Journal article Open Access

A patient-controlled functional electrical stimulation system for arm weight relief

Klauer, Christian; Ferrante, Simona; Ambrosini, Emilia; Shiri, U; Dähne, F; Schmehl, I; Pedrocchi, Alessandra; Schauer, Thomas

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Klauer, Christian</dc:creator>
  <dc:creator>Ferrante, Simona</dc:creator>
  <dc:creator>Ambrosini, Emilia</dc:creator>
  <dc:creator>Shiri, U</dc:creator>
  <dc:creator>Dähne, F</dc:creator>
  <dc:creator>Schmehl, I</dc:creator>
  <dc:creator>Pedrocchi, Alessandra</dc:creator>
  <dc:creator>Schauer, Thomas</dc:creator>
  <dc:description>A patient-driven control strategy for Functional Electrical Stimulation (FES), which amplifies volitionally-initiated shoulder abductions, is proposed to improve stroke patients' rehabilitation. Based on the measured abduction angle, a FES-induced muscle recruitment is generated that yields a pre-specified percentage of this angle - yielding arm weight relief. To guarantee the correct recruitment also under fatigue and uncertain muscle activation we employ feedback control of the recruitment level determined by filtering the FES-evoked electromyogram. Filter parameters are user-optimized to obtain a linear relation between filter output and angle with a good signal-to-noise ratio. The auto-tuned recruitment controller (RC) was tested on five healthy subjects and compared to direct stimulation (DS) while muscle fatigue progressively occurred. Results showed a more linear relation between recruitment level and angle than between non-controlled stimulation intensity and angle (R2=0.93 vs. R2=0.79, angular range of 54°). After 6 min of stimulation, abduction decreased by 42% ± 14 for DS and by 0% ± 12 for RC, showing an effective compensation of fatigue. RC yielded significant smaller errors than DS in generating desired angles (0.23% ± 5.9 vs. 14.6% ± 9.7). When FES-induced arm weight support was provided, a mean reduction of the volitional effort (determined by Electromyography) of 78% was achieved compared to angular tracking without FES. First experiments with one acute stroke patient are also reported.</dc:description>
  <dc:title>A patient-controlled functional electrical stimulation system for arm weight relief</dc:title>
Views 147
Downloads 150
Data volume 232.8 MB
Unique views 141
Unique downloads 142


Cite as