
PlasmaPy: an open source community-developed
Python package for plasma physics

The PlasmaPy Community, Nicholas A. Murphy,1 Andrew J.
Leonard,2 Dominik Stańczak, Pawel M. Kozlowski,3 Samuel J.
Langendorf,4 Colby C. Haggerty,5 Jasper P. Beckers, Stuart J.

Mumford,6 Tulasi N. Parashar,7 and Yi-Min Huang8

1Harvard-Smithsonian Center for Astrophysics, 2Aperio Software, 3West Virginia
University, 4Los Alamos National Laboratory, 5University of Chicago, 6University

of Sheffield, 7University of Delaware, 8Princeton University

April 30, 2018

http://www.plasmapy.org/
https://creativecommons.org/licenses/by/4.0/


Introduction

▶ In recent years, researchers in several different subfields of
physics and astronomy have collaboratively developed core
Python packages such as Astropy1 and SunPy2

▶ These packages provide core functionality, common
frameworks for data analysis and visualization, and
educational tools

▶ A similar open source package for plasma physics would
greatly benefit our field

▶ We are developing PlasmaPy: a community-developed
and community-driven open source core Python package
for plasma physics

1Astropy Collaboration (2018)
2SunPy Community (2015)

http://www.astropy.org/
http://sunpy.org/
http://www.plasmapy.org/
https://arxiv.org/abs/1801.02634
https://doi.org/10.1088/1749-4699/8/1/014009


Current status of scientific programming in plasma physics

▶ Major codes often use low-level languages such as Fortran
▶ Programmers are often self-taught
▶ Code is often difficult to read
▶ Compiling and installing codes is difficult and time-consuming
▶ Different codes lack interoperability
▶ Documentation is usually inadequate
▶ Access to major codes is often restricted in some way
▶ It is somewhat unusual to share code
▶ Many versions of software do essentially the same thing
▶ Research is difficult to reproduce

There is a considerable need for an open, general purpose
shared software package for plasma physics that uses modern
best practices for scientific programming.



Why choose Python?

▶ Free and open source
▶ High-level, interpreted language
▶ Programming style emphasizes readability
▶ Can “glue” together software written in different languages
▶ Can reach near-compiled speeds using packages such as

Numba and Cython, or by calling compiled routines
▶ Well-developed numerical and scientific analysis packages
▶ Active user community
▶ Can learn from and collaborate with ongoing highly successful

projects such as Astropy and SunPy
▶ Will help students learn programming skills that will be useful

in finding employment outside of plasma physics

https://numba.pydata.org/
http://cython.org/


PlasmaPy is an open source Python 3.6+ package for
plasma physics in the early stages of development

The long-term goal of the PlasmaPy community is to facilitate a
fully open source Python ecosystem for plasma physics.



PlasmaPy’s first development release is version 0.1.0

▶ Version 0.1.0 is a prototype and a preview, and not yet
recommended for production work

▶ Significant changes to the application programming interface
(API) will occur during the first few development releases

▶ Rather, version 0.1.0 serves as an invitation to plasma
students and scientists to collaboratively develop a
community-wide shared software package

▶ PlasmaPy is available on the Python Package index (PyPI)
and may be installed into an existing scientific Python 3.6
environment3 by running

pip install plasmapy

3We recommend using an Anaconda Python environment.

https://pypi.org/project/plasmapy/
https://www.anaconda.com/what-is-anaconda/


PlasmaPy is open source for open and reproducible science

▶ Some software packages in plasma physics are described as
open source, but do not meet the definition set by the Open
Source Initiative (OSI) or use an OSI-approved license

▶ PlasmaPy is under the permissive BSD 3-clause license with
OSI-approved language to protect against software patents

▶ Using a permissive license maximizes compatibility with
software under different licenses

▶ Permissively licensed code may be incorporated into both
proprietary and copyleft software

▶ Creative works besides source code are usually under Creative
Commons licenses

▶ The CC BY 4.0 license allows works to be shared and adapted
as long as attribution is given to the original work

▶ The CC BY-SA 4.0 license allows works to be shared and
adapted with attribution if derivative works are shared under
the same license

https://opensource.org/osd
https://opensource.org/
https://opensource.org/
https://opensource.org/licenses
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


PlasmaPy is using best practices for scientific computing4

to ensure that code is easy-to-use and maintainable

▶ Simple and intuitive API
▶ Readable and consistent style (PEP 8 standard)
▶ Embed documentation in code
▶ Use modular, object-oriented programming
▶ Version control with git with useful commit messages
▶ Avoid prematurely optimizing code
▶ Use semantic versioning
▶ Continuous integration testing and test coverage checks
▶ Issue tracking and code review using GitHub
▶ Adopt a code of conduct and work toward a welcoming and

inclusive community

4Many of these practices are described by Wilson et al., “Best Practices for
Scientific Computing,” PLOS Biology 12, e1001745 (2014).

https://www.python.org/dev/peps/pep-0008/
https://semver.org/
https://www.github.com/
http://docs.plasmapy.org/en/stable/CODE_OF_CONDUCT.html
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745


Organizational development in PlasmaPy’s first year

▶ Set up communication channels
▶ Matrix/Gitter channel for real-time text-based chats
▶ Biweekly video conferences
▶ Email list

▶ Chose a license and added protections against software patents
▶ Wrote PlasmaPy’s vision statement
▶ Adopted a code of conduct
▶ Developed a guide for new contributors
▶ Appointed the Coordinating Committee
▶ Started the PlasmaPy Enhancement Proposals repository
▶ Started a development roadmap

https://github.com/PlasmaPy/PlasmaPy/blob/master/LICENSE.md
http://docs.plasmapy.org/en/stable/about/vision_statement.html
http://docs.plasmapy.org/en/stable/CODE_OF_CONDUCT.html
http://docs.plasmapy.org/en/stable/CONTRIBUTING.html
https://github.com/PlasmaPy/PlasmaPy-PLEPs


PlasmaPy is well-documented and well-tested

▶ Each pull request undergoes continuous integration testing
with Travis CI and AppVeyer

▶ Automated test coverage checks with Coveralls show which
lines of code are not covered by tests

▶ PlasmaPy’s online documentation is hosted on Read the Docs
after being built using Sphinx

▶ We use the numpydoc docstring format

▶ CircleCI test builds the documentation for each pull request
▶ PlasmaPy’s website was created using Nikola and is hosted

using GitHub Pages
▶ Created initial website using Nikola and GitHub Pages
▶ PlasmaPy’s entire code development history is openly

available on our GitHub repository

https://travis-ci.org/
https://www.appveyor.com/
https://coveralls.io/
http://docs.plasmapy.org/
https://readthedocs.org/
http://www.sphinx-doc.org/en/master/
https://circleci.com/
http://www.plasmapy.org/
https://getnikola.com/
https://pages.github.com/
http://www.plasmapy.org/
https://github.com/PlasmaPy/plasmapy


Code development began in earnest in April 2017

▶ Created atomic and constants subpackages to access
physical data

▶ Developed physics subpackage to calculate plasma
parameters, including dielectric tensor components

▶ Created physics.transport module to calculate
transport/collision parameters

▶ Created mathematics subpackage for commonly used
analytical functions

▶ Started a diagnostics subpackage with initial functionality
for analyzing Langmuir probe data

▶ Developed prototype base classes in classes subpackage,
including particle pusher functionality

▶ Created the utils subpackage with helper functionality and
custom exceptions

▶ Began using test/import functionality from astropy-helpers

https://github.com/astropy/astropy-helpers


PlasmaPy uses the astropy.units package for units
This package creates Quantity objects with attached units.
>>> from astropy import units as u
>>> distance = 44 * u.imperial.mile
>>> time = 30 * u.minute
>>> distance / time
<Quantity 88.0 mi / h>
>>> (distance/time).to(u.m/u.s)
<Quantity 39.33952 m / s>
>>> (1.21 * u.GW).cgs
<Quantity 1.21e+16 erg / s>
>>> 2 * u.m / u.s + 4 * u.m / u.s ** 2
UnitConversionError: Can only apply 'add' function to quantities
with compatible dimensions

Built-in equivalencies can handle non-standard unit conversions
commonly used in plasma physics:5

>>> kT = 1.2 * units.keV
>>> kT.to(u.K, equivalencies=u.temperature_energy())
<Quantity 13925426.47248121 K>

5Code inside PlasmaPy uses SI units to avoid confusion and for consistency
with established international practices.

http://docs.astropy.org/en/stable/units/


The atomic subpackage provides functional and
object-oriented interfaces to particle data

Instances of the Particle class may be used to represent
individual atoms, ions, or elementary particles.
>>> from plasmapy.atomic import *

>>> alpha = Particle("He-4++")
>>> alpha.mass
<Quantity 6.64465709e-27 kg>
>>> electron = Particle("e-")
>>> electron.charge
<Quantity -1.60217662e-19 C>
>>> electron.is_category(require={"lepton", "fermion"})
True
>>> ~electron # find antiparticle with invert operator
Particle("e+")

We can calculate the released energy from a nuclear reaction.
>>> nuclear_reaction_energy("D + T -> alpha + n").to('MeV')
<Quantity 17.58932778 MeV>



The physics subpackage provides functions to calculate
plasma parameters and dielectric tensor components

>>> from plasmapy.physics import *

>>> Debye_length(n_e = 1e15 * u.m ** -3, T_e = 6e6 * u.K)
<Quantity 0.00534541 m>

>>> inertial_length(5e19 * u.m ** -3, particle='D+')
<Quantity 0.04553085 m>

>>> upper_hybrid_frequency(0.2 * u.T, n_e = 5e19 * u.m ** -3)
<Quantity 4.00459419e+11 rad / s>

>>> B = 2 * u.T
>>> species = ['e-', 'D+']
>>> n = [1e18 * u.m ** -3, 1e18 * u.m ** -3]
>>> omega = 3.7e9 * (2 * pi) * (u.rad / u.s)
>>> L, R, P = cold_plasma_permittivity_LRP(B, species, n, omega)
>>> L
<Quantity 0.63333549>
>>> R
<Quantity 1.41512254>
>>> P
<Quantity -4.8903104>



The transport subpackage provides functions to
calculate collision parameters and transport coefficients

>>> from plasmapy.transport import *
>>> T = 1 * u.MK
>>> n = 5e15 * u.m ** -3
>>> particles = ('e-', 'p+')
>>> collision_frequency(T, n, particles)
<Quantity 443.02775451 Hz>
>>> coupling_parameter(T, n, particles)
<Quantity 4.60608476e-06>

>>> T_e, n_e = 0.6 * u.keV, 1e16 * u.cm ** -3
>>> T_p, n_p = 0.8 * u.keV, 1e16 * u.cm ** -3
>>> braginskii = ClassicalTransport(T_e, n_e, T_p, n_p, 'p+')
>>> braginskii.ion_thermal_conductivity()
<Quantity 132961.01785222 W / (K m)>
>>> braginskii.electron_viscosity() # Eq 2.25-2.27 in Braginskii (1965)
<Quantity [0.02734206, 0.02733305, 0.02733305, 0., 0.] Pa s>



PlasmaPy has multiple methods for calculating Coulomb
logarithms over a wide range of plasma parameters

1 2 3 4 5 6 7
log T/K

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

ln
 

Coulomb logarithms for n = 10²² m ³ for (e , p ) collisions
classical
GMS-1
GMS-2
GMS-3
GMS-4
GMS-5
GMS-6

The Coulomb_logarithm function includes the classical calculation and
multiple methods from Gericke, Murillo, & Schlanges (2002). A
CouplingWarning is issued when strong coupling effects may be important but
are not accounted for.

https://doi.org/10.1103/PhysRevE.65.036418


The mathematics subpackage contains analytic functions
that are commonly used by plasma physicists

The plasma dispersion function

𝑍(𝜁) = 𝜋−1/2 ∫
∞

−∞

e−𝑥2

𝑥 − 𝜁
d𝑥

may be calculated using plasmapy.mathematics.plasma_dispersion_func.
This function is tested against results tabulated by Fried & Conte (1961).

https://doi.org/10.1016/C2013-0-12176-9


PlasmaPy code development roadmap

▶ Create a Plasma metaclass as base data structure
▶ Add fluid and particle simulation capabilities
▶ Turbulence analysis tools
▶ Develop tools to analyze and interpret plasma diagnostics
▶ Implement an equilibrium solver
▶ Develop tools to analyze 3D magnetic topology
▶ Implement a dispersion relation solver
▶ Query tools for atomic and other databases

If there is functionality that you would like in PlasmaPy,
we invite you to raise an issue in our GitHub repository.

https://github.com/PlasmaPy/PlasmaPy/issues/new


What does PlasmaPy need to succeed?

▶ Open development
▶ Low barrier to entry
▶ Actively inviting new contributors
▶ Open data policies for major experiments

▶ A welcoming and inclusive environment
▶ Provide a culture of appreciation for contributors to PlasmaPy
▶ Adopt a code of conduct

▶ A sustainable funding model6
▶ Astropy development is mostly a volunteer, grassroots effort
▶ Most work on Astropy has been done by graduate students and

postdocs, with little direct funding support
▶ There is a need for funding agencies and large institutions to

support open development of general purpose software

6This issue is described thoroughly by D. Muna et al. in The Astropy
Problem (arXiv:1610.03159)

https://arxiv.org/abs/1610.03159


Summary

▶ We are developing PlasmaPy: a community-developed
and community-driven open source core Python package
for plasma physics

▶ Version 0.1.0 is available on PyPI and may be installed into a
scientific Python 3.6 environment by running
pip install plasmapy

▶ PlasmaPy is a collaboration among laboratory, heliospheric,
space, and astrophysical plasma physicists, and is building
bridges among these communities

▶ New contributors are welcome and can become involved by:
▶ Joining our email list and conversation on Matrix/Gitter
▶ Raising issues on GitHub with new ideas for code development
▶ Contributing code, especially issues labeled
▶ Contributing documentation
▶ Becoming an early adopter and providing constructive feedback

https://github.com/PlasmaPy/plasmapy/issues?q=is:issue+is:open+label:"Good+first+contribution"


PlasmaPy Links

▶ PlasmaPy’s GitHub repository is:
https://github.com/PlasmaPy/plasmapy

▶ PlasmaPy’s online documentation is at:

http://docs.plasmapy.org/
▶ We are developing our webpage at:

http://www.plasmapy.org/
▶ Our Matrix and Gitter channels for real-time text-based

communication are at:

https://riot.im/app/#/room/#plasmapy:matrix.org
https://gitter.im/PlasmaPy/Lobby

▶ Sign up for the PlasmaPy email list at:

https://groups.google.com/d/forum/plasmapy

https://github.com/PlasmaPy/plasmapy
http://docs.plasmapy.org/
http://www.plasmapy.org/
https://riot.im/app/#/room/
https://gitter.im/PlasmaPy/Lobby
https://groups.google.com/d/forum/plasmapy

