Conference paper Open Access

DroNet: Efficient convolutional neural network detector for real-time UAV applications

Christos Kyrkou; George Plastiras; Theocharis Theocharides; Stylianos I. Venieris; Christos-Savvas Bouganis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Detectors, Convolutional neural networks, Real-time systems, Training, Computer architecture, Machine learning, Graphics processing units</subfield>
  </datafield>
  <controlfield tag="005">20200610115005.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, in-cluding reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to serv-ers or lists, or reuse of any copyrighted component of this work in other works.

C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris and C. S. Bouganis, "DroNet: Efficient convolutional neural network detector for real-time UAV applications," 2018 Design, Automation &amp; Test in Europe Conference &amp; Exhibition (DATE), Dresden, Germany, 2018, pp. 967-972.
doi: 10.23919/DATE.2018.8342149


https://www.ieee.org/publications_standards/publications/rights/rights_policies.html

NVIDIA Corporation has supported this research with the donation of the Titan Xp GPU</subfield>
  </datafield>
  <controlfield tag="001">1243708</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">March 2018</subfield>
    <subfield code="g">DATE</subfield>
    <subfield code="a">2018 Design, Automation Test in Europe Conference Exhibition (DATE)</subfield>
    <subfield code="c">Dresden, Germany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KIOS Center of Excellence, University of Cyprus</subfield>
    <subfield code="a">George Plastiras</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KIOS Center of Excellence,  Department of Electrical and Computer Engineering, University of Cyprus</subfield>
    <subfield code="a">Theocharis Theocharides</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Electronic Engineering, Imperial College London</subfield>
    <subfield code="a">Stylianos I. Venieris</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Electronic Engineering, Imperial College London</subfield>
    <subfield code="a">Christos-Savvas Bouganis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1705241</subfield>
    <subfield code="z">md5:9ef947bbbf08439a0d87dbd7f3db6888</subfield>
    <subfield code="u">https://zenodo.org/record/1243708/files/[2018] Dronet Efficient Convolutional Neural Network Detector for Real-Time UAV Applications.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://ieeexplore.ieee.org/document/8342149/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-03-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ckyrkou</subfield>
    <subfield code="p">user-cyprus</subfield>
    <subfield code="p">user-kios-coe</subfield>
    <subfield code="o">oai:zenodo.org:1243708</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">KIOS Center of Excellence, University of Cyprus</subfield>
    <subfield code="0">(orcid)0000-0002-7926-7642</subfield>
    <subfield code="a">Christos Kyrkou</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">DroNet: Efficient convolutional neural network detector for real-time UAV applications</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ckyrkou</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cyprus</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-kios-coe</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739551</subfield>
    <subfield code="a">KIOS Research and Innovation Centre of Excellence</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-sa/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Share Alike 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Deep learning (DL) has gathered significant interest recently as an Artificial Intelligence (AI) paradigm, with success in a wide range of applications such as image and speech recognition, autonomous systems, self-driving cars, cyber-physical systems, and many more. Among the most promising systems that can utilize deep learning are Unmanned Aerial Vehicles (UAVs) which are becoming an attractive solution for a wide range of applications. In particular, Road Traffic Monitoring (RTM), and Emergency Response (ER) systems constitute a domain where the use of UAVs is receiving significant interest. Under the above deployments, UAVs are responsible for searching, collecting and sending, in real time, vehicle information either for traffic regulation purposes or to aid search and rescue in emergency response.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.23919/DATE.2018.8342149</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
118
136
views
downloads
Views 118
Downloads 136
Data volume 231.9 MB
Unique views 111
Unique downloads 127

Share

Cite as