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Abstract—The flexibility and cost efficiency of traffic moni-
toring using Unmanned Aerial Vehicles (UAVs) has made such
a proposition an attractive topic of research. To date, the main
focus was placed on the types of sensors used to capture the
data, and the alternative data processing options to achieve good
monitoring performance.

In this work we move a step further, and explore the
deployment strategies that can be realized for rapid traffic
monitoring over particular regions of the transportation network
by considering a monitoring scheme that captures data from a
visual sensor on-board the UAV, and subsequently analyzes it
through a specific vision processing pipeline to extract network
state information. These innovative deployment strategies can
be used in real-time to assess traffic conditions, while for
longer periods, to validate the underlying mobility models that
characterise traffic patterns.

I. INTRODUCTION

UAVs are considered as a promising technology for both
environmental and infrastructure monitoring with broad use in
a plethora of applications [1]. This is due to the fact that UAVs
have become both affordable and highly capable platforms
mainly due to the Moores-law-style pace of technological
advancements governing the electronic components that make
up much of the aircraft and its payload.

Traffic monitoring in transportation networks is one such
application for which the use of UAVs provides clear benefits
both in terms of flexibility in deploying the sensors where there
is a need (in an easy and fast way), as well as in terms of cost
efficiency since on-board sensors can capture a significantly
larger area compared to ground-mounted alternatives with
confined view.

Research on the topic has focused mainly on addressing
the challenges of remotely capturing information above the
ground using a variety of sensors including visual and infra-red
cameras, and radar, and processing that data to detect and track
vehicles [2] - [8]. While a single UAV with fixed trajectory is
considered in most of the literature, solutions with multiple
UAVs with adaptive trajectories have also been studied to
improve detection and tracking performance [9], [10].

The proposed solution extends previous work by incorporat-
ing data acquisition and processing from UAVs into a holistic
framework that considers not just the UAV capabilities but also
the limitations posed by the underlying road traffic network to

develop optimization strategies for the deployment of UAVs
for traffic monitoring. Specifically the contributions of this
paper are twofold. First, we introduce a vision processing
pipeline that can provide traffic monitoring information and
is suitable for deployment on UAV platforms. Second, we
consider where to place a number of UAVs above particular
locations of the transportation network to effectively capture
the traffic patterns of the region of interest. To simplify the
problem, no mobility is considered in this work. As shown in
the sequel, the proposed UAV deployment strategies provide
a valuable tool to transport officers that would like to assess
traffic conditions in a particular area in real time or capture
footage that will help assess the assumed mobility models used
for a particular region of the network.

To do so, an arbitrary transportation network topology is
used together with data associated with the constituent areas.
The maximum allowed height of buildings in certain areas is
used as the main parameter affecting the line-of-sight between
the roadways and the drone hovering locations. The aim is
then to find the particular locations for UAV deployment that
will allow for the desired traffic monitoring level across the
region of interest. The problem is mathematically formulated
as an optimization program that finds the least number of
UAV hovering locations considering the data acquisition and
processing constraints jointly with the Field-of-View (FoV)
obstructions caused by building heights at the different areas.
The solution to this problem provides a deployment map that
transport officers can use to capture footage of road traffic that
will help assess congestion levels and mobility patterns.

The rest of the paper is organized as follows. Section II
first reviews the state-of-the-art practises for capturing and
processing road traffic footage. It then describes an on-board
solution that can be used to efficiently analyse the captured
footage for vehicle detection. As shown later, the proposed
solution has been developed and tested using commercial hard-
ware under real road traffic conditions with good performance
results. Section III then goes on to model the underlying
transportation network based on the FoV constraints and then
provides a formulation for solving this problem using Integer
Linear Programming. Finally, Section IV provides experimen-
tal results for a case study conducted with real data in the
capital city of Cyprus, Nicosia where deployment strategies



are computed for a number of road network levels (i.e.,
considering only the primary road, the primary and secondary
road, and the complete network including residential roads).
Section V concludes this paper with the key contributions and
findings of the proposed work.

II. COMPUTER VISION PIPELINE FOR DATA CAPTURING
AND PROCESSING

Vehicle detection has been extensively studied in the lit-
erature while the latest state-of-the-art techniques use deep
convolutional neural networks (CNN) [12]. A more recent
example is shown in [11] where the authors utilize a deep
learning framework that performs scene analysis of aerial
images to first segment the image into various regions, and
then extract the regions that correspond to vehicles and classify
them into subcategories. As the pipeline uses deep neural
networks the segmentation and classification tasks run off-
line on an NVIDIA Tesla GPU, and not on the UAV. On
the contrary in this work we target on-board processing on
a UAV platform which may not have such high-end hardware.
Hence, in this work we propose a lightweight pipeline capable
of running even on low-end devices such as the Raspberry
Pi. The pipeline first identifies road regions and then uses a
combination of motion detection and image classifier to detect
and count the vehicles over time to estimate the traffic density.
For low-end platforms the Haar cascade detector [13] is used,
while for more capable platforms it can be substituted with a
convolutional neural network [17]. We provide results for both
classifiers.

The overall computer vision pipeline is shown in Fig. 1.
There are four main stages in the pipeline, the processing
to extract the road mask, the detection of moving objects,
the classification of vehicles, and the final post-processing for
vehicle count and accumulation over time.

A. Extraction of Road Segments

The extraction of road segments is important as we target
road urban road traffic monitoring and this optimization will
the classification to focus on promising areas which contain
vehicles of interest, thus maximizing both the performance as
well as the accuracy. The extraction happens in HSV space
by thresholding the input image for different value ranges.
In addition, in order to guarantee the smoothness of the road
mask and that no road pixels will be discarded either due
to illumination changes or the presence of vehicles on the
road, a running average algorithm is employed, due to its low
computational complexity, to isolate the background and use
that to find the road segments.

B. Motion Detection

The detection of moving objects on the extracted road
segment acts as an efficient way of identifying the vehicles
from the road segment. The motion detection relies on iden-
tifying differences between successive frames. The difference
image is then analyzed to identify the different contours that
correspond to moving vehicles. Some false detections can be

discarded based on size and aspect ratio. In cases where the
vehicles may stop due to traffic or at junctions, the motion
detection may fail to identify the vehicles. For this reason, we
also include in the pipeline a classifier that analyzes the image
to detect vehicles through machine learning. By incorporating
both approaches we are able to compensate for failures of one
or the other approach thus resulting in a more robust detection
process.

C. Vehicle Classification

The vehicle classification algorithm can be based either on
a Haar Cascade or Convolutional Neural Network. The latter
is faster and does not require a specialized GPU so it can be
executed on on-board processing platform of the UAV, while
the former can offer higher detection accuracy and can be
used in cases where the image is offloaded to a dedicated
computing infrastructure or when the on-board hardwarre is
powerful enough to handle it. Following we provide more
details for the two classification approaches. The architecture
of the two classifiers are shown in Fig. 1-(iii).

1) Haar Feature-based Cascade Classifier for Object De-
tection: The Haar cascade classification approach would be
particularly attractive for on-board processing of the camera
images as it does not require speacialized hardware and is
capable of operating in real-time. The approach relies training
boosted classifiers of increasing complexity using Haar-like
features and arranging them in a cascade structure in order to
rapidly discard background regions. The cascade is trained to
distinguish between car and non-car images of 10×10 pixels,
with a total of 2, 884 positive and 83, 000 negative samples,
resulting in a 20 stage cascade.

2) Convolutional Neural Network: Deep learning ap-
proaches have demonstrated state-of-the-art performance in
various computer vision tasks such as object detection and
recognition [17]. However, they often require a dedicated
GPU to run which makes it difficult to deploy for on-board
processing in UAVs. Nevertheless, it should be the go-to
approach when the visual processing can be off-loaded from
the UAV. As such, we also develop a CNN architecture to
detect vehicles and offer this as a possible alternative to the
Haar Cascade. The network architecture follows the VGG style
of 3 × 3 convolutional layers followed by max-pooling, and
has a total of 960, 000 parameters which are much less than
pre-trained models such as VGG [11]. We train the network
on a much larger dataset than the cascade classifier with
image augmentation for a total of 95, 000 positive and 245, 000
negative examples.

D. Result Aggregation

The detected moving vehicles and the classifier detected
vehicles are aggregate to produce a detection map of vehicle
locations. Areas where multiple detections overlap indicate
a high confidence from both the motion detection and the
classifier. Hence, by appropriately thresholding the detection
map and by keeping only highly detected regions it is possible
to remove any false positives. The preserved regions are
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Fig. 1. (i) Vision Pipeline Main Stages: a) Input Image b) Road Mask c) Moving Vehicles d) Road Segmentation and Vehicle Detection. (ii) Computer
Vision Pipeline for vehicle density estimation. (iii) Classification Process using either a haar-cascade classifier or a convolutional neural network.

counted and accumulated to produce a density estimation of
the region for a given time period.

As shown in Fig. 1 the whole process has been developed
and tested using actual road footage captured by a commercial
drone providing results that demonstrate the applicability of
such an approach under real settings. The computer vision
pipeline has been evaluated under different conditions and
height levels as shown in Section IV-A. Such an analysis can
provide useful information that can be used to construct a
feasible deployment strategy depending for the UAVs in order
to ensure maximum coverage and detection performance.

III. MODELLING AND PROBLEM FORMULATION

As introduced in Section I, the proposed UAV deployment
strategy is based on finding appropriate UAV hovering loca-
tions in order monitor a certain part of the road traffic network.
Towards this direction, space is discretized so that UAVs need
to be able to monitor a finite set of points that ensure coverage

of the road infrastructure of interest, hereafter termed Points
of Interest (PoIs). Discretization of space also results in a set
of candidate UAV hovering locations, so that by deploying the
UAVs at some of the locations all PoIs will be in line–of-sight.

To construct the set of UAV hovering locations, we exploit
the fact that certain subareas of the monitored area usually
have a maximum building height hM , such that no building
structure in the specific subarea can be taller. This ensures line-
of-sight for all vehicles located in a circular region of radius R
around a UAV, provided that the particular region falls within
the field-of-view of the UAV camera. Knowing Rl for each
subarea l, means that we can construct a non-uniform grid
of UAV hovering locations by considering points on a square
lattice with horizontal/vertical distance Rl/ρ, where ρ is a
granularity constant. The higher the value of ρ, the denser is
the constructed PoI grid and hence the area that may be left
uncovered is smaller.



hB
hV

hU

wBVwUB

θ
φ

Fig. 2. Geometric representation of the line-of-sight between a UAV and a
vehicle inside a transportation network.

To determine R, let us consider Fig. 2 depicting a UAV
aiming to detect a specific vehicle. In the figure, let wUB

and wBV denote the horizontal distance between the UAV
and the building possibly obstructing the line-of-sight with
the vehicle, and the distance between that building and the
vehicle, respectively. Let also hU , denote the height of the
UAV above the ground level, and hB and hV the height of
the building and the vehicle, respectively. In this case, line-
of-side is maintained between the UAV and the vehicle when
θ ≥ φ, where

tan(θ) =
wUB + wBV

hU − hV
, (1)

tan(φ) =
wBV

hB − hV
. (2)

Considering the maximum building height in a given subarea,
hM , the maximum range at which the UAV can detect vehicles
(maintains line-of-sight) is achieved when θ = φ such that

R =
hU − hV
hM − hV

wBV . (3)

Let N and M denote the sets of UAV candidate hovering
locations and PoIs of the road network, respectively. Then, a
UAV positioned at i ∈ N can monitor vehicles located at PoI
j ∈ M if dij ≤ Rj , where dij =

√
(xi − xj)2 + (yi − yj)2,

Rj is the maximum detection range of PoI j from a UAV,
while (xi, yi) and (xj , yj) are the coordinates of points i and
j, respectively.

In this way, we can form matrix C ∈ {0, 1}|N |×|M| with
elements Cij denoting whether PoI j ∈M can be monitored
from a UAV located at point i ∈ N (Cij = 1) or not (Cij = 0).
Let also decision variables xi, iN denote whether a UAV is
deployed at i (xi = 1) or not (xi = 0). Then, the deployment

problem can be addressed using the following formulation

min
x

∑
i∈N

xi (4a)

s.t.
∑
i∈N

Cijxi ≥ 1, j ∈M, (4b)

xi ∈ {0, 1}, i ∈ N . (4c)

Formulation (4) aims to minimize the number of UAVs that
are needed to cover all PoIs. This formulation is known in
the literature as the set covering problem which is known to
be NP-hard [15]. Nonetheless, as the problem is a Mixed
Integer Linear Program (MILP), we can employ standard
MILP solvers for its solution, such as the Gurobi Solver [16].

IV. EVALUATION RESULTS

A. Vehicle Detection Performance

The computer vision pipeline presented in Section II was
evaluated using footage captured by a DJI Matrice 100 UAV.
Different scenes where captured corresponding to different
traffic conditions as well as UAV hovering heights (as shown in
Fig. 3) in order to test the sensitivity of the proposed vehicle
detection pipeline. Overall, the proposed approach was able
to reliably estimate the number of vehicles within an accuracy
between 86−90% which indicates that it can be reliably used
to estimate the traffic conditions in an area. The maximum
height which the UAV was able to reliably detect the vehicles
given a direct line of sight was found at 500m. This height
was then selected as the maximum one for the evaluation of
the deployment stragety presented next.

B. Deployment Strategy Evaluation

For the evaluation of the proposed UAV deployment strategy
we have used the metropolitan area of Nicosia, the capital
city of Cyprus, and examined the number of static UAVs
required to achieve full coverage of specific parts of Nicosia’s
road network. The road network is comprised of all primary,
secondary and residential links, and spans an area of around
100 km2. For the evaluation we have used the following
parameter values: hV = 2 m, hU = 500 m, wBV = 4 m.
The maximum height of buildings in Nicosia is determined
from the postcode (areas of approximately 0.5-2 km2). A
total of eleven unique maximum building heights arise in
the considered area hM = {5.0, 5.5, 8.0, 10.0, 11.5, 13.5,
17.0, 24.0, 38.0, 45.0, 52.0}m which result in the maximum
coverage ranges R = {664.0, 569.1, 332.0, 249.0, 209.7,
173.2, 132.8, 90.5, 55.3, 46.3, 39.8}m, respectively. The
maximum building heights in the metropolitan area of Nicosia
are shown in Fig. 4.

We have solved the UAV deployment optimization problem
in Nicosia for three different networks:
• The primary road network which includes Nicosia’s

arterial roads, comprising a set of 3507 PoIs.
• The primary and secondary road network which include

Nicosia’s main roads in addition to the arterial roads,
comprising a set of 6164 PoIs.



Fig. 3. Detection Results for different heights: (a) 100m (b) 250m (c) 500m.

• The entire road network of Nicosia which includes all
roads (primary, secondary and residential), comprising a
set of 32725 PoIs.

For the above road networks we have defined matrix C in
problem (4), by considering a non-uniform grid comprised of
86191 candidate UAV hovering locations, obtained by setting
ρ = 5, as shown in Fig. 5. All zero columns have been
removed from C to reduce the dimensionality of matrix C.

Figs. 6 - 8 depict the positions of the deployed UAVs to
monitor the primary, primary and secondary, and entire road
network of Nicosia, respectively. As can be seen from the
figures, most UAVs are deployed across the road network
to improve coverage. Nonetheless, in certain cases UAVs
are deployed between roads or at intersections to maximize
coverage. The figures also highlights the importance of the
maximum building high, as in postcode areas with tall build-
ings the concentration of UAVs is significantly higher than
areas of shorter building developments.

According to the solution of (4), a total of 198, 305
and 709 UAVs need to be deployed to cover the primary,
primary and secondary, and entire road network of Nicosia,
respectively. These numbers indicate that transportation oper-
ators can reduce the number of UAVs needed to monitored
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Fig. 4. Illustration of the Nicosia postcode areas. The area colours indicate
the maximum building height.
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Fig. 5. Illustration of the non-uniform grid produced for the UAV hovering
locations. Different regions in the figure represent postcode areas, while the
numbers indicate maximum building heights (m) in different postcode areas.

the infrastructure, if a smaller set of roads is monitored.
In addition, operators can utilize the particular deployment
strategies to deploy UAVs in specific areas of the network to
achieve rapid and detailed monitoring and to collect valuable
footage that can be used to verify their road traffic mobility
models.

V. CONCLUSION AND FUTURE WORK

This work serves as a practical case study on the use of
UAVs for road traffic monitoring. The deployment architecture
presented considers parameters related with capturing and
analysing footage from above as well as the underlying road
network topology and the obstacles obstructing collection of
that footage. To solve the deployment challenge that arises, an
optimization problem is formulated and solved to investigate
the potentials of the proposed solution.
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Fig. 6. UAV deployment for covering the primary road network of Nicosia.
The square markers indicate UAV positions, while the bullet markers points-
of-interest that need to be covered. PoIs have the same colour with the UAV
that covers them. PoIs covered by multiple UAVs are shown with the colour
of the nearest UAV.
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Fig. 7. UAV deployment for covering the primary and secondary road
network of Nicosia.

As future work, we will be exploring solutions based on
light-weight deep learning algorithms (e.g., [14]) that will be
able to run in real-time on the limited on-board hardware of
UAVs.
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