ogg|| . respectively, at timé, t+1). Q.. and N, represent the
computer-cluster at a traffic operations center) to speedgfaximum number of vehicles that can flow fhrough and reside
the solution procedure. into cell ¢ at timet, respectivelylV.. ; is the ratio between the

« Efficient approximation of the optimal solution throughspock-wave propagation speed and the free-flow speed and
the development of two distributed solution roundingygicates how fast a vehicle queue is formed. In homogeneous
schemes. networks, it is true that quantitie§., = Q, N.; = N and

The reminder of this paper is organized as follows. Sectidf.; = W are constant for all cells. Eq. (1) indicates that

lI-A, outlines the cell transmission model which capturies t the number of vehicle leaving cedl is limited either by the
traffic dynamics. Section Il explains temporal decomposit number of vehicles in the cell, the capacity of the cell for
and presents the centralized formulation of the multipleutflow vehicles, the capacity of the successor cell for wnflo
intersection traffic signal control problem. In section e vehicles and the space left in the successor cell when a queue
spatial decomposition framework is explained, while intieec is forming. Egs. (2) - (3) ensure flow conservation at eell

V the distributed ADMM solution to the relaxed problem and The popularity of CTM is based on its simplicity, its
the two distributed rounding schemes are developed. Sectiapacity to capture phenomena that are found in first-order
VI, describes the performance evaluation of the proposedntinuum flow models and its ability to model different
solution approach in terms of convergence, optimality armbundary phenomena such as origin, destination, merge, di-
scalability. Finally, section VII summarizes the paper anderge and general intersection cells [32]. Although, trest
discusses directions for future work. dard CTM model cannot capture platoon dispersion, it isequit

Notation All boldface letters indicate vectors (lower caseyseful in modeling the spatial extent of queues and hence is

or matrices (upper case), while calligraphic letters dersets. more appropriate for signalized networks with closely sphc
The superscript$)” and (-)~1, denote the transpose and théntersections as in urban environments [33]. For this neaso
matrix inverse respectivelyjz||» denotes the Euclidean normit has been adopted in TRANSYT-13 as an alternative to the
of a vectorz. Operators4A U B, AN B, and A \ B, denote platoon dispersion model [10]. In section Ill, CTM is utiid

the union, intersection and set difference of sdtsand B, to derive a MILP formulation for the optimal operation of
respectively, while|.A| denotes the cardinality of set. |z| traffic light signals.

denotes the absolute value of variablée:c (x) is the indicator

: T . . B. Alternating Directi ipli
function which is equal to zero i € C and+oco otherwise. ing Direction Method of Multipliers

The alternating direction method of multipliers (ADMM)
is a powerful method for solving mathematical optimization

[l. PRELIMINARIES problems of the form
A. Cell Transmission Model min  f(x) 4 g(2) (4a)
The Cell Transmission Model (CTM) [28] is a discrete ana- st. Ax+Bz=d (4b)

log of the well-known first-order Lighthill-Whitham-Richas x€EC. zeC (4c)
(LWR) continuum flow model [29], [30] which is based on ” ?

the fundamental relationship for the conservation of flow awherex € C, C RM=*1 7 ¢ ¢, C RM:x1 A ¢ RMaxMe,
supplemented by the assumption that traffic flow, at rodsl € RM«xM- andd € RMa*! f(x) and g(z) are convex
point z at time ¢ is only a function of traffic density. The functions and’,,, C, are closed convex sets. ADMM has been
form of this flow-density function is specified using a flowproposed in the 1970’s [34] as a method for solving largéesca
density model (e.g. Greenshields, Pipes, or Van Aerde raodebnvex optimization problems by allowing the decompoaitio
[31]) and calibrated by estimating macroscopic traffic flowf the original problem into simpler and/or smaller subprob
parameters (such as tfree-flow spegdam-densitymaximum lems. Recently, ADMM has found a resurgence of interest due
flow or capacity and speed-at-capaci}yfor a specific road to its ability to provide fast, close to optimal and distri&d

configuration. solutions to problems arising in several areas such as machi
In the CTM both time and space are discrete. Each rolgrning [27] and signal processing [35].
segment is divided into homogeneous sections catielts, For the solution of problem (4), ADMM uses the scaled

while time is partitioned in a way that one vehicle takesugmented Lagrangian formd,,(x, z, u):

one time-unit to travel through one cell at free-flow speed o

(the speed of vehicles when density is zero). When CTM £px, 2, 1) =f(x) +9(2) + he. (x) +h‘;z (2)+
assumes a piecewise-linear flow-density relationshipl M (p/2)[[Ax + Bz —d +u;



whereu = w/p are thescaled dual variablegsw € RMax1 | Ty ‘

are thedual variablesor Lagrange multipliersand p € R
is a penalty constant, whilgc, (x) and h¢, (z) are indicator ‘ T, T A
functions. Starting from initial valueg® and u°, ADMM Unit

. . oL . —000011111000011110000111000111000011«—_ Intersection i
iteratively minimizes£,(x, z, u) with respect tox and z

followed by an update of the scaled dual variables in thr%(lag. 1. Temporal decomposition of MITSC. The array of 1s andepsasents

consecutive steps: the split plan of a particular intersection for one time wind@he bold 1s and

Bl . bk Os indicate the decision part that will be realized for thatriene-window.

Step 1:x"" = argmin £,(x, z", u”)
X

Step 2: 2" = arg min L,(x"t, 2, u") must be updated evef¥),, time units, using only the solution
Step 3:uft! = AxFH + BZFt —d 4+ uF corresponding to the the first,, time units. For instance,
instead of optimizing the problem over a 4-hour period, one
The procedure continues until a stopping criterion is satpuld compute the solution every 10 minutes. In this case,
isfied. Contrary to other decomposition methods that impogesplution would have to be attained every 10 minutes, and
strong convergence conditions, ADMM enjoys the superigipplied to each intersection for the next 10-minute period.
convergence properties of the method of multipliers and inpart from reducing the computational effort for the sabuti
poses mild technical conditions on the problem under ivesyf the problem, temporal decomposition takes advantage of
gation. In the case of problem (4), the necessary and sutficigccurate prediction of traffic demand, which can only be
conditions for optimality reduce to the satisfaction ofnpal  achieved for short-term traffic predictions (10-15 minjites
and dual feasibility which measure the extend of constraifgg).
satisfaction and objective value suboptimality, respedfi To  Before arriving at the final MITSC formulation, the objec-

monitor progress towards optimality, we define themal tjve and constraints of the problem are introduced.
residualry, anddual residualr’; of iterationk as (see [27]):

A. Objective
k k k
r,, = Ax'+Bz' —d ®) For the MITSC formulation, the objective is the minimiza-
rt = V,f(xF)+ pATu* = pATB(zF —z"~1) (6) tion of the total travel-time (TTT) (the cumulative travehe

. D L of all vehicles). Assuming that the road network is emptyhbot
As primal and dual feasibility indicate optimality, a reaso at the start and the end of the optimized time peffod the
able stopping criterion is to ensure that the primal and dul% al travel delay can be expressed as:
residuals are small. The number of iteration is also used as a

stopping criterion, especially when an approximate sofuis ZZtyc,t — ZZtDC,t, @)
needed. A comprehensive analysis of ADMM, its convergence ceDteT ceoteT
properties and stopping conditions appears in [27]. whereT = {1,...,T,}, and D.., denote the exogenous inflow

traffic from an origin cell,c, t € 7. As all vehicles enter and
leave the road network, the entrance and exit times of each
This section details the centralized mathematical formygnicle is included in the above expression, so that thé tota
lation for the considered multiple intersection traffic réd) travel time is the sum of the travel times of all vehicles. The
control (MITSC) problem. MITSC involves the optimizationsecond term can be eliminated from the optimization problem
of split plans, cycle lengths and offset of the traffic signal  since the starting time of each vehicle’s journey is fixed a
multiple intersections over a time-horizdhj,. Optimization priori. Note that other objective functions can be desctibe
is performed for some measure-of-interest such as meah/tq;sing CTM such as the minimization of the number of stops,
vehicle delay, stoppage time and throughput. Traffic dyeamior the maximization of throughput, or weighted combinasion
are incorporated into the optimization problem through thgr these objectives [11]. Also it is important to consider a
CTM described in section II-A. Our formulation builds OMarge enoughl,, to ensure an empty network at the end of
existing centralized approaches such as [11] and [12], B¥e considered period, as explained in Fig. 1; otherwise the
relaxing the assumption of an initially zero-state systéms optimal solution may involve the undesirable effect of g
allows the temporal decomposition of the original problemoi pack vehicles from exiting the network because in this case

smaller subproblems. This implication is particularly ion@ant  heir travel time will be excluded from the objective value.
when one wants to solve problems over a large time periog,

as such problems are prohibitively large. . CTM constraints

Temporal problem decompositicefers to the process of To model the traffic dynamics we consider four types of
separating the time horizofi;, over which MITSC is op- CTM cell sets:ordinary (&), origin (O), destination(D) and
timized into smaller time-windows of generated traffi,, intersection(Z). Ordinary cells have both inflow and outflow
and solving the problem sequentially over those periodst vehicles as well as non-zero capacity at all times. Origin
Nevertheless, the considered optimization tiffig,over which cells are similar to ordinary cells but instead of receiving
each subproblem is solved is actually larger to allow all thaflow traffic from other cells they receive exogenous inflow
vehicles to exit the network, as shown in Fig. 1. In factraffic D.,;, c € O, t € T. Destination cells sent their outflow
when online decision makinds sought, traffic signal plans traffic outside the network without restriction on capactyd

1. CENTRALIZED PROBLEM FORMULATION



infinite space at their destination. Finally, intersecticglls Inequalities (10)-(11) are equivalent 6 ; = |w; + — w; ¢—1,
have variable capacityy.;, imposed by the traffic signalswhen w;, € {0,1}, implying thatw;, indicates whether a
phases. Despite the presence of the min operator in Eq. ¢$lgnal change has occurred between1 andt (green-to-red
which is nonlinear, Egs. (1)-(3) can be transformed into tte red-to-green).

following linear programming (LP) formulation far € A = 2) Maintaining maximum green/red timeSimilar to the
EUOUDUIZ, teT: minimum green time, the maximum green time constraint is
maintained when the same sign is not preserved for more than
max Yo, (82) G'mas time units, which can be expressed for R as:
St Yer < Nes (8b) t+Goan—1
0 S Ye,t S QC,ta (8C) Z Wi, S Gma:m t= ]-7 7T - Gma:r + 1 (13)
Yo < Weiheyt (8d) Ter .
N1 = Net + Pt = Yorts (8e) S wir 21 t=1,.T G +1 (14)
wherenci1,s = Net — net1,4, if ¢ € A\D andoo otherwise, o o
Yot = Ye—1, If ¢ € ANO andg., = D, if ¢ € O, while Constramtg (13) and (14) |nd|cate'that we cannot la@lyg, +
capacityq,., is given by: 1 consecutive 1s and Os, respectlvely. .
3) Ensuring flow conservatiorifo ensure flow conservation
Qe,ts ce cuo, in the network we must make sure that all entering and ihjtial
oy = Wit Qeyt, 1E€R,c€ L, (9) existing traffic must exit the network. Equivalently, it noie
' (1=w;i)Qct, i€R,c€EIy, ensured that the network is empty at the end of the considered
00, ceD, time horizon. This can be expressed as:
whereZ, ; andZ, ; denote the set of cells that receive a green ch 741 = 0. (15)
light during the first and second phase of titie intersection ccA -

split plans,R = {1,..., N7} denotes the set of intersections i, i, .
J\FI)I thpe total num{ber of in}iersections, and;, i€ R, teT D. Initial Condition Constraints

indicates whether phase 1{;, = 1) or phase 2, = 0) The system stateat any timet is comprised of thecell
has the right-of-way. These variables are thain decision States denoted byn.., c € A, t € T, as well as the state
variablesof the considered problem, implicitly optimizing theof the traffic lightsw;,, i € R, ¢ € 7. Computing the next
traffic signal split plans and cycle lengths of all intersemus, cell state requires only the current cell states in CTM, kenc
and the offsets between them (also see Fig. 1). In the abdaving the initial cell states

LP program, constraints (8b) - (8d) forge . to be in the Neq =n" ce A (16)
range[0, min{n., We ific+1.t, ge,t }], While the maximization o i i .
objective guarantees tha,, will take the maximum value in is sufficient for the evolution of the traffic dynamics. On the

this range. Without loss of generality, we will assume fae thcontrary, for the correct evolution of the traffic signal témns
rest of the paper that the network is homogeneous. we need to consider at least,,. time units. Hence,

To incorporate the different maximization expressions wiy = wg‘giﬂ ie€R, t=—CGmaz+1,..., 0. 17)
(8a) into our problem, a penalty minimization term )
@ .ap >t tes 18 introduced into our primary objective E. MILP formulation
function, wherex is a penalty constant, eliminating to a certain In summary, the MITSC problem formulation is the follow-

extent theunindented vehicle holding-back problgBv]. ing:
C. Additional constraints MITSC:min > tyes + 0 Y tyes
Apart from the constraints associated with the CTM model, st c_ethM constrafrfti, ftor all cells (8b)-(8¢)
we need to introduce more constraints regarding the traffic o .
signal operation. - constraints (10)-(15)
1) Maintaining minimum green/red timd=or the operation - initial conditions (16) and (17)

of traffic lights, a minimum green/red timé.,,;,,, is usually In formulation MZ7TSC, the main decision variables are the

assumed for each phase. To check that the minimum greflk . light statesw; ; € {0,1}, which appear in the capacity

time constraint is _pres_erved,_n must _be ensured that f8§pressions (9) of intersection cells, while there are also
Gmin + 1 consecutive time units there is no more than o

T . —_auxiliary variablesy. ;, ¢, e+, u;+ that allow the evolution
modification in the v_alue ofv;¢. In mathematical terms this of CTM dynamics and the representation of the traffic signal
can be expressed fore R as:

constraints. Because the problem is composed of both binary
Wi — Wip 1 < Uiy,  —Wig Wi < Ui, (10) (w;,+) and continuous variables{:, Y.+, 7et, ge,t) it belongs

to the class of Mixed Integer Linear Programming (MILP) and
1) . ) ; ;

it is NP-hard to solve. By relaxing the binary variables tketa
continuous valuesy; ;, € [0, 1]), a lower bound on the optimal
solution is obtained by solving an LP problem. The relaxed
version of MZT SC will be referred to asR MZT SC.

Wi+ W1 2> Ui, 2— Wi — Wip_1 = Uiy,
t+Gmin
Ui, 1 <Lt=1,..T, — Guin (12)

T=t



IV. SPATIAL DECOMPOSITION

Solving the system-wide probleZ7 SC in a distributed
setting, requires proper geographical partitioning of ted-
work in a way that the optimal solution is obtained through th
iterative solution of easy subproblems and the local exgban
of information between neighboring areas. A good policy
towards this direction, is to divide the considered netwiork
areas of one intersection so that sensing, decision making,
local communication (with adjacent intersections) andticdn
is handled locally by the intersection controller (IC) ofeth
area, similar to [24], [25]. Sensing is necessary to moratat
measure the traffic state of its controlled area. Computatio
needed for predicting its incoming flows (from the outsidgg- 2. CTM for a 2-by-2 intersection topology. The dashetdi indicate

- . . e spatial decompositioof the network into four areas, each one controlled
of the network) and also for deciding about traffic sign yth% Correspon(ﬂng intersection controller.

timing plans. Targeting globally optimal solutions, ICsedeo

exchange messages with immediately adjacent interssdiion

collaboratively derive their traffic signal timing plansnglly, BY = {105, 305}, By = {705, 506, 105, 305}, B{¥ =
control capabilities are essential for the online realanf {705, ,306, 506, 106}, BYF = {105, 305, ,505, 704} and
the computed plans. BE = {705, ,306, 506, 106, 105, 305, ,505, 704}.

This spatial decomposition is motivated by the nature of The defined boundary cells are essential in spatially decom-
transportation networks, as explained through the examg@sing a given transportation network for the CTM model, and
topology in Fig. 2, which depicts the CTM of a 2x2 grid topol£an be applied for the decomposition of several transportat
ogy with four intersections and two-way arterials. In theifig  Problems such as the freeway ramp metering and the dynamic
the dashed lines indicate a possible spatial decomposifiontraffic assignment problems. Here, this spatial decomposi-
the network which partitions the t0p0|ogy into four are,als tion is utilised for the distributed solution ofMZTSC via
i = 1,..,4 so that each area is associated to exactly oA®>MM. It should be emphasized that an arbitrary number
intersection. In this distributed setting, aréais controlled by Of intersections could be considered for each area, givan th
intersection controllefC';, while interaction between adjacen@ controller can manage the entire area, without affecting
intersections can take p|ace On|y through boundary cells. the final derived solution. That is because each area does

This can be understood by observing the linear egs. @t decide indepepdently, but a glopa_l decision is reached
which describe the state evolution of an ordinary cell through collaboration, contrary to existing systems, sash
from which it is clear that the computation of its variablesl7] and [9], where subsystems are designed to be jointly
(Jet, Mer11) at one particular time-stef information is only qptlmlzed in a central manner and share common characte_zrls-
needed from cells— 1 andc-+1. Specifically, eq. (8d) requires fiS (€-g. common cycle length and interrelated phasesplit
variablen. , from its successor cell, while eq. (8e) requireblevertheless, spatial decomposition controls the amotnt o
ye_1, from its predecessor cell. This important observatiofoMmmunication exchanged and the computation required from
implies that the cell states can evolve independently feheaf@ch area controller. The choice of decomposing the system
area, apart from boundary cells which require informatidl@ Single-intersection areas is to allow a fully distriuite
about variables that belong to predecessor or succesder cdichitecture. Also, it should be emphasized that such demob
not belonging to the particular area. Particularly, in Figell need not necessarl[y involve all .|nt.er.sect|ons of a city but
105 of aread, requires the number of vehicles in its successéther parts of the city where traffic is interrelated [38].
cell 106 of A5, while cell 705 of A; requires the number of
vehicles leaving out of its predecessor cell 7044qf V. DISTRIBUTED FORMULATION AND SOLUTION OF

It is clear from this example that ordinary cells give rise MITSC
to two different types of boundary cells: (a) input and (b) The centralized solution of the MITSC problem may pro-
output boundary cells. Annput boundary celle € B! is vide better performance if it can be derived, but it has
any boundary cell of ared; that receives inflow traffic from several shortcomings as a solution strategy. Firstly, isglv
a cell of a neighboring area (e.g. cell 705). Similarly, athis problem is usually intractable and hence not suitabite f
output boundary cele € BY is any boundary cell of areaonline decision making because the problem is complex (NP-
A; that sends outflow traffic to a cell of a neighboring arelard) and of large-scale (especially when the problem el
(e.g. cell 105). We also define the extended input and outmutarge time horizon and several intersections). Secondly,
boundary cell sets of ared;, B/” and BYF respectively, tralized solutions require global information about thetiss of
which include all input/output cells associated with aréa the network and hence may be prone to communication related
and input/output cells that are directly adjacentdtq as well failures. Thirdly, solving the problem centrally is not e,
as the set of all boundary cells of are, B; = B/ UB? as failure of the central unit will result in complete faiuof
and the corresponding extended ¥ = BIF U BPE. the system. On the other hand, distributed strategies can be
For instance, for areal; we have thatB3! = {705, 506}, more robust to failures. For example, communication failur



between certain intersections may result in partial coatitbn output boundary cells and (8e) excluding input boundary
loss, but intersections can continue working either irdlially cells. The excluded constraints are represented by thdembup
or in subgroups. Additionally, by temporally and spatiallequalities (18d) and (18e) which involve variables from two
decomposing the problem into subproblems of smaller siaifferent areas and hence cannot be handled directly by the
although global optimality is not maintained, computatittyy same IC. Note that the flow constraipi . , ne7,+1 =0, as
efficient and good quality solutions can be obtained. well as any initialization constraints have been includethie

A distributed solution to theWIZT SC problem is obtained above formulation as bound constraints; for example the flow
by performing two consecutive phasesplmase 1the relaxed constraint can be written as. 7,41 =00r0 <n. 7,41 <0,
problem, RMZTSC, is solved distributedly via ADMM so ¢ € A.
as to avoid the exponential complexity 0¥{Z7SC. This To be able to s_;olve the prob_lem i_n a diS'[I’ibU'[_ed manner via
is achieved by transformingR MZTSC into an appropri- the ADMM algorithm, we rewrite it into the equivalent form:
ate ADMM form and providing close-form solutions to the

optimization problems arising in the three iterative ADMM VI .
steps, as explained in section V-A; a distributed algorithm ™" ;f X (19a)
e Nl 0% 210 A e oot Ao~ . i€ 7,

phase 2 a distributed rounding scheme is used to obtain

O .
a close to optimal solution to\IZ7SC by rounding-off Yo+ 8ce =WN =W, ,, ceBiteT,icR, (19d)
fractional values of decision variables obtained from the 7cii1 =mct+E&y, 1, — Yer, cEBLtET,i€R, (19€)
solution of RMZTSC in phase 1. Section V-B describes ¢, =x;, i ¢ R, (19f)
two novel distributed rounding schemes based on minimizing ! < ¢ <x¥ ¢, >0, i € R, (19g)

the cumulative departure rate error from the relaxed smiuti
(section V-B1) and the roundoff error of the fractional démn where the equivalence is apparent from the fact #at=

variables (section V-B2). x;, © € R, while variables¢, are introduced to transform
o . inequalities (18c) into equalities (19c). For better ¢lanive
A. Phase 1: Distributed Solution ®RMZTSC abuse the notation and imply that variablgs , indicate

To derive a distributed formulation f® MZ7 SC, we need correspondence to variables;; the same applies to the other
to convert the problem into a form that is decomposable fQ isple sets ’
each intersection. This implies that each IC should onlyesol ' . .
subproblems associated with variables belonging to ita.are 1 N€ abong fOI’m:Il:Ha;IOﬂ adheresTto ADMM fTormuIaTno:lFﬂ (4)
Towards this direction, we rewrite the centraliSRMZ7SC With x = [x1,....,xx,]" andz = [(},...,¢n,, &1, &N, ]
problem into the following form that distinguishes decagpl while C,, andC. are given by:
constraints for each intersection (Egs. (18b), (18c) agf))1
from coupled constraints that involve variables from maiant Cr = {x|A;x; =a; i € R},

one intersections (Egs. (18d) and (18e)):
C.={zlz={¢& ¢} x' <€<x* ¢>0}.

Ny
i £x; 18a . . .
o ; x (182) Constraints (19c)-(19f) are coupling constraints betweand
St Aixi =a;, i € R, (18b) 2z, representing eq. (4b) of ADMM formulation.
Bix; < by, i € R, (18¢) According to the ADMM algorithm we rewrite the problem

into the augmented lagrangian form to obtain:
Yert + Set = WN = Wnepr,c€ BS teT,ieR, (18d)

Net+1 = Net + Ye—1,6 — Ye,t, C € Bf,t eT,i€R, (18e) min £(x, ¢, €, 6, A, p, v) =

Ny
l u -
X SX <X, 1E€R, (18) > (8% + he, (xi) + hee, (€) + heg, (€))
where x; = [nf,y? wl ul sI'|T denotes the vector of = N,
i Ai[(To+1)x1 o, Ai| Ty x1
variables of aread;, n; € Rl )X_ , Vi € R' ITox1, _ +gz (HBm + ¢ —bi kil + xi — & + vl
w; € RTox1 y, € R(To—1)x1 gre vectorized versions of vari- Py
ablesn. ¢, Yo, wip @andu; ¢, c € A;, i € Rt €T, xﬁ» andx} To
A ’ ' : : 2
are the lower and upper bounds og the corresponding vasable + Z Z (Yert + St + Wiy, —WN + Ace)
while dummy variabless; € RIZ1T-x1 are introduced to ceB t=1
_convert m_e_quahtles (8d_) for output boundary c_ells of agga_ To )
into equalitie. Expression (18a) captures the linear objective + Z Z (Pet1 = net + Yo = Eyer + pet) )
CEB{ t=1

function, where vectoif; denotes the cost associated with
variablesx;, while Egs. (18b) and (18c) capture all decouple@ihere s, 1, A, and i are the scaled Lagrange multipliers of
equality and meguallty constraints whose variables tmplan _constraints (19c¢), (19f), (19d), and (19e), respectivilgnce,
the same area i.e. Egs. (8b), (8c), (10)-(17), (8d) excldiApMM consists of iteratively solvingl(x, ¢, &, k, A, p, /)
2Area-related sets will be denoted with the same symbol and scepb over x (step 1), theng and ¢ in parallel (step 2), and then

index to indicate the area. For example, sétand & denote the set of updating K,,)\_,,u,,u (step 3). Afkter kthekth il;[eration of the
ordinary cells in the whole topology and area respectively. ADMM algorithm, vectorsx”®, ¢*, £", k¥, A", u*, v* have



been attained; next, we show how the problems that appeacomplexity of solving this system. Because matk; is

iterationk + 1 can be solved. constant for different iterations , we can decompose ane sto
Stepl of ADMM consists of solving the problem ovet. it once during initialization; in this way the solution of §p

The problem to be solved can be defined as: can be computed an order of magnitude cheaper. An efficient

x" = argmin £(x, ¢", €%, k* AP pF U0 = and robust decomposition method suitable for sparse reatric
Ny is LDLT [40]. Using this method, we can derive matrices
> {fiTXi + he,, (%) L;,D;,P; such that;
i=1

p k k2 k| kp2 K; = P,L;D,L/P7,
(1Bt ¢t = bt I 4 o = €6+ | | | | |
whereL; is lower triangularD; is block diagonal with blocks
of dimension 1 or 2, and®; is an orthogonal permutation
matrix chosen according to the sparsity patternkgf The
solution of (25) is then:

.y i (nc,t+1 et ven— € +Mg’t)2)} [ x; } —p, ((L,L-T)‘1 (DZI (Lfl (PiT[ o D))> 2

ceBl t=1 o a;
i

To 2
+ 30 (e sea + WEL, —WN 4+,

cEBiO t=1

The above formulation is decomposable for eaghmean- 10 compute eq. (26) multiple tijrfes, we need to stb{eDf
ing that we can solveV; smaller subproblems, one for eactnd Pi. The computation oD;" can be performed during

intersection. The only limitation is that the values &f initialization and only requires the inversion of matrices

c+1,t . . - . 1
and ¢k that appear in the last two terms are not knowflimension 1 or 2, while the computation of terds ", and

, iy . o .
to IC;. However, these quantities can easily be communicatekii )~ X1 ¢an be performed in eaChT iteration using forward
to IC; as they belong to immediate neighboring intersection&[‘d balckward sutt_)stlltutlon, ds andL; are lower and upper
Hence, assuming that these quantities are known to the HjNgu'ar respectively. .

propriate intersectionss*+! can be computed by solviny; Step2 of ADMM consists of solving the problem ovef

! ] - VIR and . The problem to be solved can be defined as:
problems in parallel, one at each intersection. To simphify

notation, let us define the following: (¢ €M) = argmin £(x", ¢ € R8N pF0b) =
Ny
ofy = ¢k 4 by — s, @) Y (e (€0 + heq, (¢ +
ol = & —vh, @y o

2 (B 4 ¢, — bt mHE + [ — g, R

TO
et +sca+WeL | —WNHAL,)? = [|Cixi—e |3, (22) Lo 2
pors SY (st W WV A
’ cenl t=1
T, ‘ .
DD (netrr—neptyer—Ey, , +uey)? = [[Hixi—efs)3. (23) Z ZO: P e k1 & )2
cepl t=1 Ned 1,041 — Mottt T Yorie gyc.t + Hey,e
‘ CGB? t=1

Based on the above definition$(; needs to solve the

) The above formulation is separable for variabl€s
problem:

and &,. Similar to step 1, the only limitation is that
H}{m %X?Fixi - erpi'f (24) yfjll,tﬂ Slgirll,tv )‘Ictl,tﬂ ce B’iI and yicjrrll,t’ n]cciih Mlg+1,t' =
‘ B, t = 1,..,T,, are not known to/C; and need to be
communicated to/C; from adjacent intersections. Hence,
where F;, = BI'B; + CTC; + HTH; + I, with I; being assuming that these quantities are known to appropriate in-
the identity matrix of appropriate dimensions, apd = tersections¢* ! and ¢! can be computed analytically by
Blek + CTek, + DIely + ek — (1/p)f;. Problem (24) is a solving N; problems in parallel, one at each intersection. The
convex quadratic programming problem with linear equalitipllowing analytical solutions can easily be obtained:
constraints whose solution can be obtained by solving the k41 . Et1 )
linear system of equations resulting from the KKyT condigon ¢ = min {0, - (Baxj ™ — bi + 7))} @7)
(see ch. 16 of [39]): £f+1 = min {x;‘-L,maX {xé, xf+1 + Vf}} , (28)

{ F, AT } { xh Tt } _K [ xhtt ] _ { pF } (25)  Special attention should be given to the fact that eq. (28)
A; 0 o ‘Lo a; |’ applies to all¢; variables, except frong,,, ,, c€ B/, t € T
: . . . 0 i

where o are dual variables associated with the equali§"déy.., ¢ € By, t € T . For the former variables we need
constraints, andk; € RMeitMacqi)x(Mai+Mag,s) ith {0 solve the problem:
Mg; = (2|4 + [BP| +2)T, + |A;] — 1 and My,,; = - k+1 k+1 _ k)2
(JAi| — |B9| + |Dy|)T,, being the number of rows ir; and min (vetie + et Wgn;" WN+Xer)
A, respectively. (nfﬁ L S t) (29)

Eqg. (25) needs to be solved several timesIét, one L T
per iteration, so it is important to reduce the computationa Sty , S&n.y ST,

AiXi = a;,



Problem (29) can be solved analytically by finding the valuglgorithm 1 - Distributed ADMM algorithm for the
of ¢, , that zeroes the derivative of the objective function argplution of RMZT SC problem

projecting onto the feasible set, which yields: for (each intersection controlldiC;) do
Init.: Set¢? =€) = kY = A = puf =v) = 0.
¢Etl = min {.LZ ., Max {xf% L+ wH)! (nlg','{l +uk repeat
’ . e X ’ 1. Computex™! using eq. (26)(Step 1).
— Wy, + 82, —WN + )‘c—l,t)) }} (30) 2. Communicate to neighboring intersectigre A;
the values of/} 7', sl kT c e {BinBE}t e T.
For variabless,, ,, c € BY, t € T we need to solve: 3. Compute¢™™! using eq. (27) ang* ™! using Egs.
) (28), (30) and (32). Additionally, compute values for
min (n,ceill,tqtl - nl;jr_llt +yfi_11,t — &y +H]§+1,t) + €n., and &y, ,, c € {BF\B;}, t € T using Egs.
1 e \2 (30) and (32) (Step 2).
(yc,t — Sy F Vy;,t) 31) 4. Update the values of dual variables
st 2l <&, <at REFL AL L R+ using  egs. (33)-(36).
vert vert Additionally update).; and ic;, ¢ € {BF\ B;},
whose solution is given by: t € T using Eqgs. (34) and (35) (Step 3).
5. Compute primal and dual residuals (egs. (5), (6))
1 - g
K+l _ s u 1 k1 k1 and check stopping conditions.
yer — I {%w Hax {I“’Cv“ 2 (nefiee = et until (Convergence achieved)
yéillt + /~L§+1,t + nytrl + V’!’jc,t)}}' (32) end for

Step3 of ADMM consists of updating the dual variables
associated with the coupled equality constraifits; needs to B. Phase 2: Distributed rounding
perform the following updates, fare 7- Having obtained a distributed solution ®MZTSC via
KEFD = B 4 B by 4kt (33) ADMM, the next step is to round the m_ain decision vari_ables
el kel et 1 X o (wit, 1€ R, t=1,...,T,) so as to obtain a close to optimal
Act =Yer Fser FWe, = WN+ Ay, c €87, (34)  golution to MZTSC. It is important to note that rounding
pett =nlth - niit Hybtt - £§f,ll,t +puti, c€B, (35 should be performed in a distributed manner in accordance
A A (36) to the variables that are known to each IC, and also that
the decision variables need to be rounded-off only for the
The computation of updates (33) and (36) are based oftipe-window 7', and not for the whole optimization period
on local information, while updates (34) and (35) requiré,. In the next sections we describe two different distributed
knowledge of termgk*! ce BY and¢it! ce B/ teT rounding schemes.
which can be obtained from neighboring intersections. 1) Distributed Cumulative Departure Rate Rounding (DC-
From the above analysis, it is clear that in each iteration BRR) Scheme:In the cumulative departure rate (CDR)
ADMM we need to perform three computation steps followethethod, originally proposed as a heuristic for roundingisol
by three local communication steps. Communication stem1 c#ons in a centralized setting [14], the main idea is to aglem
be eliminated as Va'“@iw] ,ceBPand¢k ceBl, 10 match the cumulative departure rate (CDR), resultingifro
t € T needed in théth iteration have already been obtaine®®MZ7SC with the CDR obtained from binary decisions
from communication step 3 of the previous iteration. In addfor each movement of an intersection. Considering two phase
tion, communication step 3 can be avoided d; explicitly intersections of one way arterials (e.g. Fig. 2), the CDR of
computes the-values it needs for computation step 3. In ouphasep of intersection: at time 7 is defined as:
case, computing the necessdryalues of boundary cells of ™
neighboring intersections carries very little computadilocost Cpri= Z Z Yot =Cpr_1,i+ Z Yep,r
compared to the overall cost of computation steps 1 and 2, so t=1c€D,; c€Dy,;

it is beneficial to trade-off one communication step with som

: : . . hereD, ; denotes the set of cells immediately downstream
extra computation. To summarize, each iteration of ADMI\XV P . S y
[l movements of phase of intersection.

requires three computation steps and one communicatipn S?eDCDRR is outlined in Algorithm 2. Note that DCDRR
after computation step 1, requires two rounds of communication between adjacent in-

RﬁgI%TgICmAISh Ou:]“rfls ";‘EMQA T?r tt_he .tS.OIl.Jt'On tOft tersections for each time unit which are necessary for the
S ougn, Algorithm 1 1S fterative, 1S Important yiqyin ted computation of variables ; andn. ; respectively.
to highlight the fact that all three steps of each iteration ' ’

are analytically computed according to Egs. (26), (28)-(32), 2) Distributed Decision Variable Rounding (DDVR)

anld t'(33)-t(36?l r:espec;tcl\t/ﬁlyA[())lat'\eﬂllnllng .?AStr'.bUte? artlaag cheme: The solution of the relaxed problem provides
SO ulltorl;sto ais etpscf) eth ¢ a;gorl frtT]'S nobrln\s an gr actional decision variables); ; which indicate the optimal
resutt, but emanates from the Structure ot the problem aad i, i, of green or red light for each time unit and phase.

Eallrgg)eted introduction of variableg and ¢ into formulation One way to roundoff the decision variables is to minimize



Algorithm 2 : DCDRR Scheme that a green light for phasg starts at timet. The edges

for (each intersection controlldiC;, i € R) do of the graph represent the transition between phases while
Init.. ComputeC,, ; ;, Vt, of RMZITSC and set CDR the associated costs indicate the cumulative cost of making
of binary decision toC,, o, = 0, p = {1, 2}. the particular transition. Fig. 3 shows the transitions iahd
for (r=1,...,T,) do out of state(¢,1) for an arbitrary aread,. As can be seen,
Communicater. ., ¢ € B} to IC; wherec—1 € Bjo. this state can be reached if the green light of phase 2 started
Wait for reception ofn..1 -, c € BY from other ICs. att' e {t = Gmaz,---,t — Gmin} and the duration of the
if (Constraints (10) - (14) are not violatethien green is of Iengthﬁ — t’. In this case the transition cost is

Forw;, =k, k € {0,1} computey’ , andy® ,,  f.(t,t —t',2) = S.'_}, f2,;, which indicates the cumulative

c1 € Zy; andcy € I 4, based on Eq. (1). cost resulting from the deviation between the continuoub an

SetCZ’f” =Chro1i+ ZCQD yft, p={1,2}. binary values of the decision variables. Similarly, edgas o

of state(¢,1) and into statgt’,2) can be defined with costs

Seth‘r = arg én(l)nl}{2| P,Ti p71|} fe(t’t/,t71) :Zj_/;tl fl,iﬂ-,t/ S {t+G7nin7~'-at+Gmaz}-

For example, a transition from state (10,1) to state (15,2)
else L . . .

Setw. - to a value that violates no constraint. implies a green light of.phase.1 for tlme units 10, 11, 12,
end if or 13 anq 14, for the' consplered mtersectmn,Therefore, the
Updatey. ,, ¢ € A; andC, ; based onw; ;. rot{leng cost for tlme units 10-14 is equallf@élql,dg, 1) i
Communicatey. ., ¢ € B to IC; wherec+1 € Bl =10 f1i0 = 32241 — wia|. By properly building the

graph of traffic light states and phase transitions, the mmhi
rounding cost of problem (37) is obtained by finding the path
of the optimal combination of transitions for the time pério
considered. This can be achieved by computing the shortest
path (e.g. using Dijkstra’s algorithm) from a source nodeeatl

at the start to a destination node added at the end of the
optimization time period. The edges that are visited in@ica
the best transitions between the two phases of the condidere
intersection that also respect the minimum and maximum
green constraints. Special attention should be paid at itste fi
few time units to integrate any initial traffic light conditis,

and also at the end of the considered time to incorporate
incomplete transitions. This solution procedure resuitshie
same decision with problem (37), at a fraction of the executi
time (2-3 orders of magnitude faster), as solving a shopiztst

Fig. 3. Transition into and out of vertet, 1) of the constructed graph for problem is of low polynomial complexity. Another attraetiv

the decision variable rounding scheme for a two phase irttose characteristic of DDVR is that it can be obtained indepetigien
for different intersections, resulting in a completely eetal-

ized rounding scheme with no communication requirements.

Wait for reception ofy._1 -, c € BI from other ICs
Updaten. r4+1 ¢ € A; using Eq. (3)
end for
end for
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the roundoff error subject to the satisfaction of the mimmu ' o '

and maximum green time constraints. In mathematicgl Computational and communication complexity

programming terms this problem can be expressed as: The main computational step of both DCDRR and DDVR
. T, By B _ is the first step of each iteration of Algorithm 1 that reqsire

min - 3 ier Xty Wipfrie (L= wid)fain B7) e solution of the linear equations system (25), which is

s.t. - traffic light constraints (10)-(14) of computational complexityO((M,; + Ma,,:)?). Steps 2
- initial traffic light conditions (17) and 3 of Algorithm 1 and the distributed rounding schemes
wB €{0,1},ieR,teT, have negligible cost c;ompared tq stgp 1. Ag already men-
' tioned, because matri¥X, appearing in (25) is the same
where f1,; = |1 — w;| and fa,+ = |0 — w; .|, are the for all iterations, by computing offline and cachir§;'s

costs of having a green light at intersectiorand time¢ LDL decomposition, which is of computational complexity
for phases 1 and 2 respectively. Note that the problem d¥ (M, ;+Ma,, 1)%), the computational complexity of solving
separable for different intersections so that the problem ([5) is reduced ta((My,; + My,, ;)?) for dense matrices.
equivalent toN; independent problems, each involving théote that this complexity implies that the solution of (25)
decision variables of one intersection. Despite the prablevould scale quadratically to the number of celld;| and
being MILP and combinatorial in nature, we have developete optimization horizoril,, if K; was dense. Nonetheless,
an optimal solution procedure of problem (37), which is lblasé. DL decomposition exploits the sparsity &f; to reduce the
on building an appropriate graph and solving a shortest patbhmputational complexity even further; in Section VI-Cjsit
problem using Dijkstra’s algorithm for each intersection.  shown that each iteration of Algorithm 1, approximatelylesa

vertices (t,p), t € T, p € {1,2} indicating the possibility the practical computational complexity of DCDRR and DDVR



is O(M;(]A;|T,)*?®), where M; is the number of ADMM
iterations.

Regarding the communication complexity of the proposed
approaches, in théth iteration of ADMM algorithm, IC;,
i € R has to communicate the newly computed values of
Yets Scit, e, t € T of the cells on the boundary between
two adjacent areas. Hence, the iteration communicatioh cos
of IC; is O(3|B;|T,) and the total communication cost
of ADMM is O(3M;T, 3", % |Bi|). DCDRR involves two 107, =0 1000 550 70dd”
communication steps fofC; with cost O(|B;|) for each of Iteration
the T,, iterations, while DDVR requires no CommunicationFig.4. Relative suboptimality and primal feasibility of thistdibuted ADMM
Hence the total communication cost of DCDRR and DDVRigorithm.
is O((BM1To + Tw) 2 ier 1Bil) and OBM T, Yo |1Bil),

respectively. 11X 10"

M,

|fapyar = f*I/ f*
llprll2/

‘—DCDRR

---CCDRR||
VI. SIMULATION RESULTS 10 —DDVR
---CDVR ||

The effectiveness of the proposed distributed strategaes w
evaluated for a four-intersection base topology of two-way
two-lane alternating direction arterials as shown in Figl'tze
free-flow speed is 50km/h and each time-step is equivalent
to 5s, resulting in 70m-long cells. Adjacent intersectiams
4 cells apart which implies that the distance between them
is 280m. The capacity of all cells is Q = 5 veh./time unit,
and the jam density is N = 20 veh./cell. The ratio of shock- o 500 1000 1500 2000
wave speed over free flow speediis = 0.75. The maximum Hteration
and minimum green time are assumed to be equal to 15s %ﬁde. Convergence of the distributed rounding schemes repect to the
45s respectively, i.eG,,;, = 3 and G,,.., = 8. The time corresponding centralised rounding schemes.
horizon considered %}, = 1440 time units @A), with traffic
being generated fa360 time units (.5k). The time horizon is
temporally decomposed into 10min intervals,(= 120). In
the evaluation, we consider three traffic scenaria cormdipg

Total Travel Time

optimal objective value obtained from a centralised LP aglv
while the right y-axis depicts the primal residual (defined i

to low (10% congestion levd), moderate(50% congestion Appendix !I-B, Eqg. (5)) normalised over the totgl number of
level), andhigh congestion (90% congestion level) randomiprimal variables 4/,.). As can be seen, there is very good
generated incoming traffic. Next we examine the effectigsnecOnvergence with respect to both metrics as a reduction of 4-
of the proposed distributed strategies in terms of converge 5 orders of magmtude IS gch!eved, attaining values _Iess_tha
optimality and scalability. In the ADMM algorithm, we set10_3 for both primal feasibility and relative suboptimality
p = Ny, while for faster convergence we consider an oveffter 1000 iterations. Such convergence is sufficient far ou
relaxation parameten — 1.6 (see [27]). The centralized appli_cation because the solutior_ﬂanITSC is_just_ an inter-
optimal solution to all LP and MILP problems considered€diate step towards the solutionAdZ7'SC via distributed
was obtained using Gurobi [41], while close to optimaﬁOU”qmg- Hence, we _have adoptedagoppmg criterion 0200
problem solutions via genetic algorithms (GA) were obtdindt€rations for all considered problem instances. _
using the global optimization toolbox of Matlab using both 10 €xamine the convergence of the distributed rounding
random (GARI) and deterministic initialization (GADI) fio SChemes, Fig. 5 compares the solution to the original pnoble
the obtained DCDRR and DDVR solutions. All experimentebtamed by roundl_ng_the centralised rel_axed solu_tlon and
were conducted on a desktop computer with an Intel i5-347¢¢ one from the distributed ADMM algorithm for different
processor (3.2GHz) with 8GB of DDR3 RAM running g4-pifterations. It can be seen that the solutions of both disteith

Windows 7. rounding schemes converges to the corresponding ceattalis
solutions in about 800 iterations; for the particular scenat
A. Convergence Properties appears that CDR rounding is better than DVR both in terms

Fig. 4 illustrates the convergence properties of the dief performance and solution fluctuation after convergedée (

tributed ADMM algorithm for the base topology when thétnd 5% fluctuation respectively).
moderate traffic scenario is employed when considering oge pistributed Scheme Comparison

t|me.W|ndovy fpr opt|m|zat|c_)n. .The left y-axis shows the Fig. 6 depicts the relative deviation of the two distributed
relative deviation of the objective value ®RMITSC ob- . , . )

. . o : rounding schemes from the optimal total travel time obtaine

tained using the distributed ADMM algorithm compared to the.

via a MILP solver for the base topology. As can be seen,

3Congestion levels defined as the ratio of the average to the maximurT'rIe DCDRR scheme is superior to the DDVR scheme achiev-

arrival rate over the considered traffic generation periodllaraffic sources. ing results within 8% of the optimal solution for all traffic



scenarios considered. This deviation from optimality hssu 20

o _ " 76500 [45.2% B OCORR
from the sub-optimality of both the DCDRR scheme due to & B DOVR
the NP-hardness of tha1Z7SC problem and the temporal LS 15) EGARI

£ [_JGADI

decomposition of the original problem. DDVR scheme is

opt

relatively good for the low and high traffic scenarios (10%,
30%, 70%, 90% congestion level) achieving performance
within 15% of optimality, but for the moderate traffic scear

depicts the performance of the two centralised computation 0 o o 0 IIH Ilﬂﬂ

its performance is very low (76.5% of optimality). Fig. 6 @ls

intelligence schemes GARI and GADI. As can be seen, the 10% 3°%Conge§t‘i);/r‘; ey O 90%

GARI scheme performs worse than DCDRR but better than

DDVR while the GADI is the best performing suboptimaFig. 6. Comparison between the optimal solution of MITSC ardsthiutions
scheme attaining performance within 1.2% of optimalityafh from different heuristic schemes for a 2x2 intersection toggp

is because GADI uses the solutions of the distributed higesis

for initialization giving always equal or better perforntarthat " Low congegion lovel —
DCDRR and DDVR. Solution comparison to the optimal has 15} EODVR ||
not been possible for larger topologies due to the prokibiti

[ 1GARI
10 b
computational cost of optimally solving the resulting MILP o |
problems.
o L]

The performance of the distributed schemes has also bee
compared for larger topologies with up to 72 intersections F
against the performance of GARI and GADI. Fig. 7 illustrates 5 *°] 1

-TTT
o
o

‘

heur
&
T

(TTT,

GADI (%]

T T T T T T T T T T T
400 Moderate congestion level

the total travel time of the different heuristic schemesire¢ Ew 20
. 10

to GADI. As expected DCDRR is significantly superior to
DDVR by up to 30% achieving performance within 6% from 2 © P A
the best value obtained via GADI, while in most cases theE sof g 1
performance of the two is the same. It is also interestinc 2or 8
to observe that the relative performance of the distributec 10J I I Iii ]
schemes is significantly affected by the level of congestior O b oi o5 6 67 8 0 6x10 6x1l ox12
with DCDRR having the best performance over DDVR for the Number of intersections

moderate con.gesuon level qase. However, it ShOUIq be I’IOLeg. 7. Comparison of heuristic schemes with scheme GADI fogéar
that the solution of DDVR is completely decentralised anﬁ;‘tersection topologies; absence of a bar for DCDRR implitsiranent of
requires no communication while DCDRR requires two roundsme performance with GADI.

of communication for each time unit considered. Thus, there

is a clear tradeoff between performance and communication

overhead for the proposed distributed rounding schemes. €&lls. Similar behavior can be observed about the effedtef t
nally, the GARI is the worse performing scheme in almosyptimization horizon time in Fig. 8(b). In fact, the expohen
all scenarios considered. Figs. 6 and 7 illustrate that toéthe fitted model ¢ = 1.27) is nearly identical to the one
performance of the different solution schemes depends@n fbtained when varying number of cellsy(= 1.24). This
congestion level, with the 50% congestion level case yigidi result implies that the computational complexity of sotyin
the worst results. The reason is that at 50% congestion letle¢ linear system of equations (25) has been reduced from
the system is on the verge of building congestion so that@(N?) to O(N'2%) via the selected matrix decomposition
“good” strategy will prevent it, while a “bad” one will not, technique and the caching of the decomposition matrices. Th

heur

resulting in large performance differences. effect of the number of intersections on the execution time
N is also examined in Fig. 8(c). Ideally, the execution time pe
C. Scalability iteration and intersection, should not be affected by thalmer

The ability of the distributed ADMM algorithm to scaleof intersections. Nevertheless, different overheads wamrease
well for increasing problem sizes is also examined for tHBe maximum iteration time. The figure, clearly indicateatth
base topology under the moderate traffic scenario. Fig. 8thls overhead is relatively small, as increasing the nunaber
depicts the execution time with increasing number of cellgtersections from 4 (2x2) to 144 (12x12) results in a 20%
per intersection. Because iterations must be performed symcrease of execution time.
chronously for all intersections, each data point in therBgu The demonstrated scalability results (Figs. 8(a) - 8(c))
represents the maximum execution time of any intersection ttlearly indicate that the proposed algorithm scales well to
a specific iteration. It can be observed that for a fixed tagplo realistic problem sizes and also maintains the online eatur
the variation of the execution time for different iteratsoois of the proposed technique. Even if each iteration takesns
quite small. The dotted line shows the nonlinear leastisguato complete, running 2000 iterations would require approxi
fit of the polynomial modeh; 22 + a3, which indicates that mately 3mins of computation time (plus the communication
the execution time scales almost linearly to the number oferhead), whereas the algorithm has a deadline of 10mins to
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Fig. 8. Maximum execution time per iteration for all intersens with varying: (a) number of cells per intersection, (pJimization time, (c) total number

of intersections.

provide the result.

VII. CONCLUSIONS& FUTURE WORK

In this paper, we have developed distributed online satutio
strategies for the multiple intersection traffic signal toh
problem achieved via spatial and temporal decompositibe. T
considered problem is addressed in two phases. In the fifé
phase, the relaxed problem is solved in a distributed fashio
by an ADMM algorithm after appropriate reformulation and
decomposition of the problem. In the second phase, theaelax![5]
solution is exploited to attain solutions to the originabiplem
through the development of two distributed rounding scremeg)
DCDRR scheme attempts to match the cumulative departure
rates at each intersection, while DDVR minimizes the rodindo ]
error of decision variables while satisfying the traffichig
constraints. Performance evaluation has shown that ADMM
has good convergence and scaling properties which allogvs ti!
online distributed solution of large-scale problems. Reiyeay
optimality, DCDRR produced results within 8% from the opti-[g]
mal for the considered scenaria and significantly outperéat
DDVR and genetic algorithms with random initialization.

There are a number of issues that can be further investigated
One direction is to examine the effect on convergence arid ofto0]
mality when directly solving the original problem via ADMM.
Another direction is to examine how other transportatiasbpr (11
lems such as the optimal coordinated ramp metering and the
network traffic state estimation can be solved in an onlireé an
distributed fashion. Furthermore, higher order macrogco 12
models can be considered that take into consideration more
complex phenomena arising in urban road networks subdRl
as the acceleration/deceleration of vehicles and the giato
dispersion effect. Finally, the proposed approach shoeld fy;
tested in the context of a microsimulator to compare its
performance against other distributed methods, e.g. based
multiagent reinforcement learning, and also test its rotess |15
under traffic perturbations due to modeling uncertaintiesse
and disturbances, to investigate the accommodation extend

(2]
(3]

. 16
such perturbations. (16]
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