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Abstract— Traffic congestion has been proven a difficult
problem to tackle, particularly in big cities where the number
of cars are steadily increasing while the infrastructure remains
stagnant. Several approaches have been proposed to alleviate
the effects of traffic congestion, however, so far congestion is
still a big problem in most cities. In this work we investigate a
new route reservation approach to address the problem which
is motivated by air traffic control. This paper formulates the
route reservation problem under different assumptions and
examines the complexity of the resulting formulations. Two
waiting strategies are investigated, (i) vehicles are allowed to
wait at the source before they start their journey, and (ii)
they are allowed to wait at every road junction. Strategy (i)
though more practical to implement, results to an NP-complete
problem while strategy (ii) results to a problem that can be
solved in polynomial time but it is not easily implemented since
the infrastructure does not have adequate space for vehicles to
wait until congestion downstream is cleared. Finally, a heuristic
algorithm (based on time-expanded networks) is derived as a
solution to both proposed waiting strategies.

I. INTRODUCTION

Traffic congestion is a serious problem that occurs in all
metropolitan cities and has a significant impact on the lives
of citizens in terms of delay, frustration, loss of productivity,
fuel cost, and environmental pollution. The problem is ex-
pected to become even worse since the number of vehicles
continuously grows while the infrastructure remains the
same. On the other hand some traffic researchers indicate that
this phenomenon does not occur because demand exceeds
network’s capacity but rather due to the fact the majority of
drivers prefer to follow main arterials instead of following
local roads [1]. Therefore, there is the potential to better
manage the traffic to reduce the effects of congestion, for
example by managing traffic such that vehicles better utilize
all network links (load balancing). However, achieving a
better load balancing is not an easy problem since it involves
accurately estimating the future state of the network while
the route selection is made by drivers who are trying to
optimize their own individual objectives. Furthermore, the
future network state estimates depend on the earlier driver
decisions which may be based on past state estimates. For
example, consider a simple scenario with two paths to a
single destination. When a rational driver starts her journey,
she is informed that path A is currently congested, thus she
decides to use path B. If all rational drivers do the same,

This work was supported by the European Research Council (ERC) under
the ERC Advanced Grant through the FAULT–ADAPTIVE Project.

C. Menelaou, P. Kolios, S. Timotheou, and C.G. Panayiotou are
with the KIOS Research Center for Intelligent Systems and Networks
and the Department of Electrical and Computer Engineering, University
of Cyprus, {cmenel02, pkolios, timotheou.stelios,
christosp}@ucy.ac.cy

by the time they reach the congested area, the congestion in
path A will be cleared while congestion will be formed in
path B.

Motivated by this simple problem, we propose to use a
reservation protocol so that drivers use the least congested
paths while other drivers are not allowed to interfere and
increase the congestion. The idea is that the network is
decomposed spatially and temporarily. Every link has a
capacity that it can accommodate during a short interval.
The system, using previous reservations has an estimate of
the number of vehicles that are expected during any time
interval. When a vehicle is about to start its journey, it
sends a request to a central server. The server determines
the best path (the one that would allow the vehicle to
arrive at the earliest time to the destination) avoiding roads
that are expected to have more vehicles than their allowed
capacity. Some of the possible solutions that can be offered
by the system include an alternative path (possibly longer
in terms of distance) but avoiding road segments that are
at their maximum capacity. Alternatively, the system may
request from the vehicle to start its journey a little later
from its origin (wait at source) or wait at some intermediate
intersections (assuming there is space for the vehicle to stop
and wait). We point out that with today’s advancements in
information and communication systems such an approach
is feasible. Drivers can send their origin-destination pair
through, for example, a navigation system which will then
receive the reserved path and use it for routing. Evidently, if
autonomous vehicles are used, this routing approach is even
easier to implement. However, enforcing the reservations is
a topic that we leave as future research.

The proposed reservation protocol ensures that each road
segment operates below its critical capacity. The critical
capacity is determined by the macroscopic fundamental
diagram (MFD) [2] and denotes the highest permissible
capacity where the network state changes from uncongested
to congested. Hence, to ensure a congestion-free operation,
the density of each road segment should be maintained
bellow the critical capacity and in this work this is enforced
by limiting the reservation availability of each road segment.

The contribution of this paper is that it proposes a new
reservation protocol and formulates the problems that the
system should solve in order to determine every vehicle’s
path under different assumptions. Furthermore, the complex-
ity of the resulting formulations is computed and a heuristic
algorithm is provided to solve them.

This paper is organized as follows: Section II includes
a brief overview of related work. Section III introduces the
problem formulation for different strategies while Section IV



provides a complexity analysis for the proposed problems.
A solution to both investigated formulations is provided in
Section V which is based on time-expanded networks. The
simulation setup with the performance results are presented
in Section VI. Finally Section VII concludes this work.

II. RELATED WORK

Time slot reservation has been extensively practiced in Air
Traffic Management and Control Systems (ATM/ATC) [3].
ATM/ATC systems improve the airport’s efficiency by en-
abling the reservation of time slot for both landing and take-
off; ensuring, in that respect, support for higher demands [4]
[5].

In land transport, on the other hand, there has been a
growing number of approaches that solve the vehicle routing
problem assuming the network state is known. Some ap-
proaches consider that the network state is predicted based on
static or stochastic models [6]. These approaches assume that
the travel time on each road segment changes dynamically
depending on the network state [7] [8]. The objective is
not to mitigate congestion but to schedule each vehicle as
an independent agent through shortest-travel-time paths [9].
Therefore, these approaches are susceptible to enter into the
capacity drop region where congestion mitigation becomes
a difficult problem [10].

Complexity analysis of time-depended route planing was
commonly investigated in recent literature. Batz and Sanders
[11] shows that the time-depended shortest path problem
with generalized objective function and time bend points is
an NP-complete problem. Ahuja in [12] illustrates that the
dynamic shortest path problem where travel times change
dynamically is an NP-complete problem too.

As discussed in the Introduction, this work investigates a
route reservation protocol that allows congestion-free rout-
ing. To ensure that this is the case some waiting may need to
take place at the origin of a route or at intermediate junctions.
The former case results to an NP-complete problem while the
latter case attains a polynomial solution.

III. PROBLEM FORMULATION

In this work, the road network is modeled as a graph
G = (V,E) with vertices V being the road junctions and
edges E the road segments. Traffic is allowed in each road
segment (i, j) ∈ E, {i, j} ∈ V if the vehicle density for the
particular segment is at or below the critical capacity (Kij).
Under this regime, free-flow conditions are experienced and
thus vehicles can travel at the maximum speed limit. By c̄ij
we denote the number of time units necessary to traverse
a segment (i, j) ∈ E when traveling at maximum speed.
Assuming that a vehicle enters a road at discrete time t, the
vehicle is expected to traverse the particular segment during
all time instants t, t+ 1, ...t+ cij .

To ensure that traffic volume is restricted below critical
capacity, reservations for each time unit are allowed only if
the accumulated expected traffic rij(t), (i, j) ∈ E is less
than the critical capacity for the whole traveling duration.

Then, the reservation state of a particular road segment xij(t)
is defined as follows:

xij(t) =

{
1, if rij(τ) < kij ,∀ τ = t, . . . , t+ c̄ij

0, otherwise
where, xij = 1 denotes the uncongested state and xij = 0
the congested state.

Evidently, when the state of a particular road segment is
congested, a vehicle should be instructed to either wait for
the road to become non-congested or be rerouted through
a different path. This decision is made based on the alter-
native solution that achieves the shortest arrival time to the
destination. In either case, when waiting is inevitable, two
possible reservation strategies arise, a) vehicles could wait at
intermediate road junctions (WAIS) 1, or b) vehicles could
wait only at the origin (WOAS)(delayed departure).

A. Wait at intermediate road junctions (WAIS)
When waiting at all intermediate road junctions is allowed,

the cost (time) of traversing a road segment can be expressed
as follows:

cij(t) =

{
c̄ij + wij(t), ifxij(t) = 0

c̄ij , ifxij(t) = 1

where, wij(t) denotes the smallest number of time units that
a vehicle has to wait at i before (i, j) becomes non-congested
and thus a vehicle can start traversing the link.

B. Wait only at the origin (WOAS)
For the second strategy which is practical and easily

implementable, waiting is only allowed at the originating
road junction s of a vehicle’s route, and thus the cost of
traversing a road segment cij(t) can be expressed as follows:

cij(t) =


c̄ij , ifxij(t) = 1

∞, ifxij(t) = 0 and i 6= s

c̄ij +Wij(t), ifxij(t) = 0 and i = s

where Wij(t) is the least amount of time that a vehicle
should wait at the origin s in order to travel from s to
the destination e through non-congested road segments. As
shown in the results that follow, computing Wij(t) optimally
is an NP-complete problem.

In any case, as new reservation requests are issued by
soon-to-be-departing vehicles, for both strategies decisions
should be made on which route to take and where should
vehicles wait in order to arrive at their destination on the
earliest possible time. When decisions are made, vehicles
are responsible for following the assigned route within the
scheduled time constrains from the origin to the destination.
Under this regime, the minimum travel-time problem Π
arises, as defined below.

1This waiting strategy is not a practical approach but it is investigated as
a lower bound on the achievable delay. Assuming unlimited parking slots,
and that there is enough space for other vehicles to pass through.



Problem Π: Π takes as input the origin-destination
pair s − e, the request time-stamp t0, and using the
current route reservations, computes the shortest-arrival-
time route form s to e starting at t0. Let pk denote
the k-th path from source s to destination e. pk =
(vk0 , v

k
1 ), (vk1 , v

k
2 ), (vk2 , v

k
3 ), ....(vknk−1, v

k
nk

), where vkj ∈ V
is the j-th visited node in the k-th path, with vk0 = s, vknk

= e
and nk is the legth of the path. Also, let dkj denote the earliest
arrival time at junction vkj . Then,

dk0 = t0

dk1 = dk0 + cvk
0 ,v

k
1
(dk0)

· · ·
dknk

= dknk−1 + cvk
nk−1,v

k
nk

(dknk−1)

Decision problem Π finds an uncongested route for a
vehicle to reach its destination in the earliest arrival time
and is mathematically expressed as follows:

(Π) D∗ = min
pk

dnk
(1)

IV. COMPLEXITY ANALYSIS OF Π

At a first glance, Π looks similar to the time dependent
route planning [13]. However, the difference to the latter
problem is that congested road segments (with infinite cost)
may arise due to the possible reservations made. In this
section we show that, when waiting is allowed only at the
origin, Π becomes an NP-complete problem while when
waiting is allowed at all intermediate junctions, the problem
has polynomial-time computation.

The complexity analysis of Π is based on the restriction
method [14] (a similar derivation is made in [11]) where the
examined proof reduces the Number Partitioning Problem
(Π′) to Π [14].

Lemma 1: Given a set A which consists of n integer
numbers A = {a1, a2, ...an} , ai ∈ Z+ and given an integer
number b ∈ Z+, Π′ tries to find a subset A′ where A′ ⊆ A,
satisfying the following equation:

n∑
i=1

aiyi = b, where yi = {0, 1} (2)

which is an NP-complete problem.
Theorem 1: If waiting is not allowed at any of the road

junctions i ∈ V then, Π is an NP-complete problem in
the case where at least one segment attains to congested
reservation state, i.e. xij(t) = 0, (i, j) ∈ E,∀ t.

Proof: A special case of G(V,E) is constructed as
illustrated in Fig. 1. Let (i, e) be the single edge on this
graph that attains to congested reservation state. Every other
edge on the graph is assumed to be on non-congested state
and thus the cost of traversing a road segment is equal to c̄ij .
On the other hand, the cost function (cie(t)) of (i, e) can be
expressed as follows:

cie(t) =

{
c̄ie, for t = b

∞, for t 6= b
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Fig. 1: Special case of G(V,E)

Π has a feasible solution only if there is a non-congested
path p from the origin to the destination (i.e. s− e) and the
arrival time at node i is exactly equal to b (i.e., di = b). Let,
p contain the subpath p′ from nodes s to i where the total
travel time of p′ (i.e., cp′(t)) is defined as follows:

cp′(t) =

n∑
i=1

c̄ijyi, where, (3)

yi =

{
1, (i, j) is contained in p′

0, (i, j) is not contained in p′

The above claim, indicates that the chosen yi for p′ as
shown in eq. (3) provide a solution to the number parti-
tioning problem. This is because the total travel time is the
summation of all edge costs, cij(t) of the selected nodes on
the path (p′). This show that in general case Π is an NP-
complete problem and this completes the proof.

Theorem 2: If waiting is allowed at any road junction,
then Π can be solved in polynomial time.

Proof: Theorem 2 relaxes the equality constraint ex-
pressed in eq. (2) to an inequality since now there is no
need for a solution that equals exactly to b, i.e., di 6 b.
Therefore, Π can find a feasible solution in the case where
the total travel time cost of p′ is equal to:

cp′(t) 6 b, where, cp′(t) =

n∑
i=1

c̄ijyi and yi = {0, 1} (4)

Equation (4) indicates that there are many feasible solu-
tions that solve Π. For example, a possible solution selects
the unconstraint shortest path from s to i and after that if
di 6 b waiting can occur at any intermediate junction in
order to achieve di = b. Doing so ensures that a feasible
path p is always obtained in polynomial time.
A. Special Cases 1

In the case where only one segment has congested reser-
vation states and waiting is allowed only at the source, then
Π can be solved in polynomial time. As shown in theorem
2 a solution can easily be found with a feasible path from
node s to i where di 6 b using eq. (4). In that case a vehicle
can wait for the remaining interval at s in order to achieve
di = b.
B. Special Case 2

Suppose now, the alternative case as shown in Fig. 2 where
two segments with congested reservation states are present
(edge (i, i + 1) and edge (j, e)). As in the previous case,
waiting is also allowed only at the source. The cost functions
for these edges are defined as follows:

cii+1(t) =

{
c̄ii+1, for t = b1

∞, for t 6= b1
cje(t) =

{
c̄je, for t = b2

∞, for t 6= b2
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Fig. 2: Special case of G(V,E) (two congested links)
As before Π has a solution only if there is a uncongested

path p from the origin to the destination (i.e. s− e) and by
the same token, the earliest arrival time at nodes i and j must
be b1 and b2 respectively. Similar to the proof of theorem 1,
let p contain sub-paths p′ and p′′. p′ is the path from nodes
s to i and p′′ is the path form nodes i + 1 to j. The total
travel time costs of both paths (cp′(t) and cp′′(t)) is defined
in equation (3).

As theorem 2 shows, there are many feasible path from
node s to i with di 6 b1. Thus, a vehicle can wait the
remaining time at s in such a way to achieve di = b1.

Subpath p′′ reduces to the problem of Theorem 1. This
is due to the fact that the total travel time of p′′ is the
summation of particular costs cij(t) of the selected nodes on
this subpath. Therefore the selected yi can express a solution
to the number partitioning problem eq. (2).

V. PROPOSED TIME EXPANDED ALGORITHM

A solution to the two investigated strategies (WAIS and
WOAS) is the Time Expanded Shortest Path algorithm
(TESP) which is based on time-expanded graphs that are
commonly studied in dynamic networks [15]. The proposed
TESP is a heuristic solution that solves the minimum arrival
time problem using both waiting strategies (as described in
the previous section).

TESP executes in two phases. In phase 1 (prepossess-
ing phase) TESP constructs the Time Expanded graph
GT (V ′, E′) using multiple replicas of G(V,E). In phase 2,
it returns the minimum destination arrival time route.

A. Phase 1: Construction of GT

GT (V ′, E′) is constructed using replicas (clones) of
G(V,E) (e.g. Fig. 3). Every replica represents a future
instance of G(V,E) for Dmax consecutive time instances.
Dmax is set to be the upper bound on the delay that a vehicle
needs to wait at the origin in order to follow the unconstraint
shortest path [13] (Algorithm 1).
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Fig. 3: Example of G(V,E)

In the time-expanded graph, each replica is identified by
ik, i ∈ V, k = 1, . . . , Dmax. This indexing method is used
in order to declare which node of G(V,E) represents every
node on GT (V ′, E′). Both strategies can use the same Dmax

as an upper bound since, a solution to WOAS is also a
solution to WAIS.

The time-expanded network includes all node replicas,
a dummy source node (s′) and a dummy sink node (e′).

Data: G(V,E), rij(t), s, e, t0
Result: Dmax

Set Dmax = 0;
Return s− e unconstraint shortest path p (initial time is
t0 = Dmax) ;
while p is congested for all consecutive time units do

Dmax = Dmax + 1;
Return s− e unconstraint shortest path p (initial
time is t0 = Dmax) ;

end
Algorithm 1: Calculation of Dmax

The dummy source node connects to all replicas of the
originating source node while all replicas of the destination
node connect to the dummy sink node. The cost cs′,s1(t)
starts with a zero value at the first replica and increments
by one for all subsequent replicas. Doing so ensures that the
delay in waiting at the source is included in the arrival time
calculation. The cost to the dummy sink is simply set to
zero, cen,e′(t) = 0. An example of a time-expanded graph is
illustrated in Fig. 4 while Alg. 2 depicts the aforementioned
process.
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Fig. 4: Example of GT (V ′, E′)

Data: G(V,E), s, e, t0, Dmax

Result: GT (V ′, E′)
Create Dmax replicas of G(V,E);
Create nodes s′, e′;
for i = 1; i 6 Dmax; i+ + do

cs′,si(t) = i; cei,e′(t) = 0;
end

Algorithm 2: Costructing GT (V ′, E′)

Algorithm 3 is responsible of calculating the earliest
arrival time di on each node of G(V,E), and to sort these
nodes in ascending order with respect to time. This procedure
is used in the following two algorithms (Algorithms 4 and
5) where depending on the strategy followed, costs need to
be recalculated accordingly.

WOAS: As shown in section III the edge cost function
changes with respect to the strategy that is going to be used.
Algorithm 4 calculates the edge costs on GT (V ′, E′) based



Data: G(V,E), s
Result: Sorted dn list
Run unconstraint shortest path algorithm over G(V,E);
di is the earliest arrival time on each node;
Sort di ;

Algorithm 3: Find dn on G(V,E)

on the reservation states. In case where a road segment is
non-congested the cost of segment (ikjk) is set to c̄ij . In
every other case, it sets the cost to infinity and in that case the
algorithm recursively recalculates the arrival time to every
road junction (Alg. 4).

Data: GT (V ′, E′), rij(t), di, Dmax

Result: Recalculated weights of GT (V ′, E′)
for i = 1; i 6 (Dmax ∗ V ); i+ + do

for j = 1; j 6 (Dmax ∗ V ); j + + do
if c̄i,j ! =∞ then

din = i+ di;
if (in, jn) is uncongested for all consecutive
time units that needed for traverse then

ci,jn = c̄i,j ;
else

ci,jn =∞;
Rerun algorithm 3;

end
end

end
end

Algorithm 4: Recalculation in the WOAS strategy

WAIS: In this strategy, for each (ik, jk) that is not uncon-
gested, WAIS finds the least waiting time that enables the
traversal through the particular edge (i.e., wikjk(t)) that a
vehicle needs to wait at ik. For all congested road segments
wikjk(t) is added to the total traversal cost of the particular
segment as shown in Algorithm 5. As before, when an arrival
cost is updated, the algorithm recursively recalculates the
new arrival times to every road junction and terminates when
no updates take place.

B. Phase 2: Execution of algorithm

In the second phase, Dijkstra’s algorithm [13] is used
to compute the shortest path between the dummy source
and dummy sink nodes. An inverse indexing procedure is
applied onto the returned path in order to determinate the
path from s to e and to find all computed waiting intervals.
This procedure also returns the earliest arrival time route
for both strategies with complexity O((Dmax ∗ V )2). The
complete TESP algorithm is illustrated in Alg. 6.

VI. SIMULATION SETUP AND RESULTS

WAIN and WOAS approaches were simulated in the
SUMO microscopic simulator [16], using the TraCI interface
[17]. Single lanes are used for each road segment that
create a Manhattan-style network. In total 24 road segments

Data: GT (V ′, E′), rij(t), di, Dmax

Result: Recalculated weights of GT (V ′, E′)
for i = 1; i 6 (Dmax ∗ V ); i+ + do

for j = 1; j 6 (Dmax ∗ V ); j + + do
if c̄i,j ! =∞ then

din = i+ di; wijn(din) = 0 ;
if (in, jn) is uncongested for all consecutive
time units that needed for traverse then

ci,jn = c̄i,j ;
else

wijn(din); ci,jn = c̄i,j + wijn(din);
Rerun algorithm 3;

end
end

end
end

Algorithm 5: Recalculation of WAIS strategy

Data: G(V,E), rij(t), s, e, t0
Result: Returns the minimum-arrival-time-route
Run algorithm 1 ; Run algorithm 2 ; Run algorithm 3;
if WAIS==TRUE then

Run algorithm 5;
else

Run algorithm 4;
end
Run unconstraint shortest algorithm over GTE(V ′, E′)
and return s′, e′ shortest path p′ ;
Apply reverse indexing to p′ thus, to declare p on
G(V,E) and wij(t);

Algorithm 6: Time Expanded Shortest Path Algorithm

and 9 junctions are set up. No overtaking was allowed to
ensure that all vehicles followed first-in-first-out queues, i.e.,
t+ cij(t) 6 (t+ 1) + cij(t+ 1) ∀ i→ j.

Both strategies were simulated for different flow rates
(with Poisson arrival distributions) and the origin-destination
pairs were randomly selected. Vehicle characteristics are
set according to the Krauss car following model [18], the
simulation time was set to an hour (3600s) and the critical
capacity of each road segment (i, j) was set Kij = 18% of
the maximum density of the road, based on [19]. Different
vehicles parameters were also used to test the performance
of the two strategies, as shown in table I.

TABLE I: Vehicle’s Parameters
Scenario 1 Scenario 2

acceleration 2.5m/s2 2.0m/s2

deceleration 4.5m/s2 4.5m/s2

maximum speed 15m/s 15m/s
vehicle length 5m 5m

driver reaction time 0.5s 1s
speed deviation factor 0% 30%

driver imperfection 0% 30%

Monte Carlo simulations were conducted for each inves-
tigated flow rate. The results evaluated the performance of
the system based on those vehicles that managed to com-
plete their journey within the simulated hour. The proposed



strategies are compared against the traditional behavior (TB)
experienced by vehicles when no reservations are made.

Fig. 5 illustrates the average travel time over the two
simulated scenarios. The dashed lines in Fig. 5 represents the
mean value of the mean travel time for different simulated
scenarios and the scattered plots represents the mean travel
time of all Monte Carlo simulations. The travel time is
measured as the difference between the time that a vehicle
enters and exits the network.

As shown in the results of Fig. 5, on low flow rates both
waiting strategies behave similarly to the traditional behavior
since no congestion is experienced. On higher flow rates
however, WAIS performs better since waiting is allowed at
all road junctions. As shown in the figure, the average travel
time of WAIS for each vehicle is lower than that of WOAS.
In either case, both strategies perform much better than
TB, demonstrating that both approaches can greatly reduce
congestion and traveling time. Additionally, Fig. 5 indicates
that irrespective of the changes in vehicle characteristics (as
set up in table I), the mean travel time performance is very
similar; demonstrating that the proposed solution is robust
to such variations.
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Fig. 5: Travel time comparison for WAIS, WOAS, TB

The following two figures, Fig. 6 and Fig. 7 plot the
travel time distributions for flow rate of 6000 veh/hour for
scenario 1 and 2, respectively. Both figures demonstrate the
higher resilience of WAIS to congestion compared to WOAS.
Indicatively, the standard deviation for WAIS is 32.75 and
for WOAS is 100.78. Hence, as the congestion of the road
segments increases, the travel time of WOAS increases at
a higher rate than that of WAIS. Both strategies however,
clearly demonstrate that route reservation can achieve sub-
stantial improvements in road utilization and thus practical
solutions could result in considerable benefits.
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Fig. 6: Travel time distribu-
tion for scenario 1
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tion for scenario 2

VII. CONCLUSIONS

This work examines the potentials of route reservation
as an approach to alleviate road congestion and minimize
vehicle arrival times to their destinations. In the process,
two waiting strategies have been investigated. It has been
demonstrated that when waiting is only allowed at the origin
of a route, the problem becomes NP-complete.

A unified time-expanded shortest path algorithm has been
developed to solve both these problems and using this
algorithm extensive simulations have been conducted. The
presented results demonstrate the multiple gains in perfor-
mance that can be achieved by route reservation compared
to the traditional vehicle behavior.
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