There is a newer version of this record available.

Software Open Access

datascienceinc/Skater: Skater 1.1.1-b2

Aaron Kramer; Pramit Choudhary; Ben Van Dyke; Alvin Thai; Nitin Pasumarthy; Guillaume Lemaitre; Dave Thompson

New Features:

  • Added new interface skater.core.local_interpretation.dnni.deep_interpreter.DeepInterpreter for interpreting tensorflow and Keras based models
  • enabling support for interpreting DNNs using gradient-based e-LRP and Integrated Gradient through DeepInterpreter.explain
  • added support to visualize relevance/attribution scores for interpreting image and text inputs
    • skater.core.visualizer.image_relevance_visualizer.visualize
    • skater.core.visualizer.text_relevance_visualizer import build_visual_explainer, show_in_notebook
  • user-friendly Utility functions to generate simple yet effective conditional adversarial examples for image inputs
    • skater.util.image_ops import load_image, show_image, normalize, add_noise, flip_pixels, image_transformation
    • skater.util.image_ops import in_between, greater_than, greater_than_or_equal
  • More interactive notebook use-cases for building and interpreting DNNs for evaluating model stability/identifying blind spots
  • Updates to documentation,
  • New section summarizing Notebook examples
  • Other bug fixes Credits:
  • Special thanks to Marco Ancona(@marcoancona) for guiding in enabling this feature within Skater.
  • Thanks to all other contributors for helping move the library forward every day.

Files (50.1 MB)
Name Size
50.1 MB Download
All versions This version
Views 64367
Downloads 6514
Data volume 9.1 GB701.3 MB
Unique views 53865
Unique downloads 3410


Cite as