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Abstract

This work introduces a novel route reservation architecture to manage road traffic within an urban area. The developed
routing architecture decomposes the road infrastructure into slots in the spatial and temporal domains and for every
vehicle, it makes the appropriate route reservations to avoid traffic congestion while minimizing the traveling time.
Under this architecture, any road segment is admissible to be traversed only during time-slots when the accumulated
reservations do not exceed its critical density. A road-side unit keeps track of all reservations which are subsequently
used to solve the routing problem for each vehicle. Through this routing mechanism, vehicles can either be delayed at
their origin or are routed through longer but non-congested routes such that their traveling time is minimized. In this
work, the proposed architecture is presented and the resulting route reservation problem is mathematically formulated.
Through a complexity analysis of the routing problem, it is shown that for certain cases, the problem reduces to an
NP-complete problem. A heuristic solution to the problem is also proposed and is used to conduct realistic simulations
across a particular region of the San Francisco area, demonstrating the promising gains of the proposed solution to
alleviate traffic congestion.

Keywords: Route Reservation Architecture, Congestion Avoidance, Traffic Control, Vehicle Routing,
Communication Technologies

1. Introduction

Traffic congestion constitutes an ever growing problem in modern cities resulting in multiple adverse effects
including driver frustration, environmental pollution while fuel cost and lost of productive hours are the economic
downside. The leading cause of congestion is that during certain periods, the number of vehicles that request to
simultaneously traverse specific road segments increases to the point where it approaches or even exceeds their critical
capacity. This problem does not necessarily occur due to lack of overall network capacity but due to the absence of
mechanisms that can achieve an efficient network utilization [1].

Interestingly, offering real-time traffic state information to drivers has shown to create additional side effects to
the overall utilization since all rational drivers would try to follow less congested road segments instead of following
the shortest distance paths. This selfish behaviour, as demonstrated in [2], gives rise to network state oscillations
and exacerbates road congestion. Moreover, the problem becomes even greater when the unpredictability of driving
behavior is taken into account. Thus, the objective of this work is to develop a novel architecture which will provide
the means to better utilize the network capacity, both spatially and temporally such that the effects of congestion are
minimized.

The Macroscopic Fundamental Diagram (MFD) [3] explains the macroscopic relationship between the three main
mobility factors, i.e., speed, flow, and density. From studying the MFD two distinct regimes can be identified: 1) the
free-flow regime and 2) the congested regime [4] which are separated according to each region’s accumulated density.
The MFD indicates that an increase in a region’s density within the congested regime, results to a decrease in the
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vehicle speed with the possibility of a gridlock occurrence. On the other hand, the possibility of a gridlock diminishes
within the free-flow regime where free-flow speed conditions are observed and both driver and network dynamics are
well approximated [5]. These macroscopic relations are also present when autonomous vehicle features are assumed
[6]. Furthermore, as indicated in [7], an MFD is well-defined within a homogeneous region (i.e., within the particular
region, all links have similar traffic characteristics and insignificant variance across their densities). Guided by the
MFD analysis, we know that for every road segment, there exists a critical capacity and while the vehicle density in
the segment is below this critical capacity, vehicle flows and speeds are high and more or less predictable. On the
other hand, if the critical capacity is reached (congested regime) then capacity is dropped and vehicle flows and speeds
become unpredictable. Thus, a key objective of the proposed architecture is to prevent the vehicle density in any road
segment to exceed its critical capacity. For the purposes of this paper, we assume that the critical density of each
road segment is known (e.g., through the MFD analysis) however, even if these are not known they can be computed
through extensive simulations or other tools like perturbation analysis [8].

This work introduces a novel route-reservation architecture and a routing algorithm that utilizes the obtained
reservations in order to determine the best possible path subject to avoiding road segments that are expected to be
at their capacity. In the proposed architecture, a Road Side Unit (RSU) decomposes the road network spatially and
temporarily. Given past requests, the RSU has an estimate of the number of vehicles that are expected in each road
segment, during any interval from the current time and into the future. Based on these reservations, the RSU knows
which road segments are expected to be below their critical capacity and thus available to more vehicles and which
segments are unavailable. When a vehicle is about to begin its journey (or even earlier if “pre-bookings” will be
allowed), it sends a request to the RSU with its origin and destination. The RSU then computes the best possible path
for the vehicle such that any road segment that is near its critical capacity is avoided and taking into consideration
that it may be best for a vehicle to wait at the origin until certain road segments become available. Once the RSU
determines the best path, it assumes the vehicle will move with the speed at capacity of each segment in order to
update the number of vehicles in each segment and each future time slot.

Note that the proposed architecture, has a number of benefits that are worth emphasizing. Obviously vehicles are
routed through non-congested paths which is a benefit for the individual vehicle. In addition, by not allowing vehicles
to go through segments that are near their capacity, it “protects” other vehicles that have already reserved those
segments and it guarantees that they will not experience congestion either, thus the approach has also a more social
benefit. Finally, by allowing the RSU to suggest delayed departures, it keeps vehicles and their drivers away from
the road minimizing their travel time and the cost associated with lost productivity and environmental impact. On the
other hand, the proposed approach admittedly faces certain implementation challenges. First is the communication
and computation aspects involved in the implementation. Given the recent developments in the information and
communication domain, the Internet of Things (IoT) technology and the proliferation of connected vehicles, these
challenges will be addressed in the near future. We also point out that distributed versions of the architecture which
are more scalable are feasible and is the topic of our current research. Another major challenge is driver compliance.
This challenge can be easily addressed in the context of autonomous vehicles by enforcing that the vehicles will follow
the paths provided by the RSU. Even in the case of human drivers, there are some possible solution by monitoring the
actual path followed (e.g., using the vehicle’s GPS) and by providing incentives to compliant drivers or penalties to
non-compliant ones.

Once the RSU receives a request for finding a route for a vehicle, it needs to solve the routing problem and the
objective is to determine the path that will allow the vehicle to reach its destination at the earliest possible time while
avoiding unavailable segments and possibly delaying its departure. It turns out, that this is a difficult problem to solve
and as demonstrated in the sequel certain instances of the problem are NP-complete. Thus, some heuristic algorithms
are needed to solve this problem one of which is proposed in this work and is compared to other approaches through
extensive simulation.

In summary, the contribution of this paper includes a reservation-based novel architecture for achieving congestion
free routing, in the context of Intelligent Transportation Systems (ITS). Given the obtained reservations, the vehicle
routing problem is formulated and is shown to be NP-complete while an efficient heuristic algorithm is proposed
that provides good solutions. Furthermore, the benefits of the entire approach are demonstrated through extensive
simulations on realistic networks.

The rest of the paper is organized as follows. Section 2 describes the related work, while Section 3 introduces the
architecture of the proposed solution. Section 4 mathematically formulates the proposed route reservation problem and
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performs a complexity analysis of the problem. Section 5 presents a solution approach based on “Time Expansion”
while Section 6 presents a heuristic greedy solution based on Dijkstra’s algorithm called Route Reservation Algorithm
(RRA). Extensive simulation results are included in Section 7 that demonstrate the benefits of the proposed solution
in realistic scenarios. Finally Section 8 concludes this work.

2. Related Work

Currently, the gating and perimeter control methods constitute the state-of-the-art solutions for addressing the
traffic congestion problem. Both approaches, implement boundary flow control mechanisms (e.g., street closures,
pricing, traffic flow metering, traffic light signalling) to restrict the input flow around a particular homogeneous 2 region
[10]. Gating control controls the volume of traffic within a homogeneous region by restricting external flows from
entering in a region if the region’s critical density has been reached [11] [12]. More specifically, gating uses a reduced
MFD which was constructed using real-time measurements and thus avoids the extensive amount of data required for
the identification of each region’s MFD. Similarly, the two-level perimeter-and-boundary control is applied in multi-
region networks to regulate traffic exchange between regions and the outside world [13] [9]. At the first level, an urban
area is clustered into inter-connected homogeneous regions to ensure modelling accuracy within the macroscopic
relations. At the second-level, similar to gating, vehicles are allowed to enter within a region only if its critical density
has not been reached [14]. By discriminating between different areas of the network based on the homogeneity of
the region more accurate decisions can be made. Furthermore, control decisions at the macroscopic level are simpler
to implement since they do not require extensive traffic information (e.g., the per-link densities, speeds and flows)
making these approaches computationally efficient [9], [14]. Perimeter and gating control however, do not take any
control action for the endogenous flows thus traffic congestion may occur due to the flows of vehicles generated within
the region [5]. The proposed route-reservation architecture does not distinguish between endogenous and exogenous
flows and applies a more targeted control on all vehicles preventing the formation of long queues and excessive delays.
Furthermore, the aforementioned approaches do not have a reliable mechanism for predicting the future state of the
network, which is something achieved through the proposed reservation architecture.

Recent literature also considers routing techniques using online or offline network estimates [25]. Both static and
stochastic models have been used to guide routing decisions based on online predictions of the travel times and speed
conditions for each vehicle, [20, 21]. Scheduling decisions usually consider these network states to obtain shortest-
travel-time paths, but neglect the negative effects that may occur when the selected road segments become congested
[19]. Another important routing control approach is the Decreasing Order of Time (DOT) algorithm [23], which effi-
ciently finds the time-dependent shortest path (using travel-time) within a user-chosen time window. Despite the fact
that these approaches are of particular interest to ITS applications, most of them do not consider the unpredictability
of driver behavior that is observed especially in the congested regime [5]. Correspondingly, operating in the congested
regime can result in up to 15% less capacity for the specific road segment which further increases travel time, a phe-
nomenon called capacity drop. Influencing the driver behavior using enroute advisory systems can affect the MFD
shape and reduce capacity drop (by shrinking the hysterisis loop), but does not eliminate the problem [15].

An aggregated and approximate dynamic traffic assignment model, for establishing regional routing, is introduced
in [17]. This work, performs a dynamic traffic assignment that incorporates the MFD dynamics to establish stochastic
user equilibrium conditions, illustrating that such an approach outperforms other traffic assignment solutions. By
the same token, [18] introduced a route choice strategy that aims to reduce congestion within urban areas assuming
aggregated regional and partially known sub-regional information.

It should be noted here that the proposed methodology differs from the current state-of-the-art approaches on
time-depended routing, as the latter only change the link costs according to the route density without restricting the
inflow. Other approaches, such as [24], incorporate link based piecewise constant speed patterns that are calculated
based on historic data using the Flow Speed Model (FSM) (for example, in a working day, during rush hour 7am
to 9am the speed is 3 m/s, and at other times of the day the speed is 10 m/s). Evidently, such kind of approaches
require to store a huge amount of information to identify the per link speed patterns and may require infrastructure

2Homogeneity describes the uniform spatial distribution of vehicles. Furthemore, recent literature indicates that an urban area can be described
according to multiple MFDs of homogeneous regions [9].
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Figure 1: Proposed Architecture.

investment to support the ability to acquire and process such information (huge number of sensors required). Even if
such information is collected, the identification of per link speeds patterns in real-time would be a tedious procedure.
Instead, the proposed route-reservation approach uses the aggregate network information provided by each region’s
MFD to efficiently approximate the travel time of vehicles through the network [16]; in this way, the proposed solution
allows for a simple and ease to implement solution, as it relies on macroscopic parameters. Moreover, as network
density is maintained below the critical capacity, reservations provide accurate and robust state estimation without
requiring real-time sensory information.

The key to efficient network utilization is to prevent network’s region from getting into congested regimes al-
together. Hence, the proposed route-reservation architecture achieves a congestion-free operation by limiting the
maximum admissible capacity of each road segment. The route reservations are utilized by computing time-depended
shortest path routes between an origin-destination pair varying the road segments travel-time costs (admissibility
states). When the travel-time costs vary with time the problem may become NP-complete [26]. This is also true
for some cases in which the travel-time cost is not time varying [27]. The NP-compleness of the route-reservatio
algorithm is first discussed in [28] while this work provides a detailed complexity analysis.

The proposed solution has been conceived based on time-slot reservation models used to solve the ground hold-
ing problem for Air Traffic Management and Control Systems (ATM/ATC) since, airport utilization increases while
runway capacity remains constant [29]. In favor of avoiding congestion, the ATM/ATC systems divide the runway
capacity both in space and time and a time-slot reservation mechanism is used to improve the overall runway effi-
ciency [30] [31]. This concept is introduced in [32] for road transportation networks while this work elaborates on the
architecture and the performance of the route reservation algorithm under realistic settings and over actual network
topologies.

3. Route Reservation Architecture

The objective of the proposed route reservation architecture is to efficiently control all vehicle movements over
the entire region. To achieve this, the network is decomposed into road sections and associated with each road section
is a series of time slots starting from the current time into the future. For each time slot, the RSU keeps an estimate
of the number of vehicles that are expected to be traversing the road section during the interval. As a vehicle plans
to start its journey, it sends a request to the RSU in order to obtain a path from its current location (i.e., its origin) to
the required destination. Given the current reservation state, the RSU determines the best possible path for the vehicle
such that it will arrive at its destination at the earliest possible time while avoiding road segments that are expected to
be at capacity at the time when the vehicle is expected to traverse the segment. Thus, the RSU responds to the vehicle
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request, giving the starting time of the journey and the route that the vehicle should follow (as indicated with the red
line in Fig. 1).

At the same time, the RSU updates the reservation state of each road segment at the time-slot when the vehicle
is expected to traverse the road segment assuming the vehicle will be traveling with a constant speed. Assuming the
region’s MFD is available, then one can use either the free flow speed or the speed at capacity to also account for
some possible delays (in this work we are using the speed at capacity). If the MFD is not available, then the speed to
be used can be obtained from historical data. At this point it is worth pointing out that it is unrealistic to expect that
all vehicles will actually travel at the same constant speed, thus in practice, it is expected that there will be significant
deviations. Despite these deviations, our simulation results indicate that the whole approach still works well and is
robust with respect to such inaccuracies.

In order to compute its response, the RSU formulates and solves the routing problem as indicated in the subsequent
sections.

4. Problem Formulation

A region of the road network is considered as a graph G = (V,E) with vertices V, NV = |V|, representing the
road junctions and edges E, NE = |E|, representing the road segments. We assume that all vehicle movements are
within a homogeneous region with MFD parameters ρC , ρJ , vc and v f , representing the critical density corresponding
to the maximum flow, jam density, speed at capacity and free-flow speed, respectively. Each road segment (i, j) ∈ E,
{i, j} ∈ V is described by parameters λi j being the road segment length, Ni j representing the number of lanes, ρi j(t) the
road segment instantaneous density, and ρJ

i j representing jam density. Parameter ρC
i j = (ρC/ρJ)ρJ

i j denotes the critical
density of road segment (i, j) which represents the density at which maximum flow rate can be achieved (maximum
admissible density) for the specific road segment. Furthermore, parameter d j denotes the vehicle’s earliest arrival time
at junction j.

Congestion free road segments are those segments for which ρi j(t) ≤ ρC
i j so that the vehicles can be assumed to

travel with speed-at-capacity vc. The speed at capacity assumption is used instead of the free-flow speed so that travel
time estimates account for the possible delays due to driver imperfection and the delays observed across non-priority
road junctions. We assume that, the time is quantized into time-slots of duration T so that the number of time-slots
required to traverse road segment (i, j) is τi j =

⌊
λi j/uc/T

⌉
, where bze, is the nearest integer to z.

Let variable ni j(t) denote the accumulated number of vehicle reservations of road segment (i, j) for time-slot t. A
road segment (i, j) is denoted as admissible if a vehicle entering road junction i at time t can traverse segment (i, j)
without making the accumulated reserved density larger than the critical density during any time-slot for which the
vehicle will travel on the segment. Thus, the quantity ni j(t)/(λi jNi j) denotes the instantaneous density of road segment
(i, j) at time t. The admissibility state of road segment (i, j) at time-slot t denoted by xi j(t), attains xi j(t) = 1 if road
segment (i, j) is admissible and xi j(t) = 0, otherwise. Mathematically, xi j(t) can be defined as follows:

xi j(t) =

 1, if ni j(t + k)/(λi jNi j) ≤ ρC
i j, ∀ k = 0, . . . , τi j

0, otherwise (1)

Vehicles are allowed to traverse road segments during time-slots where xi j(t) = 1 since the RSU can make any
reservations along those time-slots to enable congestion-free routing. To avoid non-admissible road segments, a
vehicle may wait at its origin until a non-congested path becomes available (i.e., until all segments of the selected
path become admissible), or it can choose alternative admissible road segments. Clearly, a combination of the two
aforementioned options may be employed i.e., wait for a short period of time at O and then follow an alternative route.

Considering the above notation, the cost of traversing a road segment ci j(t) can mathematically be expressed as
follows:

ci j(t) =


τi j, if xi j(t) = 1, i , O

τi j + w, if xi j(t) = 0, i = O

∞, if xi j(t) = 0, i , O (2)
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where, w denotes the number of time-slots that a vehicle may wait at the origin such that the path found to traverse
from O to destination D is admissible. Given the above definitions, below we define the path finding problem that the
RSU is required to solve for every vehicle.

Earliest Arrival Time at Destination (EATD) problem. Given an origin-destination (O − D) pair, the time-stamp t0 at
which the routing request is made, and the reservation states xi j(t), (i, j) ∈ E, ∀t ≥ t0, then the EATD problem requests
the earliest-arrival-time-at-destination (from O to D). Let ph denote the h-th path from origin (O) to destination (D)
denoted as ph = (vh

0, v
h
1), (vh

1, v
h
2), (vh

2, v
h
3), · · · (vh

Lh−1, v
h
Lh

), where vh
j ∈ V is the j-th visited vertex in the h-th path, with

vh
0 = O, vh

Lh
= D, and Lh is the length of the path ph in terms of the number of hops. Additionally, let w and dh

v j
denote

the waiting time at the origin and the earliest arrival time at junction v j (assuming the vehicle was delayed by w at the
origin), respectively. Then, the earliest arrival time to each vertex of the path can be expressed as:

dh
vh

0
=t0

dh
vh

1
=dh

vh
0

+ cvh
0,v

h
1
(dh

vh
0
)

...

dh
vh

Lh

=dh
vh

Lh−1
+ cvh

Lh−1,v
h
Lh

(dh
vh

Lh

) (3)

Hence, the EATD problem can be expressed in compact form as:

(Π) d∗D = min
w, ph

dh
D (4)

s.t. Constraints (2) − (3)are satisfied.

4.1. EAT D Complexity Analysis
At a first glance, the formulated EAT D problem looks similar to the well investigated time-dependent route

planning problem [33]. Nevertheless, the EATD problem differs from the time-dependent route planning problem
since EATD introduces road segments with infinite cost (non-admissible road segments) and also allows for waiting
intervals that may be observed at the originating junction.

In this section, we investigate the complexity of the EATD problem and we prove that it is an NP-complete
problem. Let (EATD) problem (4) also be denoted as (Π). The complexity analysis of (Π) requires to examine the
complexity of two variations of the particular problem, that we denote as the (ΠAW ) and (ΠNW ) problems. (ΠAW )
has a similar objective function as (Π) but it allows vehicles to wait at all road junctions until they become available.
Clearly the solution to this problem is not implementable since physically there is not space for vehicles to park and
wait until a road section becomes available, however, the solution to this problem can serve as a lower bound to the
solution of (Π) while (as we will show) it can be solved in polynomial time. The other related problem is the (ΠNW )
that does not allow for vehicle waiting neither at the origin nor at any other junction.

Starting from the (ΠAW ) problem, the cost ci j(t) of traversing road segment (i, j) can mathematically be expressed
as:

ci j(t) =

 τi j, if xi j(t) = 1
τi j + wi j, if xi j(t) = 0 (5)

where, wi j denotes the number of time-slots that a vehicle may wait at i such that the path, found to traverse from O
to destination D, is admissible. Thus, (ΠAW ) can mathematically be expressed as:

(ΠAW ) d∗DAW
= min

wi j≥0, ph
dh

D (6)

s.t. Constraints (3), (5)are satisfied.

The cost ci j(t) of traversing a road segment for problem (ΠNW ) can mathematically be stated as follows:

ci j(t) =

τi j, if xi j(t) = 1
∞, if xi j(t) = 0

(7)
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Figure 2: Special case of G = (V,E) (with edge (q,D) attain to non admissible state).

Hence, (ΠNW ) can be mathematically stated as follows:

(ΠNW ) d∗DNW
= min

ph
dh

D (8)

s.t. Constraints (3), (7)are satisfied.

The two aforementioned variants (ΠAW ) and (ΠNW ) are used to prove that the (Π) problem can be categorized as an
NP-complete problem. The NP-completeness of (Π) is derived using the restriction method [34]. The restriction
method requires that problem (Π) is reduced as a special case to a known NP-complete problem.

The examined proof reduces the (Π) problem to the Number Partitioning Problem (Π′) (described in [34]) which
is defined as follows.

Number Partitioning Problem:. Let the set A consist of n integer numbers A = {a1, a2, ..., an}, a j ∈ Z+ and let an
integer number b ∈ Z+. (Π′) requires to identify the subset A′ where A′ ⊆ A, such that the sum of the numbers in
A′ is equal to a given number b. Equivalently, this problem can be expressed using variables y j = {0, 1} that indicate
whether a j is inA′ (y j = 1) or not (y j = 0), as follows:

n∑
j=1

a jy j = b, where y j = {0, 1} (9)

Note that problem (Π′) is an NP-complete problem [34].

Lemma 1. (ΠNW ) is an NP-complete problem in the case where at least one road segment attains a non-admissible
state.

Proof. To prove Lemma 1 we need to show that (ΠNW ), can be reduced to a special case of (Π′). For this purpose a
special case of G = (V,E) is constructed as shown in Fig. 2. As illustrated in Fig. 2, the traversal cost of each road
segment is defined by c and c j values which are predefined integer constants, i.e., c , c j and c j , ck. Considering the
structure of the graph, the cost to traverse the edge from node j to node j + 1, (i.e., ĉ j, j+1) can mathematically be stated
as:

ĉ j, j+1 =

{
c + c j+1, if path passes from A j+1

c, otherwise (10)

Let (q,D) (indicated with red color) be the single edge on G = (V,E) that attains a non-admissible state as follows:

xqD(t) =

{
1, for t = cq + b

0, otherwise (11)

while all other edges always attain an admissible state. According to constraints (7), (10) and (11) the traversal cost
cqD(t) of (q,D) can be expressed as follows:

cqD(t) =

{
τqD, for t = cq + b

∞, otherwise (12)

where, τqD = c as indicated in Fig. 2.
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According to the above setup, the only possible solution consists of a path from O to D, (i.e., p) where, the arrival
time at node q is exactly equal to cq + b. Therefore, the arrival time at junction q must be:

dq = cq + b (13)

Let, p contain the subpath p′ from vertices O to q. There are in total 2q possible combinations that can constitute
subpath p′ and the total travel time of each combinations (i.e., cOq) can be defined as follows:

cOq =

q∑
j=1

ĉ j−1, jy j =

q∑
j=1

c(1 − y j) +

q∑
j=1

(c + c j)y j = cq +

q∑
j=1

c jy j where, (14)

y j =

1, if path passes from A j

0, otherwise
(15)

Considering Eq. (10), cq time-slots can be provided from all of the 2q paths while the remaining b time-slots must
be identified by the summation of

∑q
j=1 c jy j. Therefore, the solution returned according to the selected y j values,

provides a solution to the number partitioning problem since a subset of values (that sum up exactly to b) is required
to be selected from the range of c j, and this completes the proof.

The second variant assumes that waiting intervals are allowed at all road junctions. This assumption is not feasible
along real transportation networks due to lack of adequate buffering space where vehicles will wait. Nonetheless, this
case can be considered as a lower bound solution and is part of the subsequent proof of theorem 1 used to prove that
EAT D can be reduced to (Π′) as a special case.

Lemma 2. The problem (ΠAW ), i.e., finding the earliest arrival time while waiting at every junction is allowed, can
be solved in polynomial time.

Proof. In the case when a vehicle can wait at all intersections, the problem becomes significantly easier and can be
solved to optimality using a simple modification of the Dijkstra’s shortest path algorithm [35] which is a polynomial
algorithm. Specifically, given an arbitrary graph, at every step of the algorithm, given the time of the earliest vehicle
arrival at any node p (through the previous steps of the algorithm), if the next link (p, q) is unavailable until u time
units later, its cost cp,q is simply undated to cp,q + u, while if the vehicle’s earliest arrival at p is during a time period
when the link is available, then its cost is simply cp,q which corresponds to the time needed to traverse the link. A
detailed correctness proof can be shown using the Dijkstra’s proof of correctness based on the contradiction method
[36].

The third case completes the complexity analysis of the formulated EAT D (Π) problem as a combination of the
two previous cases of problems (ΠAW ) and (ΠNW ).

Theorem 1. The problem (Π), i.e., vehicles are only allowed to wait at the origin O, is an NP-complete problem when
more than one road-segments become non-admissible during certain time-slots.

The proof of theorem 1 is divided into two special cases. This distinction is required in order to find a special case
in which (Π) can be stated as an NP-complete problem. The first case illustrates the situation where (Π) can always
be solved in polynomial time and the second case covers the scenario where the problem (Π) can be reduced to the
Number Partitioning Problem.

Special Cases 1

Considering Theorem 1 and assuming that only one road segment (which should be a part of the path) has to attain
a non-admissible reservation state, then (Π) can be solved in polynomial time.
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Figure 3: Special case of G = (V,E) (with edges (i, i + 1) and (q,D) attain to non admissible state)

Proof. Consider the same example of lemma 1 (shown in Fig. 2) illustrating edge (q,D) that attains a non-admissible
reservation state. The solution requires a vehicle to depart from node q exactly at time cq + b as indicated by equality
constraint (13). When only one road segment attains a non-admissible state, the problem can be adequately expressed
through Lemma 2, since (13) can be transformed to an inequality constraint. As shown in Lemma 2, a solution can
easily be found with a feasible path from vertex O to q where dq 6 cq + b according to constraint. If the solution
results in arriving at q on an earlier time then the vehicle can wait for the remaining time-slots to the originating
junction to satisfy constraint (13).

Special Case 2
Considering Theorem 1 and assuming that more that one road segments attain a non-admissible state during certain

time-slots (which should be a part of the path) then (Π) results to an NP-complete problem.

Proof. Consider the special case in G = (V,E) as shown in Fig. 3 where the cost to traverse the link from node i
to node i + 1, is based according to eq. (10) (i.e, ĉi,i+1). Fig. 3 indicates that, in total, two road segments attain a
non-admissible state (i.e., edges (i, i + 1) and (q,D)) as follows:

xi,i+1(t) =

1, for t = ci + b1

0, otherwise
(16)

xqD(t) =

1, for t = cq + b1 + b2

0, otherwise
(17)

while all other links always attain an admissible state. According to constraints (2), (16), (17), the traversal cost of
both links can be expressed as follows:

cii+1(t) =

τii+1, for t = ci + b1

∞, otherwise
(18)

cqD(t) =

τqD, for t = cq + b1 + b2

∞, otherwise
(19)

where, τi,i+1 = c and τqd = c as indicated in Fig. 3.
According to Fig. 3, (Π) has a feasible solution only if an admissible O − D path exists while the departure times

at node i and q should be exactly at time-slots ci+b1 and cq+b1 +b2, respectively. Following the analysis in the proof
of Lemma 1, let p contain sub-paths p′ and p′′ where, p′ is the sub-path from node O to i and p′′ is the sub-path from
node i + 1 to q. Similar to Lemma 1, the total travel time costs of both sub-paths cp′ (t) and cp′′ (t) can be expressed as
follows:

cOi =

i∑
j=1

c(1 − y j) +

i∑
j=1

(c + c j)y j = ci +

i∑
j=1

c jy j

ci+1,q =

q∑
j=i+1

c(1 − y j) +

q∑
j=i+1

(c + c j)y j = c(q − i) +

q∑
j=i+1

c jy j (20)
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Figure 5: Time expanded G = (V,E)

As indicated in Lemma 2, the first time constraint can be easily satisfied since there are 2i possible paths from node O
to i with di 6 ci + b1 since waiting can take place at the originating junction in such a way as to achieve di = ci + b1.
Nonetheless, the second time constraint (i.e., dq = cq+b1 +b2) is addressed by Lemma 1. Thus, a solution of sub-path
p′′ can be reduce to a problem addressed by Lemma 1.

Same as before, considering Eq. (10), the amount of cq + b1 time-slots can be provided from all of the 2q paths,
while the remaining b2 time-slots must be identified by the summation of Eq. (20) (e.g.,

∑q
j=i+1 c jy j). Therefore, to

select y j values the number partitioning problem needs to be solved; completing the NP-complete proof.

5. Time Expansion Approach

In this section we utilize the “time expansion” approach to demonstrate some of the complexities associated with
solving the (Π) problem optimally. Fig. 4 shows a simple graph G = (V,E) where road segments (A, B) and (B, F)
attain two non-admissible time-slots (from time intervals 1s-10s and 1s-3s, respectively). Notably, time-dependent
networks can easily be transformed to static networks using time-expansion as discussed in [25] and allow the problem
to be solved in the space dimension only. In this way, the problem is solved in two stages. In the first stage, the graph is
expanded to future time-steps considering incremental waiting intervals at the originating junction. Thereafter, a static
shortest path algorithm (e.g. Dijkstra [35]) is used to provide a solution. Fig. 5 illustrates the time-expanded graph for
the network provided by Fig. 4. Fig. 4 illustrates the optimal solution with a blue line and total cost of 4s while Fig.
5 shows the shortest path solution over the time-expanded graph indicated with a red line and total cost of 5s. As Fig.
5 indicates the shortest path algorithm (e.g., Dijkstra) miss the optimal solution since the non-admissible time slots
are not considered to the time-expanded graph. Note that the earliest arrival time at each junction does not ensure the
optimal choice based on the label setting property discussed in [36]. The possibility of selecting a junction a little
bit later may reduce the destination arrival time since a currently non-admissible segment may become admissible
in future time-slot. Therefore, all possible arrival times must be examined at each intermediate junction in order to
ensure that an optimal solution is reached.

6. Route Reservation Algorithm (RRA)

A heuristic solution to the EAT D problem is derived through the Route Reservation Algorithm (RRA) which also
allows an initial wait at the origin. The RRA algorithm employs the Dijkstra’s algorithm which is commonly used
on static (non-constrained) networks. The proof of correctness of Dijkstra’s algorithm indicates two basic properties.
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The first one is that Dijkstra’s algorithm is a label-setting algorithm since on each iteration a label (i.e., d j) becomes
the actual shortest path from the origin to node j and the algorithm terminates when all nodes are permanently labeled.
Labeled nodes are those which an optimal path is found and all the permanently labeled nodes are stored in a prede-
cessor array [36]. The second property is a result of the first property known as the relaxation technique3, where in
each iteration the cost of all non-labeled nodes is di = min(di, d j + ci j(t)). Therefore, using the label-setting property
and the relaxation technique, Dijkstra’s algorithm calculates the earliest-arrival-time from origin to each other road
junction i. RRA adopts the above properties and returns a feasible solution to the EAT D problem accounting also for
possible waiting that can take place at the origin.

The RRA algorithm executes in two stages (the inner and outer loop). The inner loop returns the earliest-
destination-arrival-time path, from O to D, by allowing vehicles to wait at any intermediate junction until the road
segment’s state changes from non-admissible to admissible (i.e., it solves the (ΠAW ) problem). As shown by Lemma
2, if waiting intervals are allowed to all intermediate road junctions (nodes) a polynomial time optimal solution can be
found. This relaxed solution, which is not practically implementable, is a lower bound solution to the EAT D problem.

Algorithm 1 Inner loop of the RRA (IL-RRA)

1: Input: G = (V,E), xi j(t), O − D, t0
2: Initialization
3: P[i]← NULL ∀ i ∈ V . Sets the predecessor matrix
4: Q← i ∀ i ∈ V . Sets all non-labeled junctions
5: di = ∞ ∀ i ∈ V . Sets the arrival time at i
6: P[O]← 0 . Origin Predecessor
7: dO ← t0 . Arrival time at Origin
8: ε = 10−6 . Waiting Coefficient
9: wmin = ∞

10: End of Initialization
11: while Q , ∅ do
12: ∀ i ∈ Q Extract i with min(di)
13: Set i as labeled . Since di = d∗i
14: for ∀ (i, j) ∈ E do
15: if xi j(d∗i ) == 1 then
16: wi j(d∗i ) = 0
17: else
18: Calculate wi j(d∗i ) . Required waiting-slots
19: ci j(d∗i ) = τi j + wi j(t) + ε . Update ci j(d∗i )

20: if d j > d∗i + ci j(di) then
21: d j = d∗i + ci j(d∗i ); P[ j] = i . Update d j

22: if wi j(t) < wmin then
23: wmin = wi j(t) . Update wmin

24: return (wmin and path)

Subsequently, the outer loop, checks if the solution computed by the inner loop involves waiting intervals at
any intermediate junction. If the resulting shortest path from the relaxed problem (inner loop) does not require any
waiting at any intermediate node, then the algorithm ends. The obtained solution is considered as the shortest path
that the vehicle should follow after waiting the accumulated waiting interval at the origin. On the other hand, if
the solution of the relaxed problem involves waiting at one or more intermediate nodes, the outer stage transfers the
minimum waiting interval among all nodes to the origin and updates the vehicle’s start time (i.e., t0 = t0 +wmin), where
wmin = min(wi j(t)), wi, j > 0 is the minimum waiting at an intermediate node in the obtained relaxed solution. Given
the updated waiting time at the origin t0, the relaxed problem is solved again. This procedure repeats until a path is

3The term “relaxation” is used in a way such that an upper bound solution is found by amending the shortest path as explained in [36].
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found that does not include any links that are at their capacity (given the estimated reservations) nor any waiting at
any intermediate node.

The execution procedure of the inner loop is illustrated in Algorithm 1. Algorithm 1 is similar to the Dijkstra’s al-
gorithm but road segment costs are calculated dynamically, since edges cannot be traversed if they are non-admissible.
In that case, vehicles are forced to wait at a starting junction (i) of the road segment (i, j), until their admissibility state
changes, thus their cost is updated to also include that waiting time.

The initialization of Algorithm 1 is identical to Dijkstra’s algorithm with the predecessor matrix initiated as empty
(line 3), all junctions initiated as non-labeled (line 4), all variables initiated to have an infinite cost (line 5) and the
arrival time at the destination set to t0 (line 7). Thereafter, the inner loop is executed for all non-labeled junctions
and the one with the earliest arrival time is set as labeled (line 11 and 13). Evidently, the first junctions that the
algorithm sets in the route is the originating node since all others have infinite cost while in subsequent iterations a
new labeled junction is set to be the one that has the earliest possible arrival time (d∗i ) according to the label-setting
property. With every new set junction, a dynamic calculation of the traversal cost from the new labeled junction to
its neighbors is performed (lines 15 to 28). This dynamic calculation is performed in those cases where segment (i, j)
is non-admissible at d∗i (line 15). The minimum number of time-slots that may be required wi j(t) can be calculated
based on both the reservation status of the concerned segment (i, j) and the arrival time at junction i (line 18). In every
other case, when the segment attains admissible states, no waiting is necessary (line 16). Therefore, in every iteration
the edge cost traversal function ci j(t) is calculated using only the constant travel time cost (free-flow conditions) and
the waiting time duration (i.e., ci j(d∗i ) = τi j + wi j(t) + ε) (line 19). After all costs have been calculated, a relaxations
is performed (lines 20 to 23). If the traversal cost is lower than the arrival time d j then the arrival time at junction j is
relaxed to d j (i.e., d j = ci j(t)) and junction i is characterized by the predecessor of j. By doing so, RRA updates the
earliest arrival time di to each non-labeled neighboring junction and stores the minimum waiting interval was from all
among all junctions (wmin) (lines 22 and 23). The above procedure repeats until all road junctions are characterized as
labeled. Finally, the inner loop returns to the outer loop the wmin and the identified path.

The outer loop determines if any waiting has been included in the path computed by the inner loop (i.e. wmin , 0).
The execution of the outer loop is illustrated in Alg. 2 where, as a first step the total delay that may be observed at
the origin (i.e., wtotal) is initiated to zero (line 2) and afterwards the inner loop is executed (line 3). Thereafter, wtotal is
updated according to the returned wmin (line 5). Whenever waiting is identified, the procedure repeats until no waiting
is necessary within the computed path (lines 5 to 9). Waiting is added to the origin (i.e., the entry point to the region)
and the start time is updated (i.e., t0 = t0 + wtotal) (line 7) before the inner loop re-executes with the new starting time
(line 8). With each inner loop execution, the waiting intervals that are required are summed to wtotal = wtotal + wmin)
(line 9) and repeats until no waiting is necessary.

Algorithm 2 Outer loop of the RRA (OL-RRA)

1: Input: G = (V,E), O − D, t0, wmin, P
2: wtotal = 0
3: Execute IL-RRA(G = (V,E), xi j(t), O − D, t0)
4: wtotal = wtotal + wmin

5: while wmin , 0 do
6: wmin = 0
7: t0 = t0 + wtotal

8: Execute IL-RRA(G = (V,E), xi j(t), O − D, t0)
9: wtotal = wtotal + wmin

10: return (Path and wtotal)

Observations. There are cases where two or more feasible solutions for the EAT D problem may exists with equal
cost. In those cases if one of the two does not require any waiting while the other does, then the algorithm chooses the
path with no intermediate node waiting and discards the other one since the algorithm terminates by the first iteration.
In the case where both alternative paths experience some waiting at intermediate nodes, then the inner loop should
re-iterate at least one more time to identify if the waiting interval can be allocated only at the originating junction. To
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Figure 6: San Francisco road network under consideration.

overcome the selection problem between the alternative solutions, a constant ε = 10−6 is added in case where waiting
is required at each particular road segment. Thus, the coefficient ε is added to ci j(t) (i.e., ci j(d∗i ) = τi j + wi j(t) + ε)
(line 18) whenever waiting at a junction is required. This additional cost ensures that when equivalent paths exist, the
algorithm will choose the one with the least waiting.

As emphasized above, RRA is a heuristic solution that can be executed efficiently in real time to provide either
the optimal or a near optimal path. For example the RRA algorithm will miss the optimal solution for the example
illustrated in Fig.4. As already mentioned, the optimal solution is indicated with a blue line and has a total cost of
4s. The inner loop of RRA will first return as a solution the path consisted from road segment (A, B), (B, F) with a
waiting delay of 2s at junction B. The returned solution is equivalent to the optimal one, however, the outer loop of
RRA requires to clarify if that waiting can be transferred to the origin. Hence, the RRA inner loop re-executes with
the new starting time and returns the path consisted from road segment (A,C), (C, B), (B, F) as the final solution with
total cost 6s.

The complexity of RRA is O(ME2V), where M < ∞ denotes the number of iterations that the outer loop of RRA
needs before converging to a solution. At this point it is worth pointing out that the RRA algorithm will always
terminate in a finite number of iteration. Note that in any scenario, there is a finite number of vehicles which means
that there is a finite number of reservations which also means that the intervals for which any link is non-admissible
are also finite. Let Tmax denote the maximum time when a non-admissible interval for any link ends. For any execution
of the RRA Tmax is fixed, while the vehicle initial waiting time t0 is monotonically increasing at discrete steps which
are associated with the end of some non-admissible interval. Clearly, a non-congested path will always be found when
t0 > Tmax, thus M < ∞.

7. Simulation Setup And Results

7.1. Network setup and parameters

The road network under consideration is an 1.8 km2 homogeneous region of downtown San Francisco as illustrated
in Fig. 6. The spatial compactness and homogeneity of this area was initially investigated in [14], while a similar
region is used in [9]. The selected region consists of 99 road junctions and 208 single-lane road segments with lengths
varying from 100 m to 400 m. To simulate mobility along this region, SUMO micro-simulator [37] is employed using
Krauss’ car-following model [38]. Standard car-following parameters were used, including: vehicle length of 5 m,
maximum speed 15 m/s, acceleration 2.5 m/s2, deceleration 4.5m/s2, driver imperfection 5%, driver reaction time
0.5 s, and minimum gap distance 2.5 m. The simulation time-step was set to 0.1 s.
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Figure 7: Region MFD of: (a) US; (b) RRA.

7.2. MFD Analysis
As a first step, the region’s MFD is analysed in order to identify the parameters to be used by the RRA, including

vc and ρC
i j. To do so, a 6 hours scenario was simulated within which for the first four hours the input flow was set

to 2000 veh/h and incrementally increased by 2000 veh/h for the next three hours. Thereafter, the input flow was
set to 4000 veh/h and 2000 veh/h for the last two hours in order to discharge the network. For the results presented
hereafter, ten Monte Carlo simulations were conducted within which the O − D pairs and inter-arrival times were
randomly generated.

Fig. 7 (a) depicts the Macroscopic Diagram of the uncontrolled scenario (US) (i.e., where vehicles select their
path strictly based on shortest path) which illustrates the total flow as a function of the total density of the network.
In the figure, each point corresponds to 1min measurements. The calibrated model shown by the solid yellow line
is derived through the automated calibration method proposed by [39] for the single-regime Van Aerde model [40].
As detailed in [39], an initial set of free-flow-speed (v f ), speed-at-capacity (vc), capacity and jam density (ρJ) values
are used together with an iterative procedure to update v f , vc and ρJ to compute the best fit values of the varying
parameters which minimize the sum of squared orthogonal errors. From the figure, the following model parameters
are obtained: v f = 47 km/h, vc = 40.5 km/h and ρJ = 1050 veh.

Hence, the RRA algorithm was set to use ρC
i j = 40 veh/km/lane (i.e., around 40% of the regions total density)

and travel time calculations are estimated using vc = 40.5 km/h. We emphasize that even though for the purposes of
computing the reservations for each vehicle, the constant vc was used, the actual speed of each vehicle is determined
by the simulator based on the assumed model. Fig. 7 (b) depicts the resulting MFD when the RRA algorithm is
employed demonstrating the absence of the congested regime. This is achieved by restricting the number of vehicles
allowed to simultaneously traverse the network.

To demonstrate the performance of RRA, the average volume of total network flow, the average volume of total
network density and average volume of mean network’s speeds, obtained from each Monte Carlo realization of the
aforementioned network scenario, are depicted in Figs. 8, 9, and 10. For comparison, the performance of US is also
superimposed in these figures. Specifically, Fig. 8 illustrate the average volume of the total network flow for both US
and RRA, as a function of the simulation over the Monte Carlo simulations. Similarly, Fig. 9 illustrates the average
total network density and Fig. 10 the average of the mean network speeds over the Monte Carlo simulations, for both
US and RRA. Comparing these three figures, it is evident that using RRA the density decreases (near 330 veh for RRA
compared to more than 500 veh for US as shown in Fig. 10) but the traveling speeds remain high and thus the flow is
similar to that of US. Additionally, as Fig. 10 illustrates RRA always maintains traffic below critical capacity ρC (near
350veh) even when demand is high (i.e., simulation time 200-240min). At the same time, RRA maintains vehicles
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Figure 8: Average network flow over time for US and RRA.
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Figure 9: Average network density over time for US and RRA.
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Figure 10: Average network speed over time for US and RRA.

speeds near the speed-at-capacity at all times, as shown in fig. 9.
To demonstrate the improvements obtained by RRA, Figs. 11 and 12 depict the percentage of per road segment

density in relation with ρC and the per road segment speed as a function of the simulation time, respectively, for the
case of US. Similarly, Fig. 13 and Fig. 14 illustrate identical results for the case of RRA. As Figs. 11, 12, 13 and
14 indicate, at low flow-demands the performance of both US and RRA is similar while at high flow-demands RRA
outperforms US by avoiding congestion. Clearly, this is due to the fact that at low demands there are no significant
restriction in the admissibility of particular road segments and so both approaches yield similar results; on the other
hand, as demand increases, there is limited admissibility on road segments and RRA ensures that vehicles wait at their
origins until an admissible path can be identified. As shown in Fig. 11, without a control mechanism, a subset of the
road segments exceed their critical density and some of them get fully loaded especially in high densities (indicated
with the magenta color in the figure). For these road segments, speed drops to near zero (as indicated with blue color
in Fig. 12). On the contrary, with RRA road segment densities are maintained below the critical capacity (as shown in
Fig. 13), allowing vehicles to maintain their speed near the free-flow speed. Hence, despite the increase in demand,
RRA can greatly improve the overall network utilization.
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Figure 11: Evolution of traffic density for each road segment over time
for US.
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Figure 12: Evolution of speed for each road segment over time for US.
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Figure 13: Evolution of traffic density for each road segment over time
for RRA.
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Figure 14: Evolution of speed for each road segment over time for
RRA.

7.3. Comparative Performance Results

The proposed route-reservation architecture, that uses the RRA algorithm, is compared against US and with the
state-of-the-art Decreasing Order of Time (DOT) algorithm [23]. DOT is an efficient algorithm that finds the time-
dependent earliest path (using travel time) within a user-chosen time window. As such, in this work the waiting time
at the origin for both RRA and DOT is not considered in the total travel-time for a fair comparison. For the same
reason, the travel time estimates for the DOT algorithm were done according to the route reservation requests and
using identical O − D pairs. Finally, the maximum allowed waiting interval for DOT was set up to 1min (i.e., half the
average trip length for the considered network).

It should be noted here that, in the proposed solution, new route reservations are computed solely based on in-
formation from previous reservations made and not the actual network state. Since a number of different factors can
affect vehicle journeys (including waiting at intersections and other vehicle interactions) the actual traversal of the
reserved road segments can occur at time periods not anticipated. These estimation errors are thoroughly examined in
the sequel.

As before, 10 Monte Carlo simulations were executed with random O − D pairs and with flow rates varying
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Figure 16: Number of vehicles with completed journeys.
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Figure 17: Number of loaded vehicles.

between 1000 − 8000 veh/h over a period of 2 hours.
Figs. 15, 16, and 17 show the average vehicle travel time, the average number of vehicles that completed their

journeys and the number of vehicles entering the network within the simulation time, as a function of the different flow
rates. The scattered plots in Fig. 15 depict the mean travel time of each realization, while the dashed lines represent
the mean travel time for all realizations.

Similarly, the dashed lines in Figs. 16 and 17 illustrate the average number of vehicles that have finished their
journey within the simulation time and the average number of vehicles entering the network, respectively. The scat-
tered plots represent the realizations obtained by each simulation run. Figs. 15, 16, and 17 illustrate the overall
network behavior considering different flow rates. As indicated in Figs. 15, 16, and 17, in low flow rates ranging
from (1000 veh/h − 6000 veh/h), there is minimal congestion and thus both algorithms have similar behavior to US.
At higher flow rates, congestion emerges and RRA is shown to greatly outperform DOT since the travel time remains
short for RRA and all vehicles arrive at their destination within the investigated simulation time.
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Figure 18: Travel time distribution of 7000 veh/h.
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Figure 19: Travel time distribution of 8000 veh/h.

Figs. 18 and 19 illustrate the travel time distribution for all vehicles that manage to reach their destination during
the simulation time for flow rates of 7000 veh/h and 8000 veh/h. As illustrated, RRA greatly improved travel time
compared to DOT. As shown in Fig. 19, the mean travel time for RRA is 135.9s, for DOT is 695s and for US is
2163.5s. The standard deviation for RRA is 64.8s, for DOT is 1536.8s and for US is 2774.1s demonstrating that as
congestion of the road segments increases, RRA is more stable and accurate than DOT. Further, RRA is more resilient
to the increase in flow rate since travel times do not significantly deviate.

The RRA performance for different values of ρC
i j is also examined. Figs. 20 and 21 show the average vehicle travel

time and the average number of vehicles that completed their journeys for the cases where ρC
i j = 0.4ρJ

i j, ρ
C−
i j = 0.3ρJ

i j,
ρC+

i j = 0.5ρJ
i j where ρC−

i j and ρC+
i j deviate by −10% and 10%, respectively from the selected critical capacity value

(i.e., ρC
i j). Both figures indicate that a 10% increase over the ρC

i j result to a drop in algorithm performance since
travel times increase and a lower number of vehicles manages to complete their journeys. Interestingly, using lower
capacities the observed algorithm performance is similar to that of ρC

i j since no congestion occurs and travel times are
similar since segment densities do not exceed their critical values.

Nevertheless, a lower ρC
i j value increases the waiting time at the origin. This is illustrated in Fig.22 which shows the

waiting-time that vehicles need to wait before departing for their journeys. This behavior is expected since a decrease
of the allowed capacity reduces the number of vehicles that simultaneously traverse the network. Additionally, as
illustrated in Fig.22 a higher ρC

i j value decrease the waiting time at the origin affecting the algorithm performance as
congestion occurs. Therefore, the late depart can affected the network behavior as congestion is avoided.

Notably, as demand increases, a higher number of vehicles request to traverse the network. Since the allowed
density is restricted bellow the critical value, vehicles prefer to wait at their origin until an admissible path is feasible.
Fig. 23 demonstrates that as flow rates increase, waiting time increases exponentially. However, this is expected
since in high-demand scenarios, significant waiting needs to be incurred to maintain high network flows. Even so, the
average waiting is within acceptable levels ( 5min) and therefore, a small departure delay could prove sufficient for
the overall network operation.

Moreover, Fig. 24 illustrates the mean distance traveled by all vehicles as a function of different flow rates in
relation to the shortest distance path (computed using Dijkstra’s algorithm). In fact, RRA paths appear to maintain
constant travel times (close to the shortest distance path) irrespective of the flow demand, as illustrated in Fig. 24.
Looking at the findings of both Figs. 24 and 23 whenever there are non-admissible road segments, the RRA algorithm
tends to postpone departures and enable vehicles to traverse through shortest distance paths instead of taking longer
routes. This is also verified in Fig. 25, which illustrates the percentage of vehicles that travel through paths other than
the shortest distance path. The figure assumes a flow rate of 8000 veh/h. As shown, the majority of vehicles (around
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Figure 20: Average travel time for RRA with varying critical capacity
values.
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Figure 21: Number of vehicles with completed journeys using RRA with
varying critical capacity values.
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Figure 23: RRA origin waiting times.

75%) were guided through the shortest paths. This indicates that through RRA longer paths are avoided so that both
travel time and cost are minimized.

8. Conclusions

This work proposes a new route-reservation architecture which aims to prevent congestion by restricting the traffic
density in different road segments within a homogeneous region. The key advantage of this architecture is that it
considers both the spatial and temporal density of regions and it exploits more accurate future traffic estimates. The
Earliest Arrival Time at Destination problem is formulated and shown to be an NP-complete problem; thus, the Route
Reservation Algorithm is proposed which produces low-complexity, close-to-optimal solutions.

Simulation results demonstrate the superiority of the proposed route-reservation algorithm compared to uncon-
trolled traffic behavior indicating considerable benefits in terms of road utilization and expedited travel times, es-
pecially during high demand. Future work includes the improvement of travel time estimations based on waiting

19



Flow Rate (veh/h)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
ea
n
D
is
ta
n
ce

T
ra
ve
le
d
(m

)

0

200

400

600

800

1000

1200

1400
Shortest Path
RRA

Figure 24: Mean distance traveled comparison for RRA and shortest path.

# of road segments
0 1 2 3 4 5 6 7 8

P
a
t
h
s
 
c
h
a
n
g
e
d
 
(
%
)

0

10

20

30

40

50

60

70

80

Figure 25: Road segments that changed.

incurred at junctions and the consideration of multiple MFD regions.

References

[1] C. Chen, Z. Jia, P. Varaiya, Causes and cures of highway congestion, IEEE Control Systems Magazine 21 (6) (2001) 26–32.
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