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Abstract

Auto-tuning has become increasingly popular for optimizing non-functional parameters of parallel programs. The
typically large search space requires sophisticated techniques to find well-performing parameter values in a reasonable
amount of time. Different parts of a program often perform best with different parameter values. We therefore
subdivide programs into several regions, and try to optimize the parameter values for each of those regions separately
as opposed to setting the parameter values globally for the entire program. In order to manage this enlarged search
space, we have to extend existing auto-tuning techniques to ensure high quality solutions to this optimization problem.
In this paper we introduce a novel enhancement to the RS-GDE3 algorithm which is used to explore the search space
for auto-tuning programs with multiple regions regarding several objectives. We have implemented our auto-tuner
using the Insieme compiler and runtime system and provide a detailed analysis of the obtained results with the aim of
gaining a better understanding of non-functional inter-region behavior in the context of auto-tuning. In comparison to
a non-optimized parallel version of the tested programs, our novel approach achieves up to 7.6X, 10.5X, and 61.6X
improvements for three tuned objectives wall time, energy consumption, and resource usage, respectively.
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1. Introduction

Optimizing parallel programs becomes increasingly difficult with the rising complexity of modern parallel ar-
chitectures which includes, for example, a dramatic increase of the number of cores per chip or the availability of
multi-level partially shared cache hierarchies. Automatic software tuning, or simply auto-tuning [1], arose as an
attempt to better exploit hardware features by automatically tuning applications. An auto-tuner tries to find promis-
ing configurations for a given program executing on a given target platform. A configuration consists of a set of
non-functional parameters with a corresponding value range which can influence a program’s performance by trans-
forming the source code of the application, or by finding the right parameter values that govern the execution of an
application on a given architecture (e.g. number of threads, frequency per core, etc.).

This paper describes a novel auto-tuning approach for programs with multiple single-entry single-exit code regions
whose non-functional behavior depends on at least one tunable parameter. We assume that we can measure the non-
functional behavior of these regions for the optimization objectives (e.g. wall time, energy consumption, etc.). Tuning
multi-region applications exposes additional challenges for auto-tuning techniques. Firstly, there usually does not
exist a single set of parameter values which is optimal for all the regions of a program. However, setting the parameter
values individually for every region leads to a huge search space as it grows exponentially with the number of tuning
opportunities, i.e. the number of regions. Secondly, the execution of a region may be influenced by the parameter
values applied to neighboring regions. Previous work [2] observed that the optimal parameter values for individual
regions of hybrid MPI/OpenMP applications led to sub-optimal overall performance.

Auto-tuning techniques are widely used [3, 4, 5, 6, 7, 8, 9, 10, 11] but are often limited to using the same parameter
values for every region, i.e. globally for the entire program, ignoring the fact that different parts of the code may benefit
from specific parameter values.
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Our auto-tuner can optimize a generic set of objectives which do not necessarily correlate with each other. This
lack of correlation makes it impossible to find a single solution which is best in every objective. For example, if some
regions are optimized for one objective while others are optimized for different objectives, it is very likely that the
overall performance of the program will suffer. It can happen that a configuration exhibits small execution time at
the cost of high resource usage for one region, but the contrary for another region, resulting in sub-optimal overall
performance.

The approach proposed in this paper extends the method presented in [12], which is limited to optimizing each
region in isolation, by adding region-aware auto-tuning support for the entire program. The contributions of this paper
are the following:

• A region-aware multi-objective auto-tuner.

• A compiler-runtime system that automatically identifies regions and enables automatic tuning of their parame-
ters.

• Evaluation of several global and region-aware auto-tuning strategies for several codes on different target archi-
tectures which demonstrates the importance of region-aware auto-tuning compared against global optimization.

• A thorough analysis of how the regions composing a program behave within different (quasi-)Pareto optimal
program configurations.

• A study of the computed trade-off in terms of the three considered criteria.

The rest of this paper is organized as follows: Section 2 exemplary shows the inherit advantages of region-
aware auto-tuning while Section 3 gives detailed insights on the auto-tuning approach presented in this paper. The
implementation details of the presented work can be found in Section 4 while Section 5 details the metrics that we use
to compare the quality of the different auto-tuning approaches. results of the experiments performed in this paper are
shown in Section 6 includes the results obtained in our experiments as well as a comparison among different multi-
objective region-aware tuners. A further analysis of the solutions computed by the best approach in the comparison
before is included in Section 7. Section 8 gives an overview of the related work and the conclusion of our findings are
summarized in Section 9.

2. Motivation

In this section, we motivate the need for region-aware auto-tuners by using a simple example program consisting
of two regions. Both regions perform a parallel matrix multiplication. In the first region, only the outermost loop
is parallelized; in the second, we parallelize only the innermost loop. As a consequence we have two regions with
different execution behavior: the first one scales well with the number of threads whereas the second one does not. In
order to have similar execution times for both regions, the matrix size in the second region is only one quarter of the
matrix size in the first region.

The experiments in this section are performed on the Ivy Bridge-EP architecture described in Section 6. Our goal
is to find the optimal configuration for executing this program. For the sake of performing an exhaustive search of
all possible program configurations, we assume that these regions only expose the number of threads as a tunable
parameter.

We select configurations for the previously described program using three different approaches:

• Isolated: This approach optimizes both regions in isolation.

• Global: This approach is constrained to find a single set of parameter values to be used in both regions.

• Region-Aware: This approach optimizes both regions using individual parameter values for each of them to
maximize the program’s overall performance.
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Table 1: Theoretical potential of different auto-tuning approaches, determined by exhaustive search for an example program with two regions.

Isolated Global Region-Aware
#Threads Region 1 20 10 10
#Threads Region 2 2 10 7
Region 11 546 1075 1075
Region 21 5798 2652 2366
Total1 6344 3727 3442
Relative time difference 1.84 1.08 1.00
1 Execution time in milliseconds.

The best configurations found by these approaches are summarized in Table 1. The first two rows of the table show
the number of threads for each region chosen by the corresponding approach — which can be found in the different
columns. The following two rows include the execution time for each of these regions with the aforementioned
indicated number of threads. The fifth row shows the program’s execution time when the regions are configured as
indicated in the first two rows. Finally, the last row shows the relative difference regarding the best found execution
time across all three approaches.

The worst execution time corresponds to the Isolated approach. The reason is that it will run the first region with
a large number of threads, as it does scale well. However, this has a negative effect on the second region, which does
not scale well. The change from 20 to only a few threads between the regions introduces a significant overhead by the
underlying runtime system, as it also implies a change of the number of sockets where computations are performed
on. The fastest option for the second region is to use two threads, taking 5798ms. Using for example 7 threads, which
is the fastest option after the first region has been executed with 10 threads, results in an execution time of 6387ms in
this scenario.

The Global approach yields better results since the code regions are not optimized in isolation but regarding the
overall program performance. However, as this approach is limited to the same parameter values for both regions, it
is unable to exploit the full potential of the hardware. This drawback is overcome by the Region-Aware approach.
Besides taking into account the overhead for a change in using different socket numbers, it can customize the regions
to their needs for hardware resources.

3. Multi-objective Tuning of Multi-Region Programs

In this section we firstly introduce some background related to multi-objective auto-tuning of programs. After-
wards, we state the main challenges when tuning multi-region programs.

3.1. Background on Multi-Objective Auto-Tuning

Auto-tuners may optimize several objectives which sometimes conflict with each other. This means that optimiz-
ing one of them is only possible by worsening the value of at least one of the other objectives. The mathematical
solution to such problems is not defined by a single point, but by a set of points representing a trade-off between
these objectives. The set of solutions representing the optimal trade-off between the considered objectives is known
as Pareto set.

Our approach to apply multi-objective software auto-tuning consists in computing the Pareto set or an approx-
imation of it [13]. Often, related work reduces multi-objective optimization problems to a single objective one by
using fixed weights for the individual objectives. Therefore, they try to find a single solution which is near optimal
in a pre-defined set of preferences for the objectives. Computing the Pareto set instead of a single solution is often
incorrectly cited by related work with the belief that it implies a manual selection of a solution by the user which is
just one possibility. However, different alternatives comprise a selection based on preferences specified a posteriori
— i.e. once the Pareto set is computed. This latter approach does not require manual interaction of the user, and has
the advantage that the computed solution belongs to the optimal trade-off. While computing the Pareto set may seem
to require a higher computational effort than computing a single solution, literature in multi-objective optimization
shows that this is not necessarily the case [14]. Indeed, the opposite is often true: computing the whole Pareto set may
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be easier than computing some individual solutions within it, as finding solutions which show a good compromise
between two or more objectives implies a different way of navigating the search space.

3.2. Challenges in Tuning Multi-Region Programs

We focus on programs composed of multiple regions. Tuning such programs requires to tune each of these
regions. A region’s performance may depend on the way other regions are executed, what data they access, and other
side effects. Neighboring regions on a control flow are not independent of each other. This issue implies that regions
should not be tuned in isolation, which has been observed in [2].

Tuning multi-region applications introduces additional challenges. Firstly, the search space of possible configu-
rations of a program grows exponentially with the number of regions. For example, the matrix multiplication kernel
considered in [12] consists of a single region. That region requires to tune three tiling dimensions and the number of
threads. For a problem size of 14, 000 —i.e. matrices of 14, 000 × 14, 000 elements— and a machine with 32 cores,
the search space of possible program executions is 7003 × 32 ' 1010. If a program consists of two regions similar to
that one, the search space would be (700×32)2 ' 1020. Larger search spaces often reduce effectiveness of search meth-
ods [15]. Secondly, in a multi-objective multi-region scenario, it is crucial that the parameter values for the different
regions within a program aim the optimization of the same objective. Otherwise, if two regions are assigned parameter
values optimizing different objectives, most likely the execution of both regions together will not be optimal for any
of these objectives. For example, this is the case when half of the regions within a program would be executed with
optimal parameter values for a given objective and the other half of the regions with parameter values optimal for a
conflicting objective.

Our goal in this paper is to design an auto-tuner that can find a single Pareto set of configurations for a given
program with multiple regions. While the parameter values of every region are tuned separately, we measure the
effect of changing the parameter values of a region regarding the entire program instead of considering the effect
only for individual region executions. In this way, we optimize the whole program execution instead of focusing on
specific regions. After the Pareto set for the whole program is computed, a single configuration for the entire program
can be selected from the Pareto set, either manually or automatically. This approach differs from the one proposed
in [12], which is based on computing an individual Pareto set for every single region in isolation, making this approach
prone to the performance penalties described in Section 8. Furthermore, computing a Pareto set independently for
every region requires a decision making process for every single region. Therefore, the approach presented in [12] is
unfeasible for tuning programs with a large number of regions. A feasible way to compare the approach in Jordan et
al. [12] to the one presented in this paper is using the same set of parameters for every region of the program, thereby
reducing the search space and producing only a single Pareto set for the entire program. Additionally, the auto-tuner
can evaluate the performance of a configuration for all regions at once which makes it aware of eventual performance
penalties caused by region interferences. In Section 6, we compare this version of the auto-tuner presented in [12],
which we call RS-GDE3 Global, against the new version of this paper.

3.3. Method

Our approach extends the RS-GDE3 algorithm presented in [12], which is based on iterative compilation. It uses
a fixed size set of different program configurations to be executed on the target architecture in order to determine
their performance. RS-GDE3 refers to this set as population. Iterative compilation methods update this set across
different iterations by generating possibly better performing configurations for the program being tuned. In the case
of RS-GDE3, this is done by generating a new population called offspring population from the current population
as explained later in this section. At the end of every iteration, the current population is updated by considering its
content and the content of the offspring population. Details about how configurations are chosen to be part of the
population for the next iteration can be found [12].

In order to tune multi-region programs regarding multiple objectives, we need to overcome the following prob-
lems:

1. All the parameter values within a configuration should aim for a common goal. If the tuner generates a program
where a region a uses parameter values optimized for a given objective, and for a subsequent region b it uses the
best parameter values regarding another objective, then the execution of both regions will unlikely be optimal
for any of these objectives nor will it represent an optimal trade-off.
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1: for all configurations parent in population P do
2: Randomly pick configurations c1, c2 and c3 from P
3: di f f ← c3 + (c1 − c2)/2
4: Create empty configuration cnew

5: for all parameter x do
6: Randomly choose x value from either di f f or parent
7: Add x value to the newly generated configuration cnew.
8: end for
9: Add cnew to newly generated Population Pnewfas

10: end forreturn Pnew

Figure 1: General Differential Evolution.

2. An intractable large search space, which may reduce the effectiveness of the search performed by RS-GDE3.
3. Existing or changing parameter settings of one region that may negatively impact other regions, introducing

additional overheads.
4. Well performing sets of parameter values for individual regions may be discarded by the tuner if they are

considered in combination with poorly performing parameter values for other regions.

To solve the first problem, our approach does not consider regions in isolation. Instead, our configurations are
comprised of the parameter values of all regions and will be kept as part of the population only if they contribute to
optimize the whole program.

To overcome the second problem, finding a good starting point in this huge search space is crucial to improve the
effectiveness of the tuner. For this reason, we perform a global pre-tuning phase. During the pre-tuning phase, the
auto-tuner uses the same set of parameter values for every region within the program. The idea is to reduce the size of
the search space, making it easier for tuner to find the best configurations within the limited search space. We use these
configurations as the starting point of a second tuning phase where every region can have a different set of parameter
values. The global pre-tuning takes place during a few iterations at the beginning of our method. Besides reducing
the dimensionality of the search space, the pre-tuning phase also helps to overcome the third problem, since the found
configurations avoid overheads caused by changing hardware settings between regions. After the global pre-tuning
phase, overheads that arise from changing hardware settings may occur. However the auto-tuner will discard these
configurations, unless the benefit of the different parameter values for each region outweighs the overheads caused by
using different parameter values for individual regions.

To deal with the problem related to the fourth issue, we developed a novel approach which we call recombination.
RS-GDE3 is a population based algorithm that generates new configurations by applying an operator called differential
evolution [16]. Differential evolution is an approximation technique which also accounts for genetic algorithms or
simulated annealing. We chose to use differential evolution because it has been empirically shown that it generally
needs lower computational effort to produce higher quality results than other approximation algorithms [17]. A
differential evolution algorithm generates new configurations by combining some existing ones as shown in Figure 1.

While generating new configurations by combining some existing ones may be beneficial, it also represents a
drawback. For example, if the parent configuration c1 contains the best possible parameter values p1 for region a
and the newly generated configuration c2 contains the best possible parameter values p2 for region b, it would make
sense to compose a third configuration c3 that uses p1 in region a and p2 in region b. However this is not possible in
RS-GDE3 due to the way the differential evolution operator works. The recombination strategy solves this problem by
generating new configurations using a different method every second iteration. This new generation method takes the
parent configuration and the newly generated one and swaps several of their parameter values. In particular, the best
set of parameter values for individual regions out of the parent and the newly generated configuration are preserved.
This approach maximizes the chances of combining parameter values which perform well.

A comparison of a traditional, region-aware auto-tuner to the novel approach using recombination is shown in
Figure 2. The former, depicted in Figure 2a, generates a new offspring population out of the current population using
differential evolution in every iteration and selects the best performing configurations from the current population
and the offspring population to form the population for the next step, as it is described in [12]. The latter, depicted
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Population 0

Config. 0 R0 R1 R2 R3 R4 R5 

...

Config. 1 R0 R1 R2 R3 R4 R5 

Config. 2 R0 R1 R2 R3 R4 R5 

Config. N R0 R1 R2 R3 R4 R5 

Offspring Population 0

Config. 0’ R0 R1 R2 R3 R4 R5 

...

Config. 1’ R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N’ R0 R1 R2 R3 R4 R5 

Population 1

Config. 0 R0 R1 R2 R3 R4 R5 

...

Config. 1’ R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N R0 R1 R2 R3 R4 R5 

Offspring Population 1

Config. 0’’ R0 R1 R2 R3 R4 R5 
...

Config. 1’’ R0 R1 R2 R3 R4 R5 

Config. 2’’ R0 R1 R2 R3 R4 R5 

Config. N’’ R0 R1 R2 R3 R4 R5 

Population 2

Config. 0 R0 R1 R2 R3 R4 R5 

...

Config. 1’’ R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N’’ R0 R1 R2 R3 R4 R5 

Differential 
Evolution

Selection

Selection

...

Differential 
Evolution

Differential 
Evolution

(a) Region-aware auto-tuner using GDE3 only. In each iteration an
offspring population of N elements is generated out of the current pop-
ulation.

Population 0

Config. 0 R0 R1 R2 R3 R4 R5 

...

Config. 1 R0 R1 R2 R3 R4 R5 

Config. 2 R0 R1 R2 R3 R4 R5 

Config. N R0 R1 R2 R3 R4 R5 

Offspring Population 0 by Diff. Evolution

Config. 0’ R0 R1 R2 R3 R4 R5 

...

Config. 1’ R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N’ R0 R1 R2 R3 R4 R5 

Population 1

Config. 0 R0 R1 R2 R3 R4 R5 

...

Config. 1’ R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N R0 R1 R2 R3 R4 R5 

Offspring Population 1 by Recombination

Config. 0’’

...

Config. 1’’

Config. 2’’

Config. N’’

Population 2

Config. 0

R0 R1 R2 R3 R4 R5 

R0 R1 R2 R3 R4 R5 

...

R0 R1 R2 R3 R4 R5 

Config. 1’’

R0 R1 R2 R3 R4 R5 

R0 R1 R2 R3 R4 R5 

R0 R1 R2 R3 R4 R5 

Config. 2’ R0 R1 R2 R3 R4 R5 

Config. N’’ R0 R1 R2 R3 R4 R5 

Selection

Selection

...

Differential 
Evolution

Differential 
Evolution

(b) Region-aware auto-tuner using GDE3 and recombination. In every
second iteration, an offspring population is created by recombining the
best performing settings for each individual region from the previous
population and offspring population.

Figure 2: Examples for the evolution of two region-aware auto-tuners over two iterations, using a population of N configurations, tuning a program
with six regions (R0 to R5). Both auto-tuners perform 2×N evaluations in this example. In each iteration, a new population is created by selecting
the best configurations from the population of the previous iteration and the corresponding offspring population.

in Figure 2b, uses the differential evolution only in every second iteration. In the other iterations, a new offspring
population is generated by recombining the parameter values of the configurations in the current population and the
offspring population. The selection of configurations which will form the population of the next step is unaltered
compared to the traditional approach. In order to maximize the benefit of the recombination steps, we are using two
different types of recombination, which are applied in an alternating fashion:

1. The first type compares each configuration which has been generated during the last iteration of the optimizer
with its parent’s configuration. Out of those two configurations (offspring and parent), for each region it selects
the set of parameter values which results in better values, averaged over all objectives, and combines them to a
new configuration for the entire program.

2. The second type selects one configuration for each objective from the offspring population as well as their
corresponding parents’ configurations. From the parameter values of those configurations, it constructs a new
configuration for each objective, combining the sets of parameter values of the regions which deliver the best
performance for the corresponding objective.

Finally, the pseudo-code of the whole method is given in Figure 3.

4. Implementation and Experimental Setup

The presented framework is implemented within the Insieme source-to-source compiler and runtime system pre-
sented in [12], based on branch inspire 1.3 which is freely available at [18]. The Insieme compiler performs, among
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1: Generate a population Ppre of configurations, where regions within the same configuration have the same param-
eter values

2: Set the iteration counter to zero
3: while iteration counter ≤ threshold do
4: Generate new offspring population OPpre using the differential evolution method
5: Update Ppre with the best trade-off solutions from Ppre ∪ OPpre

6: Increase the iteration counter
7: end while
8: Generate a new population P of configurations using solutions in Ppre, replicating the global set of parameter

values for each region.
9: while iteration counter ≤ maximum number of iterations do

10: if iteration counter is even then
11: Generate an offspring population OP using the differential evolution method
12: else
13: Generate an offspring OP population using the recombination method
14: end if
15: Increase the iteration counter
16: Update P with the best trade-off solutions from P ∪ OP
17: end while
18: return the non dominated solutions (i.e. the Pareto set) of P

Figure 3: Multi-region auto-tuner using a combination of general evolution and recombination.

other tasks, code analysis and code transformations. Insieme uses INSPIRE [19] as an intermediate representation for
extracting individual regions and applying the required code transformations. The transformed INSPIRE code is then
converted back to C. The resulting source code is compiled to binary using the Gnu GCC Compiler. For all measure-
ments presented in this paper, we set the -O3 flag to obtain the highest performance. In the case of transformations
such as tiling, the Insieme compiler generates a different version for each tile size to be evaluated in order to obtain the
best performance. This means, that a separate version of the code is generated and compiled for each configuration
that needs to be evaluated.

The Insieme runtime system executes the transformed input code and measures its performance. The measure-
ments are reported to the Insieme compiler which in turn provides them to the auto-tuner. The Insieme runtime system
allows to set the number of threads individually for each region and is also responsible for mapping the executed pro-
gram to OS-level threads. For each OS-level thread used, one worker is created in the runtime system [20]. The
number of workers created for a specific execution is equal to the maximum number of threads used by any region
of the given program. When a region is executed with fewer threads than the number of workers started, the ad-
ditional workers are sent to sleep by the runtime system. While incurring some minor performance overhead upon
wakeup, this ensures a minimum of energy consumption for runtime system workers that are not active. Furthermore,
each worker is bound to a specific core in ascending order, with a “dense” mapping (one socket is filled first before
employing cores of another socket).

Measurements are obtained via x86’s rdtsc instruction for execution time and Intel’s RAPL interface for energy
consumption. The latter offers a data resolution of 15.3 microjoules and time resolution of 1 millisecond, and related
work has shown it to be accurate enough for our purpose [21]. The resource usage metric is calculated by multiplying
the number of threads used with the execution time of each individual region.

The experiments are executed on two different machines, the names and characteristics of which are listed in
Table 2. The CPU clock frequency is fixed as listed in Table 2, and HyperThreading is disabled on all machines.

4.1. Regions
Our auto-tuner targets parallel programs implemented in C using OpenMP [22] for parallelization. As mentioned

in Section 1, the programs are subdivided into several regions. We define each parallel OpenMP for-loop to be a
separate region for several reasons: Besides being parallel, these loops usually contain most of a program’s compu-
tational work. Furthermore, the implicit synchronization following each parallel OpenMP for-loop is well suited as a
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Table 2: Machine characteristics.

name CPUs total cores cache sizes RAM OS compiler

Sandy
Bridge-EP

2x E5-2690 v2
@ 3.0 GHz 20 priv.: 32 KB, 256 KB,

shared: 25 MB 128 GB CentOS 6.5,
2.6.32-431

GCC 5.1 -O3
Ivy

Bridge-EP
4x E5-4650 @

2.7 GHz 32 priv.: 32 KB, 256 KB,
shared: 20 MB 256 GB CentOS 6.7,

2.6.32-573

point to vary the number of threads, while the number of threads cannot be changed within the body of an OpenMP
for-loop. Additionally, the restrictions enforced by OpenMP on parallel for-loops, such as no continue, break or return
statements as well as no modification of the iterator variable inside the loop’s body, increase the probability that a loop
nest starting with a parallel OpenMP for-loop is suitable for tiling. If an OpenMP loop is called several times from
different contexts, each context creates a different region that can be tuned individually.

Loop nests which can be tiled are of special interest to us, as they typically have high optimization potential and
consume most resources. Our auto-tuner examines whether a loop nest is suitable for tiling by using the Polyhedral
Model [23] which is integrated in the Insieme Compiler. This analysis determines whether a loop nest is tilable and
also provides information about the minimum and maximum tile size for this transformation.

For every region the auto-tuner can tune the number of threads that are used to execute it. Furthermore, for regions
which are tilable, the tile size in each dimension is tuned.

5. Testing Methodology

To compare the different proposed approaches, we use the same objectives as in [12]. For the result S of every
auto-tuning run we calculate |S | and V(S ). S corresponds to the resulting Pareto set of the auto-tuner while |S | is
the number of elements in the Pareto set S . A larger number of elements of the Pareto set is considered superior, as
it offers more flexibility to choose a desired solution. V(S ) defines the normalized size of the hypervolume covered
by the performance measurements of the elements in the Pareto set S [24], i.e. the relative size of a hypervolume
formed by all points dominated by the points in S in a normalized hyperrectangle defined by the highest and lowest
measurement in each objective. When the function V(S ) is used to compare several solutions S i where i ∈ [0, I]
and I ∈ N+, this hyperrectangle is defined by the highest respectively lowest measurement in each objective of the
combined Pareto set of all solutions S i. This means, if all configurations in S i are dominated by configurations found
in S j with j ∈ [0, I] and j , i, the coverage V(S i) is 0. A configuration c0 dominates another configuration c1 if c0
delivers better performance than c1 in every objective. As the coverage is calculated on a normalized hypervolume,
the result of V(S ) ranges from 0 to 1 where 1 corresponds to an ideal solution covering the entire hypervolume, i.e.
dominating all other solutions. For each approach we report the average population size |S | and hypervolume V(S )
over 16 runs.

The huge search space of the tested programs prevents a comparison of the results of an auto-tuner to the theoretical
optimum, as finding the theoretical optimum implies an exhaustive search over the entire search space.

6. Comparison Among Different Auto-Tuners

This section evaluates our approach on some exemplary test cases. We present the results obtained by different
auto-tuners including random, global tuners and region-aware ones. The complete list is:

• Random: It randomly generates 3000 configurations with individual settings for each region.

• RS-GDE3 Global: It uses the RS-GDE3 tuner introduced in [12] to determine values for all tunable parameters.
This version resembles is a version of the auto-tuner presented in [12] as described in Section 3.2. Every region
within the entire program uses the same set of parameter values, thereby reducing the search space. Solutions
are generated with the differential evolution operator described in [12].
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Table 3: Search space description for the evaluated programs.

mg heated-plate bt
#Regions 94 10 122
#Tilable Regions 82 4 114
#Tunable Parameters 268 18 453
Search Space Size1 10590 1033 10897

Search Space Size2 10609 1035 10922

1 On Ivy Bridge-EP
2 On Sandy Bridge-EP

• RS-GDE3 Region: Region-aware version of RS-GDE3 Global, which sets the parameter values for every region
individually.

• RS-GDE3 Region GPT: Extends the RS-GDE3 Region using a global pre-tuning phase as described in Sec-
tion 3. The first ten iterations are devoted to this phase.

• RS-GDE3 Recombination: Based on RS-GDE3 Region, but new configurations are generated using the recom-
bination method described in Section 3 in every second iteration.

• RS-GDE3 Recombination GPT: RS-GDE3 Recombination with a global pre-tuning phase that uses ten itera-
tions.

All compared RS-GDE3 auto-tuners variations use a population size of 30 and perform 100 iterations, leading to
a total of about 3000 executions of the program (as performed also by the Random tuner). Our experiments did not
show any significant performance improvements by enlarging the population any further with that budget of iterations.

The effectiveness of these approaches are evaluated on three benchmarks. Two of them, mg and bt, are taken from
the NAS parallel benchmarks [25] C/OpenMP implementation by the Omni group [26]. bt is a block tri-diagonal
solver for nonlinear partial differential equations while mg approximates the solution to a three-dimensional discrete
Poisson equation using a multi-grid method. For bt we choose problem size w, for mg the problem size b, in order to
get reasonable execution times for auto-tuning. The heated-plate benchmark [27] is a stencil-code solving the steady
heat equation on a two dimensional, rectangular plate. The matrix size used for this benchmark was set to 384 × 384
elements. The total number of regions, the number of regions to which tiling can be applied as well as the total number
of tunable parameters for each of those programs are listed in Table 3. This Table also indicates the search space size
when tuning those programs. The number of tunable parameters is the sum of the number of tiling dimensions of
all regions plus the number of regions, as we can set the number of threads separately for each region. The search
space is the product of the ranges for each of those parameters. Therefore, the size of the search space depends on
the target architecture, as a higher number of cores also provides more tuning possibilities. For each tuned program,
we include the results of comparing the six previously described auto-tuners in Table 4. The computed Pareto set
of most auto-tuners contains 30 elements, i.e. the entire population. The RS-GDE3 Recombination GPT auto-tuner
delivers the best result in terms of hypervolume in all cases. The global pre-tuning phase yields a higher improvement
on the Sandy Bridge-EP architecture than on the Ivy Bridge-EP which can be explained by their differing socket
numbers: Whereas the Ivy Bridge-EP system has only two sockets, the Sandy Bridge-EP system has four sockets.
Changing the number of threads between regions can imply an additional cache coherency overhead when the regions
are executed in different number of sockets. This overhead is a consequence of not having shared cache between
sockets. Therefore, it is beneficial to start with a configuration that does not change the number of threads between
regions, which is achieved by the global pre-tuning phase.

The time required for the auto-tuning is dominated by the time needed to compile and execute the program.
Therefore, shorter and faster programs can be tuned in less time. The tuning time for our test cases is shown in
Table 5. The Random auto-tuner exhibits the longest tuning time, as it typically evaluates the configurations with the
lowest performance. The fastest auto-tuner over all test cases is the RS-GDE3 Global, because it never experiences
any slowdowns from performance penalties caused by region interferences. From the region-aware auto-tuners, those
without a global pre-tuning phase are slower than the auto-tuners with a global pre-tuning phase in most cases. The
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Table 4: Results of several auto-tuner variants for different benchmarks on two different architectures.

Ivy Bridge-EP
mg heated-plate bt

|S | V(S ) |S | V(S ) |S | V(S )
Random 14.9 0.0721 12.0 0.0284 26.9 0
RS-GDE3 Global 29.9 0.9058 29.1 0.6475 23.8 0.6399
RS-GDE3 Region 29.9 0.3352 29.4 0.6441 29.8 0
RS-GDE3 Region GPT 30.0 0.9013 30.0 0.6699 30.0 0.6122
RS-GDE3 Recombination 30.0 0.8465 30.0 0.6602 30.0 0.6568
RS-GDE3 Recombination GPT 30.0 0.9168 30.0 0.6857 30.0 0.7058

Sandy Bridge-EP
mg heated-plate bt

|S | V(S ) |S | V(S ) |S | V(S )
Random 26.2 0 4.3 0 12.4 0
RS-GDE3 Global 27.6 0.8572 29.9 0.7802 23.6 0.6148
RS-GDE3 Region 30.0 0 29.9 0.7543 23.1 0
RS-GDE3 Region GPT 30.0 0.8570 29.9 0.7975 30.0 0.6016
RS-GDE3 Recombination 30.0 0.0560 29.2 0.8065 30.0 0.5767
RS-GDE3 Recombination GPT 30.0 0.8836 29.6 0.8199 30.0 0.7101

Table 5: Tuning time in seconds of several auto-tuner variants for different benchmarks on two different architectures.

Ivy Bridge-EP Sandy Bridge-EP
mg heated-plate bt mg heated-plate bt

Random 21945 26638 24242 31882 34774 38621
RS-GDE3 Global 16262 9605 15218 19480 15125 27274
RS-GDE3 Region 16903 12829 19187 33273 20596 42808
RS-GDE3 Region GPT 19318 10784 16639 21371 17771 28754
RS-GDE3 Recombination 19868 10839 18758 31164 15006 34038
RS-GDE3 Recombination GPT 19732 10257 18116 22686 16217 32209

latter converge faster to a population with reasonably fast configurations, which leads to significantly lower execution
times of the tuned program. Similarly, the region-aware auto-tuners using the Recombination step are faster than
their counterparts using only the traditional differential evolution in most cases, as the average execution time of the
resulting program versions is shorter.

In addition to the Pareto set size |S | and hypervolume V(S ) we also report the objective values of the best con-
figuration found by the RS-GDE3 Recombination GPT auto-tuner for the three real world codes compared to the
non-optimized (without auto-tuning) versions. To calculate the speedup we use the best configuration from the auto-
tuner’s Pareto set for each individual objective. Typically, this is a different configuration for every objective. We
compare these configurations to two non-optimized configurations that do not apply any tiling: the sequential version,
using only one thread and the parallel version using all threads available on the corresponding machine. The results
shown in Table 6 demonstrate the superior performance compared to the non-optimized versions, both sequential and
parallel, in every objective. As expected, the largest improvement over the sequential version can be achieved in
wall time (up to 13.8X) while the parallel version is primarily outplayed in resource usage. Especially on the Sandy
Bridge-EP architecture with 32 cores, the non-optimized version suffers from the moderate scalability of heated-plate
and bt, allowing our auto-tuner to achieve an improvement factor of up to 63.7 in resources usage. These results
clearly demonstrate the benefit of our region-aware multi-objective auto-tuner, even if only a single objective is of
interest. This is underlined by the achieved speedup of the auto-tuner over the parallel version, which ranges from
1.3 to 4.0 on the tested architectures and programs. If a well-balanced trade-off solution across several objectives is
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Table 6: Improvement over non-optimized versions i.e. not tiled with a constant number of threads, in each individual metric achieved by the
RS-GDE3 Recombination GPT auto-tuner.

Ivy Bridge-EP
mg heated-plate bt

s1 p2 s1 p2 s1 p2

wall time 7.7 1.3 13.7 4.0 4.4 3.2
energy 3.2 2.4 8.1 4.5 2.1 3.6
resource usage 1.4 4.8 3.4 20.2 1.5 21.9

Sandy Bridge-EP
mg heated-plate bt

s1 p2 s1 p2 s1 p2

wall time 3.7 2.2 7.6 4.0 2.4 4.0
energy 2.2 6.0 4.5 7.5 1.6 10.6
resource usage 1.3 24.4 2.7 46.4 1.2 63.7
1 Improvement over non-optimized sequential version.
2 Improvement over non-optimized parallel version.

required, the benefit may be even higher, depending on the user’s preferences.

7. Results Analysis

The results presented in the previous section demonstrate that the best version of our region-aware auto-tuner, the
RS-GDE3 Recombination GPT, outperforms a global auto-tuner based on RS-GDE3 (RS-GDE3 Global in this paper).

When comparing the Pareto sets generated by these two tuners, we observe that some configurations in the Pareto
set of the RS-GDE3 Global auto-tuner are dominated by others in the Pareto set of the RS-GDE3 Recombination
GPT. This means that for each of these configurations computed by RS-GDE3 Global, the latter algorithm has found
a configuration providing a shorter wall time while consuming less energy and with lower resource usage. The
opposite, however, happens in very few cases. Most of the configurations found by the region-aware tuner dominate
the solutions computed by the global approach, or are simply non-dominated (i.e. no solution computed by the global
approach is better in all the considered objective functions).

The goal of this section is to analyze the obtained results when considering a region based approach. To this end,
we perform a thorough analysis of the solutions computed by RS-GDE3 GPT. First, we analyze the configurations
computed by this algorithm and the global approach (RS-GDE3 Global) in order understand how region-aware tuners
exploit different parameter values in different regions of the same program. Second, we analyze how RS-GDE3 GPT
performs in each region for each of the trade-off configurations it computes. Finally, we focus on analyzing the
trade-off among the three objectives considered in this work.

7.1. Exploitation of Regions by Different Tuners

In this analysis, we focus on comparing the obtained results on two of the considered applications, the bt and
the heated-plate. For these comparisons, we pick a program configuration computed by each of these two tuners and
observe the parameter values within each region.

For the first comparison, the two program configurations are taken from the Pareto set generated by the two auto-
tuners on the Sandy Bridge-EP architecture. We refer to the configuration computed by the region-aware tuner as
Cr, and to the configuration computed by the global tuner as Cg. The first thing to note is that the tiling values used
for different regions in Cr show a high variation. For example, while region 40 is tiled using the values {368,13,1},
the region 88 uses the tiling parameters {1,1,2}. The tile sizes used by Cg are {1,8,2} for all the regions within the
program. All regions in Cg are executed with eight threads, which corresponds to the maximum number of cores on
one socket on our Sandy Bridge-EP architecture. Also in Cr, the maximum number of threads used is eight, meaning
that some of the regions are also executed using eight cores. However, many regions in Cr are executed with fewer
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Table 7: Performance of two individual configurations in bt on the Sandy Bridge-EP architecture.

Cg
1 Cr

2 Improvement
wall time (ms) 2076 2074 1.00
energy consumption (J) 148 147 1.00
resource usage (ms) 16611 13838 1.20

1 Taken out of the Pareto set generated with the RS-GDE3 Global auto-tuner.
2 Taken out of the Pareto set generated with the RS-GDE3 Recombination GPT auto-tuner.

Table 8: Performance of two individual configurations in heated-plate on the Ivy Bridge-EP architecture.

Cg
1 Cr

2 Improvement
wall time (ms) 2323 1749 1.33
energy consumption (J) 65 63 1.04
resource usage (ms) 2323 2289 1.02

1 Taken out of the Pareto set generated with the RS-GDE3 Global auto-tuner.
2 Taken out of the Pareto set generated with the RS-GDE3 Recombination GPT auto-tuner.

threads, where any number between one and eight is used at least once. This results in the objective values presented
Table 7. While in terms of wall time and energy consumption both configurations are similar, the resource usage of
Cg is 20% higher than for Cr. This means, Cr is as fast and consumes as little energy as Cg using less resources. This
is possible because the region-aware tuner found a configuration that executes regions which do scale well up to eight
threads with such number of threads; at the same time, regions that do not benefit from being executed on eight cores
are executed with fewer threads. Such a degree of adaption is not possible with any auto-tuner that uses the same
parameter values for every region in the entire program.

For the second comparison, we present the performance figures for two program configurations for the heated-
plate benchmark on the Ivy Bridge-EP architecture. Again we label Cr the configuration found by the region-aware
tuner and Cg the configuration found by the global tuner. In this case, for Cg we choose the configuration with the
least resources usage from the Pareto set. While Cr is not the configuration leading to the lowest resource usage in its
Pareto set, it still dominates Cg. Obviously, Cg uses only one thread for every region in order to minimize the resource
usage and the tile sizes used by this configuration are {1,214}. In contrast to that, Cr uses two threads to execute the
biggest region of heated-plate, i.e. region 8. The increased number of threads also requires a different tile size in order
to perform well; in this case it uses {31,251}. All other regions, which account for more than 1% of the total wall time,
use very similar parameter values as the one used in Cg: they are executed using only one thread, and the tile size in
the first dimension is equal to 1, while the tile size in the second dimension varies from 233 to 251. This indicates, that
a tile size of 1 in the first dimension is beneficial when regions are executed sequentially, while a higher number of
threads benefits from larger tile sizes. The combination of a custom tile size and higher number of threads for region
8 of heated-plate results in a significantly lower wall time as shown in Table 8. As that region does scale well, Cr

has also a slight advantage over Cg in both, resource usage and energy consumption, despite the increased number of
cores used. Additionally, as indicated in the table, the rather different parameter values for region 8 cause a 25% drop
in wall time, compared to Cg. As in the comparison before, these performance figures can only be achieved using
different parameter values for the individual regions of the program.

7.2. Performance Analysis of Regions across Different Program Configurations

In [12], the idea of computing a Pareto set for each of the individual regions that form part of the program to be
tuned was introduced. The proposed approach implies (manually or automatically) selecting among the computed
trade-off parameter values for each of these regions in order to build a valid program configuration. As commented
in related work ([2]), and empirically shown in Section 2, dependencies among regions may imply, however, that
parameter values that perform well for a region when executed in isolation do not perform well when the region is
executed as part of a whole program (with possibly other regions executed before and after it). This problem is not
specific to the multi-objective case, as shown in Section 2, it also takes place when a single objective is considered. The
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goal of this section is to analyze how regions behave within different (quasi-)Pareto optimal program configurations
(i.e. the ones computed by the RS-GDE3 Recombination GPT).

For the analysis in this section, we made use of boxplot representations (see figures 4, 5, 6, 7). Each single plot
corresponds to one of the evaluated benchmark problems when executed on one of the two considered architectures.
The horizontal axis represents one of the computed program configurations in one of the performed runs. These pro-
gram configurations are sorted regarding one out of the three considered objectives. The vertical axis represents how
these program configurations perform in the different individual regions regarding the rest of program configurations.
As an example, the leftmost box in Figure 4a, which corresponds to the solution with lowest wall time, shows that
for only 25% of the regions (first quartile), that program configuration has been among the four fastest ones; that
program configuration has also been among the eight fastest ones in 50% of the regions (median) composing it; that
configuration has been slower that the 14 fastest ones for 25% of the regions (see third quartile). This plot shows,
therefore, that the fastest computed program configuration is not the fastest on every individual region; instead, there
are regions within this program configuration with a poor performance regarding other program configurations.

We start the analysis with the bt application depicted in the figures 4 and 5 for the Ivy Bridge-EP and Sandy
Bridge-EP architectures, respectively. The issue commented before is clearly visible in both architectures. Each
computed program configuration, independently of the considered objective function, performs very differently on the
different regions composing it. If we look at the 50% of the regions for which each program configuration perform
better regarding other program configurations, we observe a clear trend for wall time and resource usage: the better
a program configuration performs regarding these objectives, the better that configuration also performs in these
regions. This trend is observable in the two considered architectures. The way to interpret this result is: if we want
to optimize this benchmark for wall time or resource usage, it is more likely that most of the regions composing it
should be individually optimized for these objectives as well. If we focus on energy consumption, this trend is not
observable. Indeed, it is possible to see that several program configurations which overall perform poorly in terms of
energy consumption, provides an excellent performance on individual regions, for the sake of making other regions
consuming extra energy—therefore deteriorating the overall energy consumption of the program. For example, let us
compare the configurations labeled as V1 and V20 from the plot 4b. The former configuration provides the lowest
energy consumption for the bt application when executed on the Ivy Bridge-EP architecture, while the latter is the
solution providing the 20th highest energy consumption for the same problem in the same machine. V1 consumes
more energy in 50% of the regions than at least 10 other program configurations, despite providing the best overall
energy consumption. On the contrary, V20 is the fifth best or better solution in terms of energy consumption in 50%
of the regions and, at least the 4th best in 25% of of them.

The results obtained for the mg problem are very similar to the bt case if we look at wall time and resource-usage:
the same trend appears in these cases. No trend or conclusion can be obtained if we focus on energy consumption.
Due to these similarities, we omit the figures for this application.

Finally, we pay attention to the benchmark problem consisting of the smallest search space (and, hence, theoret-
ically simpler to solve). In this case, no clear trend can be observed for any of the objective functions (see figures
6, and 7). It is remarkable, in the case of the Ivy Bridge-EP architecture, how the different program configurations
perform similarly in the regions composing them when looking at energy consumption and resources usage for this
architecture.

Overall, this section analyzes how program configurations perform in the code regions. The obtained results
showed that it is not possible to establish any kind of pattern among the regions within the same configurations: a
configuration may perform exceptionally good in some regions and exceptionally poor in others. In this context, it is
hard to establish any kind of correlation among the performance of a program configuration and individual regions.
In some cases, like the bt or mg benchmark problems, such a correlation indeed exist if we focus on a subset of
code regions in the case of wall time and resources usage. In the case of energy consumption, none of the examined
problems have shown any correlation among the behavior of individual regions and the whole program configuration.
These results demonstrate once again the challenges of optimizing problems composed of several regions and the
need for auto-tuners able of deal with the dependences between them. They also demonstrate that the initial idea
proposed in [12] cannot be realized, because there is no similarities between the performance of the whole program
and code regions. In other words, a trade-off program configuration is composed of regions being optimal regarding
very different preference vectors.
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Figure 4: Behavior of the Computed Trade-off Configurations on Each Program Region (benchmark: bt; architecture: Ivy Bridge-EP)
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Figure 5: Behavior of the Computed Trade-off Configurations on Each Program Region (benchmark: bt; architecture: Sandy Bridge-EP)
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Figure 6: Behavior of the Computed Trade-off Configurations on Each Program Region (benchmark: hp; architecture: Ivy Bridge-EP)
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Figure 7: Behavior of the Computed Trade-off Configurations on Each Program Region (benchmark: hp; architecture: Sandy Bridge-EP)
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7.3. Analysis of the computed Trade-off solutions
The goal of this section is to analyze the computed trade-off program configurations in the two considered ar-

chitectures. These configurations are depicted in the form of star-diagrams in the figures 8 and 9 for the analyzed
Ivy Bridge-EP and Sandy Bridge-EP machines respectively. One star-diagram is used for each benchmark problem.
In these diagrams, each of the equiangular spokes represents one configuration. For each of these configurations,
the three analyzed criteria wall time, energy consumption and resource usage are depicted in blue, red, and yellow,
respectively, after normalization.

We start the discussion with the machine featuring the Ivy Bridge-EP architecture. The first noticeable fact across
the three evaluated benchmarks in this machine is the high correlation between resource usage and energy consumption
(yellow and red colors, respectively) of the different program configurations. In other words, solutions which are
characterized by high usage of resources also entail a high energy consumption. In the case of wall time, its correlation
regarding the aforementioned two objectives is not that obvious. In most of the cases, however, low wall time values
correspond with high values of energy consumption and resource usage. Therefore, in this machine our multi-objective
auto-tuning problem could be simplified to simply optimize two objectives: wall time and one of either energy-
consumption or resource usage.

In the case of the Sandy Bridge-EP architecture, the obtained trade-off among the three considered objective
functions is more complex to analyze. On the bt and mg benchmarks, there are many program configurations for
which optimizing wall time also means optimizing for energy consumption. These two objectives seem to conflict
with optimizing resource usage in most of these program configurations. In the case of the hp problem, almost half
of the computed configurations exhibit a highly negative correlation between wall time and the other two objectives
(energy consumption and resource usage). The rest of the computed configurations provide the lowest values of
resource usage at the cost of requiring more energy and wall time.

8. Related Work

In the literature we find several frameworks for software auto-tuning, for example self-tuning libraries like AT-
LAS [3], OSKI [4], SPIRAL [5] or FFTW [6], or other auto-tuning frameworks including Active Harmony [7],
Sequoia [28], PetaBricks [8, 9], Patus [10], and OpenTuner [11].

In the past, most auto-tuners focused on improving the wall time of programs. However, recent work shows an
inarguable attention to tune applications regarding several objectives. Besides wall time, energy consumption entailed
by a program’s execution is becoming a popular objective [29, 30, 31, 32, 33, 34, 35, 2, 36]. Resource usage [12, 36],
compilation time, or the size of the executable binary [37, 38, 39] also received attention in related work. Most of
these works fail to capture the trade-off between these objectives and reduce them to a single one. Only a few works
focus on computing and analyzing the trade-off between several conflicting objectives [40, 12, 41].

All the aforementioned works applied the same tuning options to the whole program. Approaches that tune code
regions individually and examine their inter-relationships with respect to single or multiple objectives are rare. A
major issue is the definition of code regions for programs. In [42] program functions are considered to be the regions
to tune. In MPI programs regions are often defined as the code between pairs of communication directives in [2].
In [43] regions are obtained from applications Regions within the same cluster are tuned using the same parameters
or code transformations. The Periscope tool of the AutoTune project1 tunes regions regarding any function measuring
properties of that function (run-time, energy consumed, etc.). Although different objectives can be tuned, they are not
considered simultaneously. Furthermore, Periscope tunes regions individually without considering side effects among
regions. In contrast to the framework presented in this work, Periscope does not describe a methodology to identify
regions within a program.

In [42, 43], programs are split into several regions which are tuned in isolation. However, the authors of [2] show
that regions within a program impact each other’s execution time behavior. They demonstrate that when regions are
executed with the best set of parameter values known so far, a non-negligible penalty may be paid as a result of
changing hardware settings across adjacent regions. The same work also discusses the benefits of using the same
set of parameter values for every region in the entire program versus a per-region tuning approach, and the need for
tuning mechanisms that can find configurations aware of interferences between regions.

1 http://www.autotune-project.eu/
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Figure 8: Wall time vs Energy Consumption vs Resource Usage of the Computed Trade-off Program Configurations (Behavior of the Computed
Trade-off Configurations on Each Program Region (architecture: Ivy Bridge-EP)
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Figure 9: Wall time vs Energy Consumption vs Resource Usage of the Computed Trade-off Program Configurations (Behavior of the Computed
Trade-off Configurations on Each Program Region (architecture: Sandy Bridge-EP)
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9. Conclusion

Most existing work on auto-tuning focuses on a global setting of parameter values which are fixed for the entire
program, ignoring the optimization potential by customizing parameter values to individual region’s peculiarities.
In this paper, we introduced a novel auto-tuning framework that is based on a source-to-source compiler, a runtime
system and a new RS-GDE3 auto-tuner variation to provide a solution for multi-region, multi-objective auto-tuning.
The challenges introduced by the huge search space, region dependencies and conflicting objectives are tackled by
adding a pre-tuning phase to the region-aware auto-tuner which tunes the program using the same parameter values for
all regions, as well as an intermediate evolutionary step for the RS-GDE3 auto-tuner, that generates new configurations
by recombining the parameter values generated in previous steps.

Experiments have shown that our new approach is more effective in tuning three different programs on two dif-
ferent parallel computers than non-region-aware global auto-tuning. We outperform a non-region-aware RS-GDE3
auto-tuner in hypervolume V(S ) by up to 15%. We demonstrated that our approach reaches up to 7.6, 10.5 and 61.6X
improvements in wall time, energy consumption and resource usage respectively, over the non-optimized parallel
version.

Furthermore, we provide a thorough analysis of how the regions composing a program behave within different
(quasi-)optimal program configurations. Our study reveals strong dependencies between regions. In particular, we
show how program configurations which are optimal for a given criterion may perform worse than other program
configurations for almost each individual region regarding that criterion.

Future work will devote attention to the design of tuners (based either in search or machine learning) able to
identify and better exploit region dependencies. In addition, the identification of regions for programs not written in
the OpenMP language extension needs to be explored.
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[7] C. Ţăpuş, I.-H. Chung, J. K. Hollingsworth, Active Harmony: Towards Automated Performance Tuning, in: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, SC ’02, IEEE Computer Society Press, Los Alamitos, CA, USA, 2002, pp. 1–11.
URL http://dl.acm.org/citation.cfm?id=762761.762771

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, S. Amarasinghe, PetaBricks: A Language and Compiler for Algorithmic
Choice, SIGPLAN Not. 44 (6) (2009) 38–49. doi:10.1145/1543135.1542481.
URL http://doi.acm.org/10.1145/1543135.1542481

[9] S. Amarasinghe, PetaBricks: A Language and Compiler Based on Autotuning, in: Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers, HiPEAC ’11, ACM, New York, NY, USA, 2011, pp. 3–3. doi:10.1145/
1944862.1944865.
URL http://doi.acm.org/10.1145/1944862.1944865

[10] M. Christen, O. Schenk, H. Burkhart, PATUS: A Code Generation and Autotuning Framework for Parallel Iterative Stencil Computations on
Modern Microarchitectures, in: Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11, IEEE
Computer Society, Washington, DC, USA, 2011, pp. 676–687. doi:10.1109/IPDPS.2011.70.
URL http://dx.doi.org/10.1109/IPDPS.2011.70

21

http://dblp.uni-trier.de/db/journals/tpds/tpds24.html#LiSSNC13
http://dblp.uni-trier.de/db/journals/tpds/tpds24.html#LiSSNC13
http://dblp.uni-trier.de/db/journals/tpds/tpds24.html#LiSSNC13
http://dl.acm.org/citation.cfm?id=509058.509096
http://dl.acm.org/citation.cfm?id=509058.509096
http://stacks.iop.org/1742-6596/16/i=1/a=071
http://stacks.iop.org/1742-6596/16/i=1/a=071
http://dx.doi.org/10.1109/JPROC.2004.840306
http://dx.doi.org/10.1109/JPROC.2004.840306
http://doi.acm.org/10.1145/301631.301661
http://dx.doi.org/10.1145/301631.301661
http://doi.acm.org/10.1145/301631.301661
http://dl.acm.org/citation.cfm?id=762761.762771
http://dl.acm.org/citation.cfm?id=762761.762771
http://doi.acm.org/10.1145/1543135.1542481
http://doi.acm.org/10.1145/1543135.1542481
http://dx.doi.org/10.1145/1543135.1542481
http://doi.acm.org/10.1145/1543135.1542481
http://doi.acm.org/10.1145/1944862.1944865
http://dx.doi.org/10.1145/1944862.1944865
http://dx.doi.org/10.1145/1944862.1944865
http://doi.acm.org/10.1145/1944862.1944865
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1109/IPDPS.2011.70
http://dx.doi.org/10.1109/IPDPS.2011.70


[11] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. M. O’Reilly, S. Amarasinghe, OpenTuner: An Extensible Frame-
work for Program Autotuning, in: 2014 23rd International Conference on Parallel Architecture and Compilation Techniques (PACT), 2014,
pp. 303–315. doi:10.1145/2628071.2628092.

[12] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner, T. Fahringer, H. Moritsch, A Multi-Objective Auto-Tuning Framework
for Parallel Codes, in: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC
’12, IEEE Computer Society Press, Los Alamitos, CA, USA, 2012, pp. 10:1–10:12.
URL http://dl.acm.org/citation.cfm?id=2388996.2389010

[13] C. Coello, D. Van Veldhuizen, G. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic Algorithms and Evolu-
tionary Computation, Springer US, 2013.
URL https://books.google.de/books?id=VmnTBwAAQBAJ

[14] J. Handl, S. C. Lovell, J. Knowles, Multiobjectivization by Decomposition of Scalar Cost Functions, in: G. Rudolph, T. Jansen, N. Beume,
S. Lucas, C. Poloni (Eds.), Parallel Problem Solving from Nature – PPSN X, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 31–40.

[15] J. J. Durillo, A. J. Nebro, C. A. C. Coello, J. Garcia-Nieto, F. Luna, E. Alba, A Study of Multiobjective Metaheuristics When Solving Param-
eter Scalable Problems, IEEE Transactions on Evolutionary Computation 14 (4) (2010) 618–635. doi:10.1109/TEVC.2009.2034647.

[16] R. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, J. of Global
Optimization 11 (4) (1997) 341–359. doi:10.1023/A:1008202821328.
URL http://dx.doi.org/10.1023/A:1008202821328

[17] J. Durillo, A. Nebro, F. Luna, C. Coello Coello, E. Alba, Convergence Speed in Multi-objective Metaheuristics: Efficiency Criteria and
Empirical Study, International Journal for Numerical Methods in Engineering 84 (11) (2010) 1344–1375.

[18] Insieme Source Code Repository, https://github.com/insieme/insieme/tree/inspire_1.3 (2017).
[19] H. Jordan, Insieme: A Compiler Infrastructure for Parallel Programs, Ph.D. thesis.
[20] P. Thoman, Insieme-RS: A Compiler-Supported Parallel Runtime System, Ph.D. thesis, University of Innsbruck (7 2013).
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