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Abstract

Roy Walford, a physician and scientist who pioneered research on the anti-aging effects of
caloric restriction and subjected himself to a low-energy diet, recently died from amyotrophic
lateral sclerosis (ALS). Information from his case, epidemiological findings, and recent con-
trolled studies in mouse models of ALS suggest that low-energy diets might render motor neu-
rons vulnerable to degeneration, whereas high-energy diets are ameliorative. This contrasts
with the effects of low-energy diets on various neuronal populations in the brain that respond
adaptively, activating pathways that promote plasticity and resistance to disease. One reason
that motor neurons might be selectively vulnerable to low-energy diets is that they are unable
to engage neuroprotective responses to energetic stress response involving the protein chap-
erones, such as, heat-shock protein-70.
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The improbable case of Roy Walford hints at a rela-
tionship between low-energy intake and the risk of
the neurodegenerative disease, amyotrophic lateral
sclerosis (ALS). ALS involves the inexorable degen-
eration of motor neurons in the spinal cord and motor
cortex, resulting in progressive paralysis and death.
Except for very rare cases of inherited ALS that result
from mutations in the Cu/Zn-superoxide dismutase
gene, the cause(s) of ALS is unknown (Majoor-
Karkauer et al., 2003). Walford was a physician and
scientist who made important contributions toward
understanding how low-energy diets (caloric restric-
tion) can extend the life span (Walford, 1985). Based

on data showing that energy restriction improves the
health and longevity of rodents, he subjected him-
self to a reduced-energy diet of approx 1600 calories
per day combined with an exercise regimen over a
period of three decades (O’Connor, 2004). In 2005, he
died at the age of 79 after suffering with ALS for sev-
eral years. Walford was one of eight participants in
the highly publicized Biosphere 2 project in which
the participants were sealed in a self-sustaining
“biobubble” for 2 yr during which time they culti-
vated their own food, but were unable to produce
sufficient food for a normal energy-level diet (Wal-
ford et al., 2002). Another Biosphere 2 participant also
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developed a motor neuron syndrome (Lassinger 
et al., 2004). Because the lifetime risk of ALS in indus-
trialized countries is about 1 in 1000 (www.alsasso
ciation.org), and the numbers of people on a sus-
tained low-energy diet is also very low, Walford’s
case suggests that a low-energy intake might pro-
mote the development of ALS.

But Walford’s case is but an anecdote among a
much larger and growing body of evidence link-
ing a negative energy balance to the pathogenesis
of ALS. The tragic cases of prominent athletes, such
as the baseball player Lou Gehrig who developed
ALS at an early age (Kasarskis and Winslow, 1989),
raised interest in a possible link between energy
balance and ALS. The results of several epidemio-
logical studies suggested that athletes and indi-
viduals with a low body mass index are at increased
risk of ALS. For example, the results of a case–
control study of 279 patients with motor neuron
disease showed that the patients were more likely
than controls to report that they had always been
slim and/or had been varsity athletes (Scarmeas
et al., 2003). In addition, patients with ALS were
reported to have a higher metabolic rate than con-
trol subjects (Desport et al., 2001), and males (who
typically expend more energy than females because
of their occupations and participation in athletics)
are more likely than females to develop ALS
(Kurzke, 1982). Moreover, in a prospective study
of patients with ALS in France there was an eight-
fold increased risk during a 7-mo period in patients
with a low body mass index (Desport et al., 1999).
However, other studies failed to find an associa-
tion between levels of physical activity and risk of
ALS (Veldink et al., 2005), suggesting the need for
further human epidemiological studies. 

Although the data from human studies is limited
and inconclusive, recent findings from studies of
animal models of ALS strongly suggest that energy
intake can influence the pathogenesis of this dis-
ease. Cu/Zn-superoxide dismutase (SOD) mice
develop ALS-like diseases involving degeneration
of lower motor neurons resulting in progressive paral-
ysis and death. An initial study showed that when
such ALS mice were maintained on an intermittent-
fasting dietary-restriction regimen their disease
worsened, suggesting that a low-energy intake exac-
erbates the disease process (Pedersen and Mattson,
1999). Consistent with the disease process, it was
recently reported that energy restriction (40%

reduction in calorie intake) hastens the onset of clin-
ical disease in ALS mice (Hamadeh et al., 2005). On
the other hand, degeneration of motor neurons was
attenuated and the survival of ALS mice was
extended by administration of creatine, a compound
that promotes maintenance of cellular adenosine
triphosphate levels (Klivenyi et al., 1999). More
recent studies have shown that ALS mice exhibited
increased energy expenditure, skeletal muscle
hypermetabolism, and reduced adipose tissue levels
well before the appearance of symptoms (Dupuis
et al., 2004). In the latter study, the course of the dis-
ease was significantly retarded and survival was
extended by 20% when the ALS mice were main-
tained on a high-energy diet. 

In our experiment, the effects of a high-fat/high-
sugar “fast-food diet” (FFD) on the disease process
in ALS mice were studied. Six-week-old male ALS
mice were divided into two groups. One group was
fed a control diet (n = 12) and the second group an
FFD (n = 12). The control diet consisted of 64% car-
bohydrates, 17% fats, and 19% protein, whereas the
FFD consisted of 38% carbohydrates, 47% fats, and
15% protein. ALS mice on the control diet developed
hind limb paralysis within 100 and 140 d of age and
all of these mice died by 180 d of age (Fig. 1A).
The age of disease onset and the survival of ALS
mice were significantly increased when they were
maintained on the FFD, with all mice on this diet
surviving to 220 d of age and several surviving more
than 270 d. Mice maintained on the FFD gained body
weight until they became symptomatic, whereas mice
on the control diet either lost weight or remained at
their prediet weight before the appearance of motor
dysfunction (Fig. 1B). The time between disease onset
and death was significantly greater in the ALS mice
on the FFD compared with those on the control diet
(data not shown). Thus, a high-energy diet has a clear
beneficial effect in delaying the onset and slowing
the disease progression in ALS mice.

The apparent vulnerability of motor neurons as
negative energy balance contrasts with other types
of neurons, such as those in the hippocampus, cere-
bral cortex, and substantia nigra, which might ben-
efit from energy restriction. For example, energy
restriction suppressed the disease process and
improved functional outcome in animal models of
Parkinson’s (Maswood et al., 2004), Alzheimer’s
(Patel et al., 2005), and Huntington’s (Duan et al.,
2003) diseases, and stroke (Yu and Mattson, 1999).

www.alsassociation.org
www.alsassociation.org
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The mechanism by which low-energy diets can pro-
tect the latter neurons and other cell types in the
body against age-related disease is believed to
involve a conditioning response in which the cells
respond to the energetic stress by increasing their
production of stress resistance proteins such as
Heat-shock protein (HSP)-70 (Sinclair, 2005).
Although the mechanisms remain to be determined,
motor neurons might not be able to respond adap-
tively to energetic stress and hence might be selec-
tively vulnerable. Unlike other types of neurons,
motor neurons exhibit a greatly reduced ability to
upregulate HSP-70 in response to oxidative and
metabolic stress (Batulan et al., 2003). Moreover,
ALS-causing mutant forms of Cu/Zn-SOD
sequester HSP-70 (Okado-Matsumoto and
Fridovich, 2002), which would be expected to com-
promise the ability of motor neurons to respond
adaptively to stress. Further, research aimed at
understanding the effect of energy intake and
expenditure on motor neuron physiology and

vulnerability to disease is clearly required and
might lead to novel approaches for delaying or pre-
venting ALS in those who might be at risk.
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