Conference paper Open Access

Movement Fluidity Analysis Based on Performance and Perception

Alborno, Paolo; Piana, Stefano; Mancini, Maurizio; Niewiadomski, Radoslaw; Volpe, Gualtiero; Camurri, Antonio


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Alborno, Paolo</dc:creator>
  <dc:creator>Piana, Stefano</dc:creator>
  <dc:creator>Mancini, Maurizio</dc:creator>
  <dc:creator>Niewiadomski, Radoslaw</dc:creator>
  <dc:creator>Volpe, Gualtiero</dc:creator>
  <dc:creator>Camurri, Antonio</dc:creator>
  <dc:date>2016-05-07</dc:date>
  <dc:description>In this work we present a framework and an experimental approach to investigate human body movement qualities (i.e., the expressive components of non-verbal communication) in HCI. We first define a candidate movement quality conceptually, with the contribute of experts in the field (e.g., dancers, choreographers). Next, we collect a dataset of performances and we evaluate the perception of the chosen quality. Finally, we propose a computational model to detect the presence of the quality in a movement segment and we compare the outcomes of the model with the evaluation results. In the proposed on-going work, we apply this approach to a specific quality of movement: Fluidity. The proposed methods and models may have several applications, e.g., in emotion detection from full-body movement, interactive training of motor skills, rehabilitation. </dc:description>
  <dc:identifier>https://zenodo.org/record/1245686</dc:identifier>
  <dc:identifier>10.5281/zenodo.1245686</dc:identifier>
  <dc:identifier>oai:zenodo.org:1245686</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/688865/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.1245685</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/wholodance_eu</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>Proceedings of the International Working Conference on Advanced Visual Interfaces</dc:source>
  <dc:subject>movement</dc:subject>
  <dc:subject>analysis</dc:subject>
  <dc:subject>fluidity</dc:subject>
  <dc:subject>perception</dc:subject>
  <dc:subject>evaluation</dc:subject>
  <dc:subject>performance</dc:subject>
  <dc:subject>dance</dc:subject>
  <dc:title>Movement Fluidity Analysis Based on Performance and Perception</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
110
438
views
downloads
All versions This version
Views 110110
Downloads 438438
Data volume 129.9 MB129.9 MB
Unique views 102102
Unique downloads 427427

Share

Cite as