Journal article Open Access

Key aspects of analyzing microarray gene-expression data

Chen, James J.


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/b9242af0-84bb-40d8-a75c-ba6a9a4c875e/article.pdf"
      }, 
      "checksum": "md5:a6314c24185f817cae001ca2d0bbe03d", 
      "bucket": "b9242af0-84bb-40d8-a75c-ba6a9a4c875e", 
      "key": "article.pdf", 
      "type": "pdf", 
      "size": 239012
    }
  ], 
  "owners": [
    13380
  ], 
  "doi": "10.2217/14622416.8.5.473", 
  "stats": {
    "version_unique_downloads": 158.0, 
    "unique_views": 176.0, 
    "views": 178.0, 
    "version_views": 176.0, 
    "unique_downloads": 158.0, 
    "version_unique_views": 174.0, 
    "volume": 39436980.0, 
    "version_downloads": 165.0, 
    "downloads": 165.0, 
    "version_volume": 39436980.0
  }, 
  "links": {
    "doi": "https://doi.org/10.2217/14622416.8.5.473", 
    "latest_html": "https://zenodo.org/record/1236433", 
    "bucket": "https://zenodo.org/api/files/b9242af0-84bb-40d8-a75c-ba6a9a4c875e", 
    "badge": "https://zenodo.org/badge/doi/10.2217/14622416.8.5.473.svg", 
    "html": "https://zenodo.org/record/1236433", 
    "latest": "https://zenodo.org/api/records/1236433"
  }, 
  "created": "2018-04-28T19:31:06.253266+00:00", 
  "updated": "2020-01-20T17:35:29.729832+00:00", 
  "conceptrecid": "1236432", 
  "revision": 4, 
  "id": 1236433, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.2217/14622416.8.5.473", 
    "description": "One major challenge with the use of microarray technology is the analysis of massive amounts of gene-expression data for various applications. This review addresses the key aspects of the microarray gene-expression data analysis for the two most common objectives: class comparison and class prediction. Class comparison mainly aims to select which genes are differentially expressed across experimental conditions. Gene selection is separated into two steps: gene ranking and assigning a significance level. Class prediction uses expression profiling analysis to develop a prediction model for patient selection, diagnostic prediction or prognostic classification. Development of a prediction model involves two components: model building and performance assessment. It also describes two additional data analysis methods: gene-class testing and multiple ordering criteria.", 
    "license": {
      "id": "CC0-1.0"
    }, 
    "title": "Key aspects of analyzing microarray gene-expression data", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1236432"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1236433"
          }
        }
      ]
    }, 
    "publication_date": "2007-05-01", 
    "creators": [
      {
        "name": "Chen, James J."
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
178
165
views
downloads
Views 178
Downloads 165
Data volume 39.4 MB
Unique views 176
Unique downloads 158

Share

Cite as