Journal article Open Access

Content-aware Detection of JPEG Grid Inconsistencies for Intuitive Image Forensics

Iakovidou, Chryssanthi; Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">image forensics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">JPEG artifacts</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">forgery localization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">image splicing</subfield>
  </datafield>
  <controlfield tag="005">20190409134519.0</controlfield>
  <controlfield tag="001">1246437</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI</subfield>
    <subfield code="0">(orcid)0000-0001-7296-5942</subfield>
    <subfield code="a">Zampoglou, Markos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI</subfield>
    <subfield code="0">(orcid)0000-0002-0708-7431</subfield>
    <subfield code="a">Papadopoulos, Symeon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI</subfield>
    <subfield code="0">(orcid)0000-0001-6447-9020</subfield>
    <subfield code="a">Kompatsiaris, Yannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5109916</subfield>
    <subfield code="z">md5:5c51526c7f4f0b1c260fd167d88a7e36</subfield>
    <subfield code="u">https://zenodo.org/record/1246437/files/CAGI.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-05-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:1246437</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Journal of Visual Communication and Image Representation</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI</subfield>
    <subfield code="0">(orcid)0000-0002-2382-4817</subfield>
    <subfield code="a">Iakovidou, Chryssanthi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Content-aware Detection of JPEG Grid Inconsistencies for Intuitive Image Forensics</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">700024</subfield>
    <subfield code="a">Retrieval and Analysis of Heterogeneous Online Content for Terrorist Activity Recognition</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">610928</subfield>
    <subfield code="a">REVEALing hidden concepts in Social Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The paper proposes a novel method for detecting indicators of image forgery by locating grid alignment abnormalities in JPEG compressed image bitmaps. The method evaluates multiple grid positions with respect to a fitting function, and areas of lower contribution are identified as grid discontinuities and possibly tampered areas. An image segmentation step is introduced to dif-ferentiate between discontinuities produced by tampering and those that are attributed to image content, making the output maps easier to interpret by suppressing non-relevant activations. Our evaluations, on both synthetically produced datasets and real world tampering cases against seven methods from the literature, highlight the effectiveness of the proposed method in its ability to produce output maps that are clear and readable, and which can achieve successful detections on cases where other algorithms fail.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1246419</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1246437</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
128
147
views
downloads
All versions This version
Views 128115
Downloads 147135
Data volume 742.2 MB689.8 MB
Unique views 122113
Unique downloads 132125

Share

Cite as