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Abstract

The paper proposes a novel method for detecting indicators of image forgery
by locating grid alignment abnormalities in JPEG compressed image bitmaps.
The method evaluates multiple grid positions with respect to a fitting func-
tion, and areas of lower contribution are identified as grid discontinuities and
possibly tampered areas. An image segmentation step is introduced to dif-
ferentiate between discontinuities produced by tampering and those that are
attributed to image content, making the output maps easier to interpret by
suppressing non-relevant activations. Our evaluations, on both synthetically
produced datasets and real world tampering cases against seven methods
from the literature, highlight the effectiveness of the proposed method in its
ability to produce output maps that are clear and readable, and which can
achieve successful detections on cases where other algorithms fail.
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1. Introduction

Digital images have become an integral part of everyday life and, ar-
guably, one of the most popular ways to convey a message. Exploiting the
natural human tendency to give priority to visual information, digital images
are widely utilized as a means to convince audiences, engage users, augment
storytelling, and provide evidence in various domains from business and mar-
keting to journalism and law, to name a few.
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Given the proliferation and wide availability of image processing tools,
the authenticity of a digital image cannot be taken for granted. A doctored
image can influence the opinion of viewers and have serious consequences
on peoples’ beliefs and attitudes. To this end, there has recently been a
growing interest in algorithms to verify the authenticity and integrity of
digital images.

Image forgery detection techniques are often categorized into two classes:
(i) active methods, which rely on an embedded digital signature that is en-
coded at the source side (e.g., by the capturing device) and verified at the
receiver’s end; (ii) passive (blind) methods, that require no prior informa-
tion but instead base their detection on the assumption that the tampering
process may leave invisible but detectable traces on the image.

Even though active methods can be very reliable, their use is not possible
in situations where content from unknown or untrusted sources may contain
important information [1]. In such cases the assessment of content authen-
ticity is based on what has come to be referred to as intrinsic fingerprints,
i.e. inherent traces left from various post-processing operations. The type
and salience of traces left by tampering depends on multiple factors, such as
the type of tampering, the image format and compression parameters.

A recent study on splicing localization1 [2] pointed out a big discrepancy
between real-world cases of tampering and the benchmark datasets that are
typically used in academic literature.

Motivated by this finding, in this work we are interested in extending
the arsenal of tampering detection tools by proposing a novel method. The
method aims to be applicable to a wide range of real-world image forgeries
and practical for users with no specialized training in interpreting forensic
maps. The method is based on a technique that searches for JPEG block-
ing artifact discontinuities as a sign of possible forgery, and detects what is
arguably one of the most commonly performed tampering schemes: image
splicing that breaks the original grid alignment either due to its placement
or due to resampling transformations (scaling, rotation, etc.) of the spliced
area.

The proposed method extends a JPEG grid detection algorithm from the
literature [3] by introducing two novelties:

1Splicing occurs when parts of the original image are replaced by alien content. To-
gether with inpainting and copy-moving, they constitute the most common types of forgery.
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• a grid alignment confidence measure designed to identify whether an
image block violates the global grid pattern, either due to misalignment,
distortion, or complete absence of encoding artifacts (Section 3);

• a content-aware filtering step designed to account for grid discontinu-
ities caused by the image content, strengthening the method’s localiza-
tion ability and overall output interpretability (Section 3.3).

The proposed method, hereafter referred to as CAGI (Content-Aware de-
tection of Grid Inconsistencies), is evaluated against several state-of-the-art
algorithms on three publicly available datasets, including both synthetic and
real-world tampering cases. We test its classification ability, its localization
effectiveness, and the readability of the produced outputs. The experimental
results highlight the method’s robustness over the diverse tampering scenar-
ios and its contribution in terms of successful localizations of unique cases,
i.e. cases that all other methods failed to detect. Java and MATLAB imple-
mentations of CAGI have been made publicly available as part of our Image
Forensics Toolbox2, alongside other state-of-the-art algorithms.

2. Related Work

Many notable contributions have been made towards tackling diverse
cases of image manipulation. One category of approaches includes algo-
rithms based on machine learning, using appropriate features extracted from
images and trained on samples of tampered and authentic images [4, 5, 6, 7].
Others detect operation-specific traces (such as re-sampling) [8, 9], make use
of compression and coding artifacts [10, 11, 12], search for inconsistencies
in the image traces produced by the capturing process [13, 14], and search
for physical inconsistencies such as illumination discontinuities [15, 16]. A
number of surveys present the evolution of the state-of-the-art through time
[17, 18, 1, 19, 2]. Here, we focus on methods for image splicing, organized by
the type of trace they attempt to analyze for detecting forgeries. For each
method, a three- or four-letter abbreviation is also given and used throughout
the paper, following the conventions of [2].

Methods based on JPEG attributes: The method in [10] (BLK) is probably
the most closely related to ours, since it also attempts to detect forgeries by

2https://github.com/MKLab-ITI/image-forensics
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locating inconsistencies in the JPEG blocking artifact. The image is filtered
based on local derivatives, weak edges are detected, and their conformance
with an aligned 8× 8 grid is measured. A feature corresponding to the local
strength of the blocking pattern is extracted. The feature’s variations indi-
cate local absence or misalignment of the grid, which can be considered an
indication of tampering. In [11] (ADQ1), tampering localization is achieved
by exploiting the characteristics of double Discrete Cosine Transform (DCT)
quantization. When splicing an object on a JPEG image, the spliced region
often loses its JPEG traces, due to rescaling, rotation, filtering, or other
transformations. Thus, when resaving the forged image, the unspliced part
will exhibit the traces of two compressions, while the spliced part will only
have undergone one. Recently, in [20] a novel approach is proposed, where
convolutional neural networks are used to compute DCT coefficients and their
histograms, and used to separate single from double compression. Experi-
ments are run on pixel values, noise residuals, and DCT coefficients estimated
from the image, and a window-based approach is shown to be promising with
respect to tampering localization.

Methods based on DCT coefficients: In [21] (DCT), a fast detection
method looks for inconsistencies in JPEG DCT coefficient histograms. The
method in [22] (ADQ2) first estimates the quantization table used by the
first JPEG compression and then attempts to model DCT coefficient his-
togram periodicities. The method in [23] (ADQ3) performs Aligned Double
Quantization inconsistency detection using SVMs trained on the distribu-
tion of DCT coefficients for various cases of single vs double quantization.
The method in [23] (NADQ) searches for Non-Aligned Double Quantization
traces, that is, cases where the JPEG grid has been shifted prior to the second
compression. Finally, in [24] (GHO) the image is recompressed at multiple
different quantizations and subtracted from the original, aiming to detect
JPEG Ghosts, i.e. traces left in the image for which past recompressions
were performed at different quality compared to the unspliced image.

Methods based on CFA interpolation pattern disturbances and noise pat-
terns: The method in [14] (CFA1) looks for disturbances in the image Color
Filter Array (CFA) interpolation patterns left by the image capturing pro-
cess by modelling them as mixtures of Gaussian distributions. The work
in [13] presents two algorithms (CFA2 and CFA3) also exploiting CFA pat-
terns: the first emulates the CFA filtering process and localizes regions that
diverge from the expected result, while the second isolates image noise using
de-noising, and compares noise variance between interpolated and natural
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pixels. Finally, notable approaches based on noise information include the
method presented in [25] (NOI1), where the local image noise is isolated by
wavelet filtering and local variance discrepancies are treated as indicative
of tampering, [26] (NOI2) where the local image noise variance is modeled
using the properties of the kurtosis of frequency sub-band coefficients in
natural images, and [27] (NOI3), where, following extraction of the high-
frequency residual using a high-pass filter, the information is modeled using
a co-occurrence descriptor, and inconsistencies in the local statistical prop-
erties of the descriptor are used to detect spliced regions. A more recent
approach [28] uses PCA-based noise level estimation, coupled with k-means
clustering and and adaptive block segmentation to identify splices. Another
relevant work is [29], where, besides analyzing the local noise variance, the
local texture inhomogeneity is also estimated, since it tends to misguide the
noise algorithm. The authors show that by taking the local inhomogene-
ity into account, tampering localization performance can be increased. In
[30] a different approach is followed, where an autoencoder is trained over
steganalytic residual noise features, and local patches that do not conform
to the learned model are labeled as tampered. Finally, in [31] a deep net-
work is trained to extract noise residue information from an image and apply
patch-based classification to localize tampered regions in an image.

Compared to the state-of-the-art, the proposed method (CAGI) aims to
provide a tampering localization solution designed for robustness in realis-
tic scenarios, while producing output maps that are easy to interpret. We
specifically aim to achieve tampering localization for cases where the his-
tory in terms of acquisition, forgery, and post-forgery transformations of the
images is unknown. The algorithm does not require metadata, JPEG com-
pression parameters, or prior knowledge on the history of the image, nor does
it require that the image is in raw format taken directly from the camera. It
can operate on any file format, provided it has been compressed as JPEG in
its past. The discrimination of the image areas that are aligned to the dom-
inant grid pattern from those that break it is conducted through exhaustive
search, taking also into account the contents of the image and their possi-
ble interference with the attempted modeling. This allows filtering out false
activations and leads to overall cleaner outputs.

As will become apparent from the experimental study of Section 5, CAGI
offers a higher level of versatility and overall performance compared to the
state-of-the-art.
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3. Method Description

Blocking artifacts appear as a regular pattern of visible block boundaries
in a JPEG compressed image as a result of DCT coefficient quantization
and the independent processing of the non-overlapping 8 × 8 blocks during
the DCT. They are prominent in highly compressed images or images that
have undergone multiple re-compressions, and become more subtle as the
compression quality factor (QF) increases. These artifacts ultimately lead to
the formation of a block grid in the JPEG image bitmap, i.e. a pattern of
weak horizontal and vertical edges recurring every 8 pixels, starting from the
upper left corner of the image.

As a first step, our approach improves upon the grid position estimation
approach presented in [3], by adding a secondary level of analysis which
allows us to estimate the grid position more reliably. [3] proposes estimating
a measure K for each candidate grid position, and picking the position with
the highest K. We propose a measure K ′′ drawn from the interrelationships
between values of K at different positions, which is much more robust with
respect to grid anomalies. To estimate K ′′, we first estimate two intermediate
measures: K ′, which calculates the value differences between values of K at
different positions, and S which analyzes the sign patterns of K. K ′′ is then
calculated as a combination of K ′ and S.

Consecutively, we mark the blocks that do not conform to the detected
grid indicated by K ′′ as tampering candidates. However, the absence of grid
conformance in a region may not necessarily be the result of tampering. In-
stead, the visual content of the image may interfere with the grid detection
process. Such cases include image areas that i) contain strong edges (artifacts
appear around high-contrast edges producing a “halo” effect), ii) overexposed
areas (where the soft grid pattern completely disappears), iii) underexposed
areas (where the pattern is noticeably more subtle), and iv) textured areas
containing patterns that resemble a grid. Furthermore, normal sensor noise
introduced during image acquisition or any type of noise embedded in the im-
age may also hinder the grid detection. Thus, we exploit the maps calculated
during the first step, combining them with other post-processing operations,
to generate a series of intermediate maps which are then fused into the final
algorithm output.

The following sections provide a detailed description of the various steps
involved in the proposed method.
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3.1. Estimation of JPEG grid position

To detect the JPEG block grid, we extend the method proposed by Fan
et al. [3]. The original intention of their work was to determine whether
an image had been previously JPEG compressed and estimate the previous
compression parameters. To do this, the method attempts to detect whether
a JPEG grid pattern appears in the image, aligned at position (4,4) and
repeating every 8 steps. The method evaluates inter-pixel differences over
certain crucial positions in the block -essentially, the differences of pixel val-
ues within a block and across block boundaries. In [3], the image is split
into N non-overlapping 8× 8 pixel blocks and for each block(i, j) the scores
Z ′(i, j) and Z ′′(i, j) are computed using Equation 1.

Z ′(i, j) = |A−B − C + D| and Z ′′(i, j) = |E − F −G + H| (1)

where A-H refer to pixel positions on a block as depicted in Figure 1. Then,
two normalized histograms HI and HII are created from the Z ′ and Z ′′ scores
across the image, and a confidence score K is computed using Equation 2.

K =
M∑

m=1

|HI(m)−HII(m)| (2)

where M is the number of histogram bins used in the implementation (see
[3] for further details). Fan et al. [3] empirically found that for pixel values
ranging from 0 to 1, K > 0.25 is an indicator of successful grid detection. We
will be referring to the detected grid position using the coordinates of pixel
A in block(1, 1) (Figure 1). According to this convention the default Grid
Position (GP) for an unchanged JPEG compressed image should be located
at GP (4, 4). In case the grid has been shifted from its original position, e.g.
due to image cropping, an investigation can be conducted by calculating and
finding the highest confidence score K for all possible coordinates of pixel A
within the 8 × 8 block (the coordinates of pixels B-H change accordingly,
keeping their relative positions).

Figure 2 provides more insight into the matter by illustrating four distinct
instances (a-d) of the grid localization process. More specifically, with the
correct grid position being at GP (4, 4), instance (a) is expected to produce
the highest K score. Indeed, in case (a), as can be seen in the respective
histogram plot, the majority of inner-block sampled pixels (A-D, HI) have
low Z ′ scores, while border pixels (E-H, HII), score higher in terms of Z ′′,
which maximizes Equation 2.
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(a) (c)

(b)

Figure 1: a) Depiction of JPEG 8×8 grid (bold lines) over image pixels. Pixels labeled A-
D are sampled periodically to represent the inner part of the grid, while E-H are sampled
on grid intersections [3], b) 32x32 JPEG image displaying visible grid artifacts, c) Pixel
intensity pattern (cross pattern) maximizing Z’ and Z” (Equation 1).

In instance (b), all neighbouring pixels are actually sampled from inner-
block regions, completely failing to detect the grid position, clearly reflected
also in the histogram plot. Even though not included in this example, the
same goes for sampling only from border regions (e.g., GP (8, 4)). Instance
(c) depicts a detection attempted at position GP (5, 4). The inner-block
and border pixels are somewhat correctly sampled i.e, pixels A-D are still
within the inner-block region of the grid pattern while the border samples
miss the grid intersection point by only one pixel in the vertical direction
and thus partially meet the cross pattern (Figure 1.c). As a result, the
respective histogram plot is very similar to the one of case (a), but the
respective K detection score will be lower. Finally, instance (d) showcases
the symmetrical properties of the applied computations. A position search
for A(8,8), produces an identical plot as in case (a), only here, HI and HII

are inverted, as is the sign of HI −HII .
According to [3], the highest K should reveal the grid position.
However, in our experiments with tampered and untampered images, K

was found to be a poor grid location indicator, mainly because periodically
sampling to detect the pattern could be heavily affected by image content,
especially for images of low resolution (small total number of blocks) or high
quality compression (weaker grid pattern) and even more so for tampered
images where entire regions are misaligned with the main grid due to splicing.

In order to limit the possibility of high K scores being a result of image
content, we propose adding a secondary level of analysis, examining the in-
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Figure 2: Illustrative examples of four different instances (a-d) evaluated during the grid
localization process.

1 2 3 4 5 6 7 8

1 1 0

2 1 0

3 1 0

4 1 1 1 H1 1 1 1 L1

5 1 0

6 1 0

7 1 0

8 0 0 0 L0 0 0 0 H0

1 2 3 4 5 6 7 8

1 0 1

2 0 H0 0 0 0 L0 0 0

3 0 1

4 0 1

5 0 1

6 1 L1 1 1 1 H1 1 1

7 0 1

8 0 1

a b c

d
e

Figure 3: Visualized bitmap examples of grids at position a) GP (4, 4), and b,c) GP (6, 6),
with marked sampling instances that present the highest K scores. Expected K-score
patterns for d) GP (4, 4), and e) GP (6, 6).
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terrelations between values of K at different candidate grid positions. This
leads to a new grid confidence measure, namely K ′′. This new confidence
measure does not simply rely on the highest reported K score to locate
the grid position but includes an additional verification step based on the ex-
pected pattern, arising among all calculated K scores, that should be present
at the correct grid location. Thus, our approach looks for a specific pattern
in the values of K instead of simply taking the location where it is highest.
Furthermore, it goes beyond the values of K to also analyze the symmetry of
the histogram patterns. In its original formulation shown in Equation 2, it
does not matter which histogram has more values at high bins and which one
has more at the low bins, but only their absolute difference. However, know-
ing which term out of Z ′ and Z ′′ has higher values (i.e. samples located at
the boundary) and which one has low values (i.e. samples at non-boundary
positions) is also important for localizing the grid. Thus, besides calculating
the K value at each candidate grid position, we also retain a “sign” for the
position, with value 1 if Z ′ has more low values than Z ′′ (i.e. if A is located
in an internal block position and E is alongside the boundary), and value 0
if the opposite is true.

We then exploit the spatial patterns of K scores and this “sign”, to lo-
cate the grid more robustly without being distracted by potential isolated
local maxima of K. More specifically, the expected pattern suggests that
if the highest K score is found at position (i, j), then an equally high K
score should be present at position (i + 4, j + 4), and low scores at positions
(i+ 4, j) and (i, j + 4). Furthermore, the K scores of different GP investiga-
tions remain high and positive as long as A-D are actually part of the inner
block, while E-H are at the borders, or high but with a zero sign, if sampled
inversely. If pixels are sampled being all in the same class (all inner-block
or all border pixels), the respective K scores are expected to be low and
their sign uncertain. Figure 3 demonstrates this emerging pattern. Figure
3.a illustrates a grid at position GP (4, 4) and the sampling instance (out of
all possible 64) that will produce the highest K score with the correct sign.
Figure 3.d shows the respective K-score patterns during the grid location in-
vestigation. Letters H and L stand for High and Low K scores, respectively.
Positions marked with 1 indicate that the inner pixels A-D are correctly part
of the inner region of the grid and E-H are along grid boundaries. Positions
marked with 0 indicate the opposite. Thus, after we calculate the values of
K and locate the sampling instance that produces the highest one for a given
image, we include an additional step in which we also evaluate if the rest of
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the calculated K scores and their signs comply with the expected pattern.
In Figures 3.b and 3.c the grid is shifted by two pixels in both directions.
The grid detection process will locate the grid at GP (6, 6) (Figure 3.c) and
the expected K score pattern will be adjusted as shown in Figure 3.e. Due
to the symmetry of the sampling process, however, the investigation instance
at position (2,2) (Figure 3.b) will also produce the same absolute K score
(with an opposite sign), as well as the same K scores pattern (Figure 3.e).

The final grid estimate is based on a combination of K value patterns, ex-
pressed by an intermediate confidence score K ′, and sign patterns expressed
by a measure S. K ′ is calculated based on Equation 3.

K ′(i, j) =
K(i, j) + K(i + 4, j + 4)−K(i + 4, j)−K(i, j + 4)

4
(3)

where K ′ ∈ [0, 1]. The value of K ∈ [0, 2] is calculated by Equation 2. The
aim of K ′ is to quantify the observed patterns in the values of K. Leveraging
the pattern symmetry of K (without the signs), we may reduce the investi-
gation of possible grid positions from 64 (8-by-8 window of positions) to just
16 (4-by-4 window) and identify the actual position by comparing the sign
of K ′(i, j) to those of the original K(i, j) and K(i + 4, j + 4).

For the sign patterns, we also evaluate these 16 grid positions with respect
to how well they match the expected pattern (see Figure 3, where 1 and
0 indicate positive and negative signs, respectively). Starting at position
GP (i, j) and searching horizontally and vertically, most K signs should be
positive, while for position A(i + 4, j + 4) most should be negative.

A measure S ∈ [0, 1] is used to evaluate how well each position fits this
pattern, calculated as the number of positions having the expected sign given
the candidate grid, divided by the total number of positions.

Then, the final confidence score is formulated as the mean of the K pat-
tern estimate and the sign pattern estimate, as indicated by Equation 4.

K ′′ =
1

2
(K ′ + S) ∈ [0, 1] (4)

K ′′ is a score referring to the total image and its aim is to estimate the
position of the JPEG grid. Once the position of the grid is fixed, we can also
calculate the contribution K ′′block of each individual 8× 8 block to the overall
K ′′ score. The calculations for K ′′block follow that of K ′′, only instead of using
the normalized histograms of all sampled pixels of all blocks to calculate K
(i.e. Equation 2), we compute individual Kblock scores for each block n as:
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1 2 3

a

b

Figure 4: Example of multiple JPEG grids. Black grid is the original grid and orange grid
is introduced by a tampering operation, e.g. splicing.

Kblock(n) = Z ′(n)− Z ′′(n) (5)

and proceed with the calculations as above, to get the respective K ′′block(n).
K ′′ takes advantage of the lightweight implementation and effectiveness

of the K measure and adds an extra level of detection robustness, while
K ′′block(n) allows the identification of image parts that present JPEG grid
inconsistencies, which is the goal in detecting and localizing tampering op-
erations. In Figure 4, for instance, the image blocks a1, a2, b1 and b2 present
traces of two different grids (black for the original and orange for the result
of misaligned image splicing), while blocks a3 and b3 carry only the original
JPEG artifacts. The individual Kblock scores would not reveal the inconsis-
tency because the sampled pixels do not happen to belong to both grids.
K ′′block however, would result in lower scores for the four tampered blocks
compared to the untampered ones, since the expected pattern will not be
equally strong in the respective Kblock-score pattern and sign evaluations.

3.2. Localizing grid discontinuities

The steps of our approach so far have allowed us to detect the presence of
a JPEG grid, and estimate its alignment -which, granted, will in most cases
be located at position (8,8), but cropping the image may result in it being
shifted. It has provided us also with local estimates of the contribution of
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each block to the final estimate, as calculated by Equation 5, which can be
used to localize the forgery.

Consider the following typical case of splicing, in which a host image is
JPEG compressed, an alien region is cut from another JPEG image, pasted
into the host (not aligned with the original grid) and the composite image
is re-compressed as JPEG. At the location where the tampering took place,
the new image bitmap will carry overlapping grid artifacts.

In the ideal case, where the grids’ positions of the original host image and
the one caused by the final compression are known and can be detected using
K ′′, we would only need to plot the heat map of the contribution of each 8×8
block to the maximization of K ′′ for i = 4, j = 4 (standard grid position of
JPEG). Blocks ranging significantly low would correspond to local inconsis-
tencies in the main grid pattern, caused by the alien region. Unfortunately
this is hardly ever the case, since the consistency of the blocking artifacts
throughout the host image is easily disturbed from a variety of factors, such
as strong edges, visual texture patterns, over/under exposure, etc.

To moderate the impact of such effects, we exploit all information gath-
ered during the previous procedure. Besides the heat map of local block
contributions to K ′′, we also produce a series of auxiliary maps aimed to
isolate and remove the artifacts produced by such phenomena, and only keep
the regions that we can confidently assume that are violating the JPEG grid
due to tampering.

To produce these masks we exploit: a) the heat map of the local K ′′block
scores for the best-fitting grid; b) the heat maps of the local K ′′block scores
for all other candidate grids; c) an edge detection map used both to remove
strong edges from the results (as they tend to disrupt false positives) and to
locate soft, widespread edges, (which we use as indicators that the block is
suitable for accurate grid estimation); and d) a map identifying over- and
under-exposed areas, where grid detection would be impossible anyway, and
thus any inconsistencies found there are unreliable.

Figure 5 presents an overview of the method. A series of Heat and Help
Maps are built and combined to produce the final output. In Figure 5 we
use an image example as input, and visualize the intermediate stages up to
the final output. The input image is taken from the Fontani et al. Syn-
thetic dataset (Class 4) [32] with the tampered area marked by the semi-
transparent, yellow-outlined rectangle in the initial image.

With respect to information types a) and b), for each image block we cal-
culate the rectified K ′′block scores for the 16 possible grid coordinates (Equation

13



Input Image 

Rescale and 

mark the 

class per 

block 

 

 

 

 

A1. Calculate K’’ for all 16 Grid Positions (GP)  

 

A2. Calculate mean of 

all GP per block 

A3. Store the heat map 

of the best !tting Grid  

Heat Map A 

Heat Map B  

1-HeatMap  

Help Map 1 

In a 3x3 

window, 

replace 

all values 

with  

window’s 

mean 

D
iv

id
e

 in
to

 b
lo

ck
s 

B1. Test edge-detecting kernels  

and store highest con!dence score 

B2. Classify each tile as 

containing soft or  strong edges 

Help Map 2 
  So! Edge | Strong Edge 

Help Map 3 
Over exposed  | Under exposed 

B3. Convert to HSV.  Threshold the V channel  to 

classify blocks as over or under exposed 

A4. Mark blocks that 

consistently  present low 

responses 

C1 

C2 

C3 

Output 

Localizing Grid Discontinuities  

Content-aware Filtering 

R
e

sc
a

le
 &

 T
ile

 im
a

g
e

 

K’’=0.029 K’’=0.065 K’’=0.084 K’’=0.182 

K’’=0.192 K’’=0.201 K’’=0.229 K’’=0.274 

K’’=0.333 K’’=0.357 K’’=0.382 K’’=0. 439 

K’’=0.457 K’’=0.474 K’’=0.605 K’’=0.794 

Mark=0  

if Help 

Maps=1 

Adjust values 

of 

ambiguous 

parts 

Mean !lter  

Figure 5: Overview of the proposed method with visualized example results of the inter-
mediate stages and final output.

6), and then compute the mean block response (Equation 7).

fit(x) = H[K ′′block(ix,jx)] ·K
′′
block(ix,jx), x ∈ [1, 16] (6)

fitBLK(n) =
1

16
×

16∑
x=1

fit(x) (7)

where H[k] is the Heaviside step function, and (ix, jx) is the pair of coor-
dinates for one of the 16 candidate grid positions within the block. We
thus generate two maps, one containing the mean block responses for all 16
possible grid alignments, and one for the best-fitting grid alignment.

In Figure 5, the outputs (in the form of heat maps3) for six out of the 16
investigated grids for Equation 6 are depicted in Figures 5.A1. The upper
row of A1 shows the outputs reporting low K ′′ while the lower row shows the
higher scoring K ′′ grid position searches.

3All heat maps in the paper are based on MATLAB’s parula colormap.
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It can be seen in this example that, as we move from the least to the best
fitting grid, the tampered region becomes visible as an area of low response
values. In parallel, however, all grids, even the ones with low K ′′ scores,
present strong responses at certain locations where the image content disrupts
the result of Equation 5, mostly due to the presence of high-contrast edges.
In a similar manner, weak responses can be found for all grids at under-
exposed (dark) image areas and at bright image regions (upper right corner),
where the grid pattern is more subtly present. The various Heat Maps and
Help Maps we have devised are aimed to remove those effects and only keep
the actual tampering trace. Figures 5.A2 and 5.A3 show the calculated mean
responses of all 16 grids per block and the responses of the best detected grid,
respectively. Both maps have been mean filtered with a small window size
to remove spurious outputs.

One effective way to separate regions where the grid is actually broken
from those where the grid is made undetectable due to content, is to look
at the mean response: if a region has low response for all alignments, it is
most likely due to content and not due to misalignment to a specific grid.
We want to suppress these responses, thus we take the difference between the
mean response and the response of the best detected grid. This gives us Heat
Map A (Figure 5), where many areas with undetectable grids are suppressed
while areas of grid pattern discontinuity are emphasized. The subtraction of
A2 from A3 has the additional effect of resulting in Heat Map A having high
values in candidate tampered areas and low values in untampered areas.

A second intermediate map is Heat Map B (depicted in Figure 5), aimed
to be used later as a weighting factor in characterizing blocks as tampered or
not. It is produced by inverting the best fitting grid map, so that locations
of grid inconsistencies return high responses. In this sense, Heat Map B
contains the base result of the grid inconsistency detection algorithm.
3.3. Content-aware filtering

While Heat Map A was produced by removing misguiding regions after
identifying those blocks that did not contain a detectable grid in any align-
ment, the output is far from easy to interpret. It is evident by examining
the heat map (Figure 5, Heat Map A) that an inexperienced user would
have difficulty assessing the location of the actual tampering by inspecting
the map. In an effort to produce more reliable and interpretable outputs,
we proceed with an extra computational step of coarse image segmentation
based on image content. There are four types of image content we wish to
be able to detect in order to analyze and filter the initial output:
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1. homogeneous areas, i.e. areas where the intensity gradient between
neighboring pixels is near-zero,

2. over/under-exposed areas,

3. areas of high-edge contrast, and

4. areas of soft edges.

With respect to homogeneous areas (point 1), the problem is that, when
JPEG encoding is applied on image parts of near-uniform colors that span
multiple image blocks, the grid pattern is exceptionally weak or non-existent
even for low quality encodings. Thus, we need to determine whether grid
discontinuities (including complete absence or significantly weaker artifacts)
are signs of tampering or simply due to homogeneous areas. To this end we
produce a specialized map, depicted in Figure 5 as Help Map 1, in which we
mark blocks that score consistently low (near-zero) over all 16 GP.

Over- and under-exposed blocks (point 2) also make grid detection very
difficult, and thus might mislead the detection algorithm. These blocks can
be detected by converting the image into the HSV space and using upper and
lower thresholds, respectively, in the Value (V) channel. In our implementa-
tion, we empirically found that mean values that are higher than 95% of the
channel maximum possible value can be securely classified as over-exposed,
while values lower that 5% can be classified as under-exposed. The result is
stored in Help Map 3.

With respect to detecting areas of high-edge contrast and soft edges
(points 3 and 4), the aim is to isolate regions containing “soft” edges, i.e.
edges that are strong enough to create content variance and allow grid local-
ization, but not so strong as to disrupt the localization algorithm. Regions
characterized by soft edges can be considered the most representative in terms
of the grid fitness scores they produce. We need a representative value to use
for the regions that we marked as untampered/unsuitable for detection using
the Help Maps. This value needs to be low enough to allow tampered regions
to stand out, but not so low as to end up highlighting the rest of the im-
age. Localizing regions of soft edges and getting their mean fitness provides
a dynamic way to get such a value, which will allow us to produce output
maps that are not only accurate in terms of localization, but contain enough
contrast between tampered and untampered regions to be easily readable by
an untrained human investigator.

We employ a novel efficient edge extraction scheme inspired by [33] that
is able to adaptively classify the detected edges as salient or soft. To en-
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sure consistent computational times and results, the input image is resized
to the largest dimension scaled to 960 pixels (the smallest is scaled near-
proportionately, but ensuring it is a multiple of 8, to allow block-based tiling
and filtering).

This step only serves to identify the softly textured portions of the image,
so as to use their average K” values as a reliable baseline. Rescaling will not
change this property of any image region. Since this step is not essentially
linked to any forensic operation, we do not have to worry about destroying
sensitive traces. Rescaling will not result in any loss of relevant information,
but will save us significant computation time.

The rescaled image is then tiled into non-overlapping 8 × 8 blocks that
are independently processed by a set of 2-dimensional 8 × 8 edge detection
kernels. The kernels are an adaptation of the kernel masks presented in [33].
In our implementation, the kernels are binary masks consisting of two regions
(a dark and a light), defining edges in 12 orientations on 15◦ increments. For
each of these orientations, an appropriate number of instances represents all
possible positions (2-pixel shifts) of the edge within the region of the kernel,
resulting in a total of 58 kernels (Figure 5.B1).

Each image block B(i, j) is then processed by all 58 kernels in order to
calculate an edge confidence score based on Equation 8.

Cz =

∣∣∣∣∣
8∑

i=1

8∑
j=1

B(i, j) · k̄z(i, j)
[

1

Mw

− 1

Mb

]∣∣∣∣∣ ∈ [0, 1] (8)

where Mw and Mb the number of white and black pixels in the kernel,
respectively, and k̄z(i, j) is the bitwise NOR for position (i, j) of kernel kz, z ∈
[1, 58].

When all blocks have been processed by all kernels the highest confi-
dence score is stored for each block. To discriminate block edge responses
into salient or soft, a thresholding step takes place. The image is divided
into six areas (A-F), each of which is further divided into six sub-regions
(a1, a2...a6, b1, b2...b6, ..., f1, f2...f6) as illustrated in Figure 6. To determine a
threshold value for each one of the smaller regions (second level regions), we
calculate (i) threshold Timg to be the mean confidence score over the whole im-
age, (ii) thresholds (TA, TB, .., TF ) to be the mean confidence scores of the tiles
belonging to each first level region, and (iii) (Ta1 , ...Ta6 , Tb1 , ...Tb6 , ..., Tf1 , ..., Tf6)
to be the mean confidence scores of each second level region. Then, the
threshold for each second level region is selected to be the largest among
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Figure 6: Image partitioning used for the determination of local edge thresholds.

the one calculated from the second-level region, the one calculated from the
containing first-level region, and the overall image threshold. For instance,
in the case of sub-region a1, we would set T ′a1 = max(Ta1 , TA, Timg).

This thresholding process is important because it evaluates strong edges,
not by an absolute number but locally, taking into account local image statis-
tics. Applying the thresholding is crucial for the quality of the output maps,
because these maps have scaled value ranges: this means that, in the absence
of high-contrast edges, low-strength edges would be dominating the output
heat map and would falsely indicate possible forgery. The proposed adaptive
thresholding scheme scales the produced thresholds in relation to the overall
contrast of the content and overcomes the issue.

The bottom part of Figure 5 illustrates the content-aware filtering part of
the method. Specifically, Figure 5.B2 depicts the color-scaled illustration of
the highest confidence scores Ck per block. Help Map 2, depicts the example
maps resulting after the classification of the blocks as containing soft and
strong edges, respectively. The first map presented under Help Map 3 shows
the map of under-exposed blocks and the second, being flat, informs us that
in this particular image no over-exposed blocks were found.

3.4. Creating the final output map

The final step of the method aims at producing a readable output, with
clear contrast between tampered and untampered regions. To this end, it
utilizes all intermediate information, i.e Heat Maps A,B and Help Maps 1-3
(Figure 5). Heat Map A contains the grid discontinuity detection results with
the non-relevant regions suppressed, while Heat Map B contains the output
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of the best matching grid discontinuity detection, and is intended to be used
as a weighting factor that will highlight the non-conforming regions.

In Heat Map A, blocks with high values generally result from over/under-
exposed image regions, homogeneous regions or tampered regions, while
blocks with low values are most likely unsuppressed responses of strong edges.
Since the tampered region is expected to exhibit high values, we mark all
blocks with values lower than the heat map mean as non-tampered. Next,
we use Help Maps 1 and 3 to also mark homogeneous and over/under-exposed
blocks as non-tampered. The visualized output of this process is illustrated
in Figure 5.C1.

The resulting map is then weighted by Heat Map B (i.e. the inverse
heat map of the best grid) resulting in the heat map depicted in Figure 5.C2.
This map could itself serve as the final output of the algorithm, as the highest
values are expected to correspond to the tampered region. However, the issue
remains on what value to assign to the blocks marked as untampered, so as to
create a human-readable map with an easily visualizable value range where
the tampered regions will stand out. Assigning zeros is not an ideal option
because heat map visualizations are always relative in scale. Thus if the
original map values were high, the presence of zeros may result in an output
that is almost binary, with zeroed regions on the one end, and all other blocks,
tampered and untampered alike, on the other. To mitigate this issue, at the
final step we replace all marked blocks with the mean value of those soft
edge blocks (Help Map 2) that are not classified as homogeneous (Help Map
1). We experimentally found this value to serve as a good approximation to
the value range of untampered, non-zeroed regions. Zeroed and non-zeroed
untampered block values are now brought to roughly the same range (Figure
5.C3), which should make the tampered region visually stand out in the heat
map. The final output map is produced by mean filtering (Figure 5.C3).

Figure 7 showcases the importance of the two introduced novelties, i)
the stronger confidence measure K ′′ employed to identify whether a block
follows the global grid pattern or violates it, and ii) the content-aware filtering
stage employed to suppress false activations deriving from image content. By
comparing the outputs produced by the proposed method (fourth row) with
those produced when leaving out either of the two proposed novelties, i.e.
the newly proposed grid alignment confidence measure (second row) and the
content-aware filtering step (third row), it becomes clear that the accuracy
and quality of the output maps improves considerably.
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Figure 7: Examples showcasing the contributions of CAGI. First row: input images where
the tampered area is marked with a red outline. Second row: Outputs maps produced
without the newly proposed grid alignment confidence measure. Third row: Output maps
produced without the content-aware filtering step. Fourth row: Output maps produced
by the CAGI method.

3.5. Inverse discontinuity detection

The proposed method, as described in Section 3, assumes that the discon-
tinuities will appear as areas of lower responses, in terms of K ′′, in relevance
to the rest of the image’s responses, during the search for the best fitting
grid. The relative strength of the responses is, however, very much affected
by the compression Quality Factor of the host (QFh), the QF of the alien
splice (QFs) and the final compression QF of the composite image (QFf ).

Consider, for instance, the following scenarios: i) QFh is high (weak ar-
tifacts), the splicing comes from an image with QFs < QFh and for the final
compression quality, we have QFf > QFh > QFs, and ii) the host image
is compressed losslessly (QF=100), the splice is JPEG compressed, and the
composite image is again saved in lossless format.

In both of these cases, discontinuities will appear as areas of high K ′′

response in relevance to the overall low responses calculated in the image.
That is, the algorithm will locate a grid only on the spliced area, and assign
low K ′′ values to the rest of the image. Due to the inversion step prior to
forming Heat Maps A and B, and combined with the mean value substitution
step of Figure 5.C3, in those cases the algorithm will most likely not be able
to localize the splice. Some algorithms, particularly ones based on noise

20



or block artifact discontinuities handle this by shifting the burden of the
interpretation to the human analyst. In such algorithms, the tampered area
may appear either as a region of disproportionately higher or lower response.
CAGI, however, has an integrated post-processing step that both aims to
increase detection accuracy and to produce more human-readable outputs.
Thus, it is necessary to adjust the algorithm to this eventuality and treat
this sub-case in a targeted manner.

In order to account for cases like these, we introduced an additional
branch to the method that produces a complementary output map. More
specifically, at the last stage of the algorithm when extracting the final out-
put map, instead of filtering (marking as zero) the blocks in Heat Map A
that range under the map’s mean, we now filter those that range over that
value. As before, we also mark the homogeneous and over/under-exposed
blocks and proceed by assigning the mean value of the soft edge blocks (Help
Map 2) that are not classified as homogeneous (Help Map 1).

The complementary output produced by this straightforward, inverted fil-
tering can be presented to end users along with the original output. This will
allow them to choose the most appropriate result based on visual inspection.
We refer to this output as inv-CAGI.

4. Evaluation

We evaluate CAGI through a number of experiments, which provide in-
sight into its potential for i) blind tampering detection and ii) localization,
also evaluating iii) the method’s output interpretability and iv) robustness
against common post-processing operations and in realistic datasets, where
details concerning the image history and applied transformations are un-
known. For all employed datasets and scenarios we additionally provide
results concerning the number of achieved detections of high confidence and
the method’s contribution in terms of detecting unique cases.

With that said, the proposed method is directly compared to seven meth-
ods from the state-of-the-art (Table 1). With respect to the methods de-
scribed in Section 2, ADQ1 was selected to represent approaches that base
their detection on double quantization. ADQ1 has the advantage of being
able to operate on images that had been compressed as JPEG, and were
then decompressed and stored in PNG, which is the case in some datasets.
In contrast, ADQ2, ADQ3 and NADQ can only operate using JPEG im-
ages as input, since they require specific information derived from the JPEG
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file, such as the decompression rounding residue or the quantization matrix
used for the last compression. Since some datasets contain PNG images
which carry the traces of past JPEG compressions but have already been de-
compressed, that information is essentially lost and these algorithms cannot
work. Also, GHO is not part of the selected methods because it produces
several output maps per case, requiring thus manual investigation to trace
the changes between the different maps to locate the forgery. Finally, given
the expected limited applicability of methods that search for disturbances
in CFA patterns, only results from CFA1 are presented as indicative of such
methods.

Table 1: Overview of the selected state-of-the-art methods.

Acronym Description
DCT [21] Looks for inconsistencies in the JPEG DCT coefficient histograms to detect

possible tampering.
BLK [10] Identifies possible tampering by locating inconsistencies in the JPEG blocking

artifacts.
ADQ1 [11] Tampering localization is achieved by exploiting the characteristics of double

DCT quantization.
NOI1 [25] Models image noise using wavelet filtering and treats localized variances as

possible forgeries.
NOI2 [26] Models image noise using the properties of the kurtosis of frequency sub-band

coefficients in natural images.
NOI3 [27] Computes a local co-occurrence map of the quantized high-frequency compo-

nent of the image and locates inconsistencies in the local statistical properties.
CFA1 [14] Models the Color Filter Array interpolation patterns as a mixture of Gaussian

distributions and locates tampering based on detected disturbances.

4.1. Datasets

Table 2 lists the employed datasets.
The first dataset employed in this study is the synthetic dataset by

Fontani et al. [32]. This dataset will allow us to test the effectiveness of
the method for controlled scenarios. It contains 4800 original and 4800 tam-
pered images, which were generated by automatically extracting a fixed-size
square from the center of the image and replacing it in the image, emulat-
ing the effects of a splice (e.g. removing the traces of JPEG compression, or
changing the JPEG grid alignment). The tampered images of the dataset are
split in four distinct classes, each containing a different type of forgery (Table
3). Thus, depending on the class, a forgery should theoretically be detectable
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Table 2: Benchmark image datasets.

Dataset # Fake/Authentic Format
Fontani et al. synthetic [32] 4,800 / 4,800 JPEG
IFS-TC Forensics Challenge [34] 442 / 1,050 PNG (possible JPEG history)
Wild Web Dataset [35] 10,646 / 0 JPEG, PNG, GIF, BMP, TIF

by different combinations of Non-Aligned JPEG quantization, Aligned JPEG
quantization and JPEG Ghost, while other algorithms may also be able to
localize certain forgeries.

Next, we employ the First IFS-TC Image Forensics Challenge training
set [34], a dataset containing user-submitted forgeries and their ground-truth
masks. The dataset was designed to serve as a realistic benchmark (differ-
ent types of tampering, unknown image history and possible post-tampering
transformations). While images in this set are saved as PNG, it is likely
most of them were originally in JPEG format, since they exhibit traces of
past compressions (e.g. blocking artifacts or DCT coefficient histogram peri-
odicities). Therefore, splices may be detectable using JPEG-based methods.

For the two aforementioned datasets, and despite the fact that the lat-
ter is considered to be a realistic benchmark, we also subject the images to
rescaling (95%, 75%, 50%) and recompressing (90%, 70%) operations pro-
ducing in total 5 variants of each original dataset. Since, tampering traces
may disappear after common post-processing operations like resizing and re-
saving (which are operations applied automatically in many online image
storing and sharing platforms, e.g. social media), these variants will allow us
to conduct deeper experimental analysis of the method robustness.

Finally, we experiment with the Wild Web Dataset [35] that contains 78
cases of real-world forgeries. As the forgeries have been circulating various
websites and social media platforms, there exist multiple versions of each
forgery, due to resavings, croppings, and other transformations. The Wild
Web Dataset was formed by collecting a large number of different versions
from each forgery, resulting in a set of 10,646 images.

The uncontrolled, varying conditions under which the tampered images in
this particular dataset were created, shared and collected will allow us to gain
an additional level of insight concerning the robustness of the methods, which
exceeds the limited tests and variations of post-processing transformations
that we can manually subject the images to.
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Table 3: Fontani et al. [32] synthetic dataset classes.

Class 1
Region is cut from a JPEG image and pasted, breaking the 8x8 grid, into an
uncompressed image; the result is saved as JPEG.
Traces: Misaligned JPEG compression

Class 2
Region is taken from an uncompressed image and pasted into a JPEG image;
the result is saved as JPEG.
Traces: Double quantization, JPEG ghost

Class 3
Region is cut from a JPEG image and pasted into an uncompressed image in
a position multiple of the 8x8 grid; result is saved as JPEG.
Traces: JPEG ghost

Class 4
Region is cut from a JPEG image and pasted (without respecting the original
8x8 grid) into a JPEG image; the result is saved as JPEG.
Traces: Misaligned JPEG compression, Double quantization, JPEG ghost

4.2. Evaluation Metrics

Each of the tested methods produces an output map per image, in the
form of a heat map, that can be used to detect forgeries and localize tampered
areas. For tampered images, these output maps should have significantly
distinct value assignments for pixels belonging to untampered image regions
compared those belonging to tampered regions, while for authentic images
the output maps should ideally be flat.

Tampering detection: For our first test, we evaluate the methods’ ability
to correctly classify tampered images based on the value distribution of the
output maps following the methodology proposed in [35].

More specifically, the datasets provide binary ground truth masks for
all tampered images, while an artificial ground truth mask is used for each
untampered image similar to [24] and [32], which corresponds to a block of
size 1/4 of each dimension, placed in the image center. The Kolmogorov-
Smirnov (KS) statistic is used to compare the value distribution for the two
regions of the masks (tampered/untampered).

KS = max
u
|C1(u)− C2(u)| (9)

where C1(u) and C2(u) are the cumulative probability distributions inside
and outside the mask, respectively. If KS surpasses a threshold, a positive
detection is declared. ROC curves are calculated by shifting the threshold
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for each algorithm, and evaluating how many images return positives in the
tampered and untampered subsets. This methodology is appropriate for
datasets that contain both tampered and untampered images, and sets a
baseline against overestimation of a method’s ability to localize tampering.

Tampering localization and output interpretability: Next we evaluate the
methods, in terms of their localization quality and output readability based
on the pixel-wise agreement between the reference mask and the produced
output map of each method. For these tests only tampered images are eval-
uated, while the quality of the response is measured in terms of the achieved
F-score (F1). This methodology requires the output maps to be thresh-
olded prior to any evaluation. Since the range of values of the output maps
for each algorithm varies, and in an effort to be fair, we first normalize all
maps in the [0, 1] range and proceed by successively shifting the binarization
threshold by 0.05 increments, calculating the achieved F1 score for every
step. The localization performance is presented in the form of F1 curves,
while the readability of the output maps is related to the range of different
binarization thresholds that yield high F1 scores, i.e. of at least 70% of the
recorded maximum F1 score. F1 scores that remain high for a wide range
of binarization thresholds indicate that the two classes (tampered regions/
untampered regions) have been correctly assigned distinctive enough values,
such that interpreting the output would be easy for both human inspectors
and unsupervised computer systems.

5. Experimental Results

This section includes the experimental results per dataset. To keep the
presentation compact and to the point, we focus more on three of the ref-
erence methods that yield overall good results, while producing some of the
most clear tampering localization heat maps. These include blocking artifact
discontinuities (BLK), aligned double quantization (ADQ1) and SpliceBuster
(NOI3). The experimental evaluation and comparison with the rest of the
reference methods will be given more concisely in section 5.4, where we dis-
cuss the overall performance. Outputs in the form of heat maps produced
by all methods employed in this paper, on various images from the realistic
datasets, are available in Figure 16.
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Figure 8: Results in the Fontani et al. synthetic dataset over all classes: a) ROC curves,
b) F1 score curves.

5.1. Results on the synthetic dataset by Fontani et al.

The dataset by Fontani et al. is synthetically generated, allowing to
test the effectiveness of methods on different types of forgery. Figure 8(a)
presents the experimental results using the first evaluation methodology over
the whole collection. CAGI is overall one of the best performing methods
together with BLK, achieving approximately 70% true positive rate at a 5%
false positive rate.

It should be noted that NOI3, being a representative of noise-based algo-
rithms, is not the most appropriate algorithm for this dataset. The Fontani
et al. synthetic dataset was created as a means of evaluating JPEG-based
algorithms, thus it deliberately includes forgeries which exhibit JPEG traces
of tampering with minimal impact on content and noise.

Figure 9 presents the per-class results for the CAGI, BLK, NOI3 and
ADQ1 methods. In Classes 1 and 4, where the tampered images carry
traces of misaligned JPEG compressions, i.e the principle which CAGI is
designed around, the method demonstrates competitive results and is only
outperformed by ADQ1 in Class 4, where double quantization traces are also
present. Interestingly, however, CAGI also manages to rank among the best
performing methods for the other two classes.

Along with the class of tampering, a second factor comes into play con-
cerning the robustness of the detection: the QF of the host image in relation
to the final compression QF. The host images of this dataset were acquired
in lossless format and (depending on the class) were compressed with vary-
ing compression qualities QF1(40 − 80). After the splicing operation, the
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Figure 9: ROC curves in the Fontani et al. synthetic dataset per class: a) Class 1, b)
Class 2, c) Class 3, d) Class 4.

resulting images are recompressed into JPEG.
In CAGI, discontinuities of the image grid appear as lower responding

areas in the heat map of the best responding grid and the heat map of the
mean response of all tested grids. Class 4, is completely in-line with CAGI’s
design. The misaligned JPEG splice can be generally traced easily. For Class
1, the localization of the misaligned patch is also relatively easy to achieve
when the host is compressed with a low QF. However, as the QF of the
final compression increases, the area that was initially uncompressed (host)
only gets light artifacts after compression, while the double pattern within
the spliced region is also degraded. This makes the detection vulnerable to
responses derived from content.

CAGI is much more robust for tampered images of Class 2, since it can
rely on artifacts that are already present in the host. The tampered area
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Figure 10: ROC curves in the Fontani et al. synthetic dataset Class 3: inv-CAGI, BLK,
NOI3, ADQ1.

has lower responses due to the higher final QF2 compression. Misses occur
only in cases of extreme content-related responses that the employed content
aware process fails to account for.

Class 3 is the most challenging for CAGI. The tampered patch is aligned
to the grid created by the final compression and thus, for lower QF, both
mean and best grid responses will highlight the tampered region with higher
values. The method is this case is producing inversed maps, compared to
what it was designed for. Depending on the QFs and the image content, this
may not be an issue; tampered and untampered region will only appear in-
versed in the final output. In many cases, however, the operations that take
place next, implemented with the intention of suppressing responses corre-
sponding to high frequency content, may falsely treat the detection as edges.
Inversed CAGI (inv-CAGI), as described in Section 3.5, was implemented to
account for such cases, which are in fact quite common. The curves in Figure
10 attest the added value of the inv-CAGI variant of our method.

Moving on to the evaluations of the localization and readability quality of
the maps, Figure 8(b) presents the mean F1 scores per binarizarion step over
the whole Fontani et al. collection. The achieved localization is evaluated
by the maximum mean F1 score for each method (at its respective best
performing binarization threshold). CAGI achieves once more one of the
best reported performances.

As discussed before, the interpretability can be evaluated based on the
range of binarization thresholds where the achieved F1 remains high, as it
suggests that the tampered and untampered image regions are characterized
by significantly different values in the output maps. ADQ1, which produces

28



Table 4: Reported detections on Fontani et al. dataset for F1score >= 0.7 and F1score >=
0.8 at each method’s best binarization threshold.

F1score >= 0.7 F1score >= 0.8
Method Detections Unique Detections Unique
ADQ1 1810 246 1561 342
BLK 578 29 392 20
CFA1 158 1 133 3
DCT 1114 6 820 7
CAGI 1711 433 1264 279
inv-CAGI 222 0 20 0
NOI1 84 0 48 0
NOI2 21 0 7 0
NOI3 1112 259 849 201

almost binarized outputs by design, is an indicative example of good readabil-
ity. In the Fontani et al. dataset, ADQ1 manages to achieve good localization
(mostly due to the very high performances in Classes 2 and 4) making it the
best performing approach in the dataset. CAGI is a close second in terms
of readability. On the other hand, BLK, which was the most competitive
method in the previous evaluation, has significantly lower F1 scores.

Table 4 reports the best localized detections achieved per method. The
detection threshold was set to 0.7 which generally signifies a good localiza-
tion and 0.8 which is a near perfect score for most applications. The search
was performed for the best binarization step for each method. Unique corre-
sponds to the number of detections exclusively achieved by that method for
the given F1 threshold. ADQ1 has the greatest contribution in this dataset in
terms of detection, followed by CAGI and also DCT and NOI3. Concerning
the unique cases, ADQ1 is outperformed by CAGI and NOI3 for the relaxed
threshold and followed closely for the near perfect localizations, indicating
that all three methods could be utilized in a fusion scheme not only to rein-
force the detections’ confidence but also in a complementary fashion. DCT
on the other hand, or even BLK, manage to achieve good detections but
do not contribute with unique cases because their detections are a subset of
other method (i.e., DCT’s detections are mostly common with ADQ1, and
BLK’s with CAGI, NOI3 and ADQ1)

5.2. Results on the First IFS-Challenge dataset

The Challenge dataset, being the first attempt to produce a realistic
benchmark, is much harder to tackle by any single method. The performance
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Figure 11: Results on the Challenge dataset: a) ROC curves, b) F1 score curves.

Table 5: Reported detections on IFS-Challenge dataset for F1score >= 0.7 and F1score >=
0.8 at each method’s best binarization threshold.

F1score >= 0.7 F1score >= 0.8
Method Detections Unique Detections Unique
ADQ1 4 1 2 0
BLK 8 0 6 2
CFA1 2 0 1 0
DCT 5 1 1 0
CAGI 16 6 9 2
inv-CAGI 3 0 2 0
NOI1 7 1 4 1
NOI2 3 1 2 1
NOI3 38 28 26 18

evaluations presented in Figure 11(a) are indicative of the above statement;
there are few detections for most algorithms at a 0% false positive rate, and
even when relaxing the threshold, the true positive detection rate increases
slowly. Thus, any contribution in terms of unique detections and/or readable
outputs is of great importance in this dataset.

Figure 11(b) presents the calculated mean F1 scores on this dataset for
all competing methods. Again, in comparison with the rest of the methods,
CAGI reports one of the highest F1 scores as well as readability quality as it
achieves high F1 scores over a wide range of thresholds.

Table 5 reports the best localized detections achieved per method. As
before, the detection thresholds were set to 0.7 and 0.8 and the search was
performed for the best binarization step for each method. NOI3 has the
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greatest contribution in this dataset, followed by CAGI and BLK.

5.3. Results on the Wild Web dataset

As the Wild Web dataset does not contain untampered images, the eval-
uations can only be performed based on the pixel-level localization accuracy
on the tampered images.

Figure 12 reports the mean F1 scores calculated over the whole collection
(10,646 images). Even though the values of F1 are very low for all methods
one should take into account the fact that the collection consists entirely
of actual forgeries sourced from the Web. The dataset is organized into
78 cases of confirmed forgery. For each case, reverse-image search engines
(Google and TinEye) were used to collect as many near-duplicate instances
as possible from the Web. This means that the number of instances for each
case varies. Some cases have as little as 2 instances, while others more than
700. When a case that has many instances is not detectable by a method, it
severely affects the calculated F1 score. Thus, the F1 curves were created by
first averaging the F1 scores per case so as to minimize the impact that the
unbalanced cases introduce to the calculations. CAGI presents the highest
reported F1 score followed closely by NOI3. CAGI, however, additionally
presents stable high F1 results for a wider range of binarization thresholds.
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Figure 12: F1 score curves on the Wild Web dataset.

The performance of methods in the Wild Web set is also evaluated in
terms of achieved detections and contribution with unique cases. As in [35]
a detection is classified as correct when at least for one instance of a given
sub-case the method produces an F1 score higher than a set threshold. Ta-
ble 6 reports the correctly localized case detections for F1score >= 0.7 and
F1score >= 0.8. Detections corresponds to the number of cases detected by
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Table 6: Reported detections (total and unique) on Wild Web dataset for F1score >= 0.7
and F1score >= 0.8 for each method’s best binarization threshold per case.

F1score >= 0.7 F1score >= 0.8
Method Detections Unique Detections Unique

ADQ1 8 1 3 0
BLK 7 0 4 0
CFA1 5 0 1 0
DCT 10 0 5 2
CAGI 19 4 6 0

inv-CAGI 22 3 13 7
NOI1 12 1 4 1
NOI2 6 0 2 0
NOI3 15 1 6 1
PENS 33 21

the respective method, Unique corresponds to the number of cases detected
exclusively by that method, and PENS (Perfect ENsemble Sum) corresponds
to a theoretical perfect ensemble, where at least one method achieved detec-
tion (i.e. essentially summing the total number of cases detected out of the
initial 78).

The contribution of overall detections as well as unique detections for
the CAGI method (and its variant inv-CAGI) is clearly highlighted by the
results. Moreover, the results indicate that the detections (i.e. F1 scores
exceeding the threshold) remain prominent for a wider range of thresholds
compared to competing methods. This means that in the output maps of
CAGI, the value difference between the tampered and the untampered area
is greater, making the visual output more striking and easy to interpret by
non-experts.

5.4. Analysis of robustness and overall performance

Following the evaluations of the previous sections, we proceed to investi-
gate the robustness of the methods when images are subjected to common
post-processing operations. To this end we conducted evaluations on all
metrics using the Fontani et al. and the Challenge datasets while i) resaving
the images at JPEG QF90 and QF70, and ii) rescaling the images at 95%,
75% and 50% of their original size and resaving them losslessly. For brevity,
when analysing the tampering detection robustness we do not present the
KS curves for each algorithm, but instead estimate the threshold value for
which the algorithm returns a true negative rate of 95%, and calculate the
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percentage of true positives for the same threshold. As for the localization
robustness, again we compactly present the results by reporting the best
F1 score (at the best binarization step), per method. Figures 13 and 14
summarize the results on the Fontani et al. and Challenge dataset variants,
respectively.
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Figure 13: Evaluation of robustness on the Fontani et al. dataset: a-b) KS scores on the
original dataset and after recompressions -rescales, c-d) F1 scores on the original dataset
and after recompressions -rescales.

Based on the results presented in Figures 13 and 14 it is apparent that
resaves (plots (a) and (c) in both figures) will cause a degree of feature
degradation due to rounding errors for all methods. Both detection and lo-
calization are affected as the JPEG compression quality drops but algorithms
seem to retain their performance relatively well. CAGI in particular presents
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Figure 14: Evaluation of robustness on the Challenge. dataset: a-b) KS scores on the
original dataset and after recompressions -rescales, c-d) F1 scores on the original dataset
and after recompressions -rescales..

very robust results compared to the rest of the methods when the images
have been subject to resaves. On the Fontani et al. dataset it manages to
surpass the front-runners (i.e, BLK, for KS and ADQ1 for F1) and seems to
be less affected by the transformation on the Challenge dataset. On the other
hand rescaling operations have a much stronger impact on the detection and
localization performances for all methods (plots (b) and (d) in both figures) .
The effect is especially apparent in the Fontani et al. tests where the original
performances were high, and less so in the Challenge sets were performances
where modest to begin with. For the KS metric in particular, it should be
noted that since success rates in the more complex Challenge dataset are at
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Table 7: Reported detections (total) for F1score >= 0.7 on the original datasets and after
images were subjected to post-processing operations

Fontani et al. Challenge
Original Recompress Rescale Original Recompress Rescale

90% 70% 95% 75% 50% 90% 70% 95% 75% 50%
CAGI 1711 1616 918 51 19 17 16 13 7 13 7 7
BLK 578 335 102 0 0 0 8 5 6 3 3 2
NOI3 1112 946 551 15 6 1 38 21 13 34 31 26
ADQ1 1810 989 629 0 0 0 4 3 2 2 2 2

best around 20%, which, given the difference between the masks used for
positive detection and negative detection may be rather close to random,
analysis on the detection robustness can unfortunately not be reliable.

To better focus on the performance degradation caused by these transfor-
mations, we decided to study only those images that were correctly detected
on the original version (i.e. had tampering localizations of F1score >= 0.7
prior to the transformations). Table 7 shows the number of successful detec-
tions on these particular images after they were subjected to transformations,
compared to the detections achieved originally. As can be seen, CAGI is very
robust with respect to recompressions. On the other hand, rescaling has a
clear negative impact for all methods and datasets. An exception could be
the case of NOI3 and CAGI for the Challenge dataset, but the limited number
of original detections does not allow us to draw broader conclusions.

Moving on the discussion to the overall performance, Figure 15 summa-
rizes the recorded performance of all methods on the three employed evalua-
tion criteria; i) the ability of a method to retrieve true positives of tampered
images at a low level of false positives (KS@0.05); ii) the ability to achieve
good localization of the tampered region within the image (F1), and; iii) the
readability of the produced heat map, i.e. a high distinction of assigned val-
ues for pixels belonging to tampered versus untampered regions, expressed
as the range of different binarization thresholds that result in high F1 scores
(> 70% of the respective maximum F1 score).

At this point some overall remarks concerning the two last criteria should
be made: The proposed method is not only performing among the top meth-
ods concerning the F1 score in all three datasets, but has also a good (wide)
range of possible binarization thresholds that lead to high F-score for all
tested datasets. This attribute is of great importance since it could be lever-
aged within an automated binarization process. For instance, CAGI can be
expected to produce close to optimum F1 score (localization) for a threshold
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KS F1 [thress range] KS F1 [thress range] F1 [thress range] 

CAGI 0.70 0.40 0,3-0,7 0.17 0.16 0-0,8 0.234 0,15-0,6

inv-CAGI 0.31 0.19 0,8-0,95 0.08 0.11 0-0,95 0.272 0,4-0,95

BLK 0.69 0.21 0,35-0,65 0.21 0.10 0-0,35 0.227 0,3-0,5

NOI3 0.45 0.28 0,05-0,4 0.28 0.18 0,05-0,4 0.230 0,05-0.1

ADQ1 0.48 0.43 0,05-0,95 0.13 0.10 0-0,5 0.209 0,05-0,8

DCT 0.53 0.33 0,25-0,55 0.25 0.11 0-0,65 0.246 0,3-0,6

NOI1 0.23 0.12 0-0,35 0.21 0.09 0-0,25 0.249 0,1-0,35

NOI2 0.08 0.12 0-0,3 0.04 0.10 0-0,05 0.225 0,05-0,2

CFA1 0.05 0.13 0-0,25 0.01 0.10 0-0,2 0.203 0,1-0,3

Fontani et. al Challenge Wild Web

Figure 15: Summary of results: performance of methods in the three datasets: KS score
(retrieved True Positives for 5% False Positives rate), F1 score (maximum reported value);
thres. range (binarization step range that produces F1 scores > 70% of the respective
maximum value)

of 0.4 or 0.5 and inv-CAGI for higher values of 0.8 and above. Other meth-
ods, e.g. BLK, have ranges that fall into completely different values in the
three datasets, or have limited binarization levels to choose from (e.g NOI2,
NOI3).

Overall, the results of Figure 15 attest the versatility of the proposed
method. The method manages to maintain high performance in all three
tested metrics across all datasets showcasing a good balance between detec-
tion and localization of forgeries, as well as high readability of its outputs.

Another advantage of the method is that it does not require parameter
selection (since a reasonable choice for the binarization threshold works very
well across all dataset). This makes it ideal for use in practical settings by
non-experts. In fact, the method has been integrated in a web-based image
forensics service that has been co-designed and tested in realistic settings by
journalists and media experts [36].

6. Conclusion

The paper presented a novel tampering localization method based on
JPEG blocking artifacts discontinuities for detecting splices. The key design
goals for the method have been high robustness over a variety of forgery cases,
achievement of successful detections in cases where other algorithms fail, and
the generation of “clean” outputs that are easy to interpret by non-experts.

Experiments were performed on both synthetic datasets and realistic/real
tampering cases, and the proposed method was directly compared to seven
state-of-the-art techniques, representing different classes of forensic analy-
sis. Experimental results across all datasets demonstrated that the method
is robust in terms of localization accuracy and readability of the produced
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Figure 16: Heat maps produced by the methods: Input images in columns 1-4 are taken
from the Challenge dataset and columns 5-7 from the Wild Web dataset. For the proposed
method, the outputs shown for input images 1-4 and 6 are produced by CAGI, while for
images 5 and 7 they were produced by inv-CAGI. The tampered part in each case is drawn
using a white outline on all heat maps.

outputs. More importantly, since the reported detections contributed by our
method during the experimental evaluation include many unique cases (i.e.

37



where other algorithms fail) we conclude that including it in an ensemble
forensics analysis system would significantly improve its detection perfor-
mance. This is a direction we plan to explore in the future.
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