Conference paper Open Access

The SSIX Corpora: Three Gold Standard Corpora for Sentiment Analysis in English, Spanish and German Financial Microblogs

Gaillat, Thomas; Zarrouk, Manel; Freitas, André; Davis, Brian


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1247055</identifier>
  <creators>
    <creator>
      <creatorName>Gaillat, Thomas</creatorName>
      <givenName>Thomas</givenName>
      <familyName>Gaillat</familyName>
      <affiliation>Insight Centre for Data Analytics NUIG, Galway Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Zarrouk, Manel</creatorName>
      <givenName>Manel</givenName>
      <familyName>Zarrouk</familyName>
      <affiliation>Insight Centre for Data Analytics NUIG, Galway Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Freitas, André</creatorName>
      <givenName>André</givenName>
      <familyName>Freitas</familyName>
      <affiliation>University of Passau, Passau Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Davis, Brian</creatorName>
      <givenName>Brian</givenName>
      <familyName>Davis</familyName>
      <affiliation>Maynooth University, Maynooth Ireland</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The SSIX Corpora: Three Gold Standard Corpora for Sentiment Analysis in English, Spanish and German Financial Microblogs</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Sentiment Analysis</subject>
    <subject>Opinion</subject>
    <subject>Corpus</subject>
    <subject>Finance</subject>
    <subject>Stock-market</subject>
    <subject>Microblogs</subject>
    <subject>Polarity</subject>
    <subject>Annotation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-05-12</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1247055</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISBN" relationType="IsPartOf">979-10-95546-00-9</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1247054</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc/4.0/legalcode">Creative Commons Attribution Non Commercial 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper introduces the three SSIX corpora for sentiment analysis. These corpora address the need to provide annotated data for supervised learning methods. They focus on stock-market related messages extracted from two financial microblog platforms, i.e., StockTwits and Twitter. In total, they include 2,886 messages with opinion targets. These messages are provided with polarity annotation set on a continuous scale by three or four experts in each language. The annotation information identifies the targets with a sentiment score. The annotation process includes manual annotation verified and consolidated by financial experts. The creation of the annotated corpora took into account principled sampling strategies as well as inter-annotator agreement before consolidation in order to maximize data quality.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/645425/">645425</awardNumber>
      <awardTitle>Social Sentiment analysis financial IndeXes</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
199
83
views
downloads
All versions This version
Views 199200
Downloads 8383
Data volume 12.1 MB12.1 MB
Unique views 186187
Unique downloads 7676

Share

Cite as