Journal article Open Access

Content-aware Detection of JPEG Grid Inconsistencies for Intuitive Image Forensics

Iakovidou, Chryssanthi; Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yannis


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.1246437</identifier>
  <creators>
    <creator>
      <creatorName>Iakovidou, Chryssanthi</creatorName>
      <givenName>Chryssanthi</givenName>
      <familyName>Iakovidou</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2382-4817</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Zampoglou, Markos</creatorName>
      <givenName>Markos</givenName>
      <familyName>Zampoglou</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7296-5942</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Papadopoulos, Symeon</creatorName>
      <givenName>Symeon</givenName>
      <familyName>Papadopoulos</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0708-7431</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
    <creator>
      <creatorName>Kompatsiaris, Yannis</creatorName>
      <givenName>Yannis</givenName>
      <familyName>Kompatsiaris</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6447-9020</nameIdentifier>
      <affiliation>CERTH-ITI</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Content-aware Detection of JPEG Grid Inconsistencies for Intuitive Image Forensics</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>image forensics</subject>
    <subject>JPEG artifacts</subject>
    <subject>forgery localization</subject>
    <subject>image splicing</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-05-14</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1246437</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1246419</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The paper proposes a novel method for detecting indicators of image forgery by locating grid alignment abnormalities in JPEG compressed image bitmaps. The method evaluates multiple grid positions with respect to a fitting function, and areas of lower contribution are identified as grid discontinuities and possibly tampered areas. An image segmentation step is introduced to dif-ferentiate between discontinuities produced by tampering and those that are attributed to image content, making the output maps easier to interpret by suppressing non-relevant activations. Our evaluations, on both synthetically produced datasets and real world tampering cases against seven methods from the literature, highlight the effectiveness of the proposed method in its ability to produce output maps that are clear and readable, and which can achieve successful detections on cases where other algorithms fail.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700024/">700024</awardNumber>
      <awardTitle>Retrieval and Analysis of Heterogeneous Online Content for Terrorist Activity Recognition</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/687786/">687786</awardNumber>
      <awardTitle>In Video Veritas – Verification of Social Media Video Content for the News Industry</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/610928/">610928</awardNumber>
      <awardTitle>REVEALing hidden concepts in Social Media</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
128
147
views
downloads
All versions This version
Views 128115
Downloads 147135
Data volume 742.2 MB689.8 MB
Unique views 122113
Unique downloads 132125

Share

Cite as