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Abstract. We show that the only real symmetric matrices whose spectrum is invariant modulo
sign changes after either row or column reversal are the centrosymmetric matrices; moreover, we
prove that the class of real symmetric centrosymmetric matrices can be completely characterized
by this property. We also show that the only real symmetric matrices whose spectrum changes by
multiplication by i after either row or column reversal are the skew-centrosymmetric matrices; here,
too, we show that the class of real symmetric skew-centrosymmetric matrices can be completely
characterized by this property of their eigenvalues. We prove both of these spectral characterizations
as special cases of results for what we’ve called generalized centrosymmetric K-matrices and gener-
alized skew-centrosymmetric K-matrices. Some results illustrating the application of the generalized
centrosymmetric spectral characterization to other classes of real symmetric matrices are also given.
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1. Introduction. A centrosymmetric matrix A of order n is a square matrix
whose elements ai,j satisfy the property

ai,j = an−i+1,n−j+1 for 1 ≤ i, j ≤ n.

A is called skew-centrosymmetric if its elements ai,j satisfy the property

ai,j = −an−i+1,n−j+1 for 1 ≤ i, j ≤ n.

Although they make a brief appearance in [1], centrosymmetric matrices received their
first serious treatment in the 1962 work of Collar [4]. Collar’s paper also introduces
the notion of skew-centrosymmetric matrices (he uses the term centroskew).

The symmetric Toeplitz matrices form an important subclass of the class of sym-
metric centrosymmetric (sometimes called doubly symmetric) matrices. An n × n
matrix T is said to be Toeplitz if there exist numbers r−n+1, . . . , r0, . . . , rn−1 such
that ti,j = rj−i for 1 ≤ i, j ≤ n. As such, Toeplitz matrices are sometimes described
as being “constant along the diagonals.” Toeplitz matrices occur naturally in digital
signal processing applications as well as other areas [7]. Centrosymmetric matrices
appear in their own right, for example, in the numerical solution of certain differential
equations [2], in the study of some Markov processes [8], and in various physics and
engineering problems [6].

In this paper, we establish spectral characterizations for both real symmetric cen-
trosymmetric and real symmetric skew-centrosymmetric matrices as special cases of
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886 DAVID TAO AND MARK YASUDA

results for what we have called generalized centrosymmetric K-matrices and general-
ized skew-centrosymmetric K-matrices (defined below).1 To emphasize the elemen-
tary nature of the techniques involved, all results used regarding centrosymmetric and
skew-centrosymmetric matrices are developed within this paper.

2. Notation and terminology. Let J represent the exchange matrix of order n
defined by Ji,j = δi,n−j+1 for 1 ≤ i, j ≤ n, where δi,j is the Kronecker delta (i.e., J is
a matrix with ones on the cross-diagonal and zeros elsewhere). Left-multiplication by
J against a matrix A reverses the row order of A. Right-multiplication by J against
A reverses the column order of A. The properties of centrosymmetry and skew-
centrosymmetry for a matrix can be written succinctly as AJ = JA (equivalently,
A = JAJ) and AJ = −JA (equivalently, A = −JAJ), respectively.

We use K to denote an involutory (i.e., K2 = I) matrix. The exchange matrix
J belongs to the set of involutory matrices. We shall refer to matrices A satisfying
AK = KA as generalized centrosymmetric K-matrices,2 and matrices A satisfying
AK = −KA as generalized skew-centrosymmetric K-matrices.

Following the terminology used in Andrew [2], when x = Jx we say that the
vector x is symmetric. When x = −Jx, we say that the vector x is skew-symmetric.
We extend this terminology to the situation where J is replaced by an involutory
matrix K by saying that when x = Kx the vector x is K-symmetric and that when
x = −Kx the vector x is K-skew-symmetric.

Let R and S be multisets (i.e., elements can appear more than once in the collec-
tion). We write R = ±S if the elements of R are the same as those of S up to sign.
We write R = iS if R = {is | s ∈ S}, where i = √−1.

Let Λ(A) denote the spectrum (eigenvalues) of A, {λi (A)}1≤i≤n. Our primary
focus will be on the multisets Λ(A), ±Λ(A), and iΛ(A).

In what follows, ‖x‖ =
√
xTx will denote the Euclidean vector norm of a vector

x.

3. Generalized centrosymmetric matrices. Although our focus is primarily
on real symmetric matrices, we relax that restriction in the following proposition
about generalized centrosymmetric K-matrices.

Proposition 3.1. Suppose A ∈ Fn×n and K ∈ Fn×n, where F is a field of
characteristic not equal to 2 and K is an involutory matrix. If AK = KA, then
Λ(A) = ±Λ(KA).

Note: The same theorems and proofs hold mutatis mutandis when Λ (KA) is
replaced with Λ (AK) in this proposition and all subsequent results of this article.

Proof. Except for the trivial cases K = ±I, the matrix K has minimal polynomial
m(x) = x2 − 1. Since the zeros of m(x) have multiplicity one, there exists a matrix
X ∈ Fn×n such that conjugation of K by X yields the block diagonal form

K ′ ≡ X−1KX =

(
I 0
0 −I

)
,

where I represents a block identity matrix, and the sum of the dimensions of the I
and −I blocks is n (see [5], for example).

1A. Andrew obtained an eigenspace characterization for Hermitian centrosymmetric matrices in
[2].

2A. Andrew also investigated this generalization in [2].
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GENERALIZED CENTROSYMMETRIC AND CENTROSKEW MATRICES 887

Conjugation of A by the same matrix X yields a matrix

A′ ≡ X−1AX =

(
A′

11 A′
12

A′
21 A′

22

)
,

where we assume the same partitioning as that for K ′. A simple calculation shows
that AK = KA if and only if A′K ′ = K ′A′ if and only if A′

12 and A′
21 are both zero

matrices. Consequently,

A′ =
(
A′

11 0
0 A′

22

)
and K ′A′ =

(
A′

11 0
0 −A′

22

)
.

Since A is similar to A′ and KA is similar to K ′A′, the result is proved.
Remark 3.2. When K = J , we can explicitly construct the eigenvector matrix

X as follows. Denote the jth column of X by xj . For j ≤
⌊
n
2

⌋
, let the vector xj have

components of 0 everywhere except for a 1 in components j and n−j+1. For j >
⌈
n
2

⌉
,

let the vector xj have components of 0 everywhere except for a 1 in component j and
a −1 in component n−j+1. If n is odd, we let x�n

2 
 have components of 0 everywhere

except for a 1 in component
⌈
n
2

⌉
. Note that the first

⌈
n
2

⌉
eigenvectors are symmetric,

while the remaining
⌊
n
2

⌋
are skew-symmetric.

A centrosymmetric example. Consider the matrices

A1 =




3 −2 −1 0 1
−2 1 −3 1 0
−1 −3 5 −3 −1
0 1 −3 1 −2
1 0 −1 −2 3


 and JA1 =




1 0 −1 −2 3
0 1 −3 1 −2

−1 −3 5 −3 −1
−2 1 −3 1 0
3 −2 −1 0 1


 .

A1 is centrosymmetric and, consequently, so is JA1.

Λ (A1) =
{

−2, 1−√
5, 1 +

√
5, 5, 8

}

and

Λ (JA1) =
{

−1−√
5, −2, −1 +

√
5, 5, 8

}
.

A generalized centrosymmetric example. Let

A2 =


 8 2 −5

2 −4 1
−5 1 2


 and K =




2
3

−1
3

−2
3−1

3
2
3

−2
3−2

3
−2
3

−1
3


 .

Since A2K = KA2 and K2 = I, we say that A2 is a generalized centrosymmetric
K-matrix.

Λ (A2) = Λ(KA2) =
{
3− 3

√
7, 0, 3 + 3

√
7
}
.

Before proving the converse of the real symmetric case of Proposition 3.1, we
establish a useful lemma.

Lemma 3.3. Let A ∈ R
n×n be symmetric and nonzero, let K ∈ R

n×n be a
symmetric involutory matrix, and assume that the largest eigenvalue λ̃(A) of A in
magnitude equals the largest eigenvalue λ̃(KA) of KA in magnitude up to sign (i.e.,
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888 DAVID TAO AND MARK YASUDA

|λ̃(A)| ≡ maxi {|λi(A)|} and |λ̃(KA)| ≡ maxi {|λi(KA)|} satisfy λ̃(A) = ±λ̃(KA)).
Then there is a nontrivial K-invariant subspace of the eigenspace of A correspond-
ing to λ̃(A). This subspace is also a subspace of the eigenspaces of KA and AK
corresponding to their eigenvalues of largest magnitude.

Proof. Let x be a unit eigenvector of KA corresponding to λ, where |λ| = λ̃(KA).
Then λ = xTKAx, and transposing this equation gives λ = xTAKx. By the Cauchy–
Schwarz inequality, we have that

|λ| = ∣∣xTAKx∣∣ ≤ ‖AKx‖ .
Since |λ| is extremal for A, ‖AKx‖ ≤ |λ| and therefore ‖AKx‖ = |λ|.

Because the Cauchy–Schwarz inequality |xT (AKx)| ≤ ‖AKx‖ · ‖x‖ yields an
equality only when vectors x and AKx have the same direction up to sign, we may
write

AKx = ±λx.(1)

Multiplying the equation KAx = λx by K gives

Ax = λKx.(2)

Using (1) and (2), we obtain A2Kx = ±λAx = ±λ2Kx. Since the eigenvalues of A2

are all nonnegative, we can rewrite (1) as AKx = λx.
If x = ±Kx, we’re clearly done. Assume this is not the case, so that x±Kx �= �0.

Adding and subtracting AKx = λx against Ax = λKx gives the equations

A(x+Kx) = λ(x+Kx),(3)

A(x−Kx) = −λ(x−Kx).(4)

Observe that the A eigenvector (x + Kx) is K-symmetric, while the A eigenvector
(A−Kx) is K-skew-symmetric (i.e., K invariance). Also, we have that the eigenvalue-
eigenvector pair (λ, x+Kx) of matrix A is simultaneously an eigenpair of the matrix
KA (multiply (3) by K) and AK (factor out a K from (3)). Finally, we note that
the eigenpair (−λ, x−Kx) of matrix A corresponds to an eigenpair (λ, x−Kx) of
the matrix KA (multiply (4) above by K) and AK (factor out a K from (4) above).
This completes the proof.

Remark 3.4. In addition to establishing the lemma, we’ve also demonstrated
that the K-invariant subspace above has a basis consisting of only K-symmetric and
K-skew-symmetric vectors.

Proposition 3.5. Let A ∈ R
n×n be symmetric, and suppose Λ(A) = ±Λ(KA),

where K ∈ R
n×n is a symmetric involutory matrix. Then AK = KA.

Proof. Since the proposition holds trivially when A is the zero matrix, we may
assume that A is nonzero in the following argument. Hence, A will have at least
one nonzero eigenvalue and Lemma 3.3 will apply. Since A is symmetric, we are also
guaranteed a full set of n independent eigenvectors.

Let S0 be the nontrivialK invariant subspace of the eigenspace of A corresponding
to the eigenvalue λ̃ ≡ λ̃(A) as defined in the statement of Lemma 3.3. Then for any
w0 ∈ S0, we set w̃0 ≡ Kw0 ∈ S0. If w1 ∈ S⊥

0 , then

wT
0 Kw1 = (Kw̃0)

T
Kw1 = w̃T

0 w1 = 0.
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GENERALIZED CENTROSYMMETRIC AND CENTROSKEW MATRICES 889

Therefore, S⊥
0 is also invariant under K. Since A is symmetric and maps S0 to itself,

wT
0 Aw1 = (Aw0)

T
w1 = 0.

This shows that A also maps S⊥
0 to itself. Therefore, so will KA.

If x = Kx is an eigenvector of A corresponding to the eigenvalue λ̃, then

(KA−AK)x = (KAx−AKx) = (λ̃Kx−Ax) = (λ̃x− λ̃x) = ⇀

0 .

Similarly, we can show that (KA − AK)x = �0 when x = −Kx. Making use of
Remark 3.4, we conclude that (KA−AK)w = �0 for any w ∈ S0.

Since R
n = S0 ⊕ S⊥

0 , if S⊥
0 is trivial, we’re done. Otherwise, we apply the

above argument to A restricted to S⊥
0 . That is, let S⊥

0 = S1 ⊕ S⊥
1 , where S1 is

the nontrivial K invariant subspace of the eigenspace corresponding to the largest
eigenvalue in magnitude for A restricted to S⊥

0 . Then, just as before, we can show
that (KA−AK)w = �0 for any w ∈ S1. Continuing in this manner, we establish that
KA−AK maps each of the (say m total) nontrivial invariant subspaces Sj associated

with A’s nonzero eigenvalues to �0.
From above, we know that the eigenspace Sm = S⊥

m−1 corresponding to A’s 0

eigenvalues is K invariant (Sm = {�0} if A is nonsingular). Therefore KA and AK
will both be zero when restricted to Sm. Since KA−AK maps R

n = ⊕m
j=0 Sj to zero,

we conclude that KA = AK.
Remark 3.6. In the course of proving Proposition 3.5, we have shown that the

eigenspace of A corresponding to its nonzero eigenvalues has a basis consisting of K-
symmetric and K-skew-symmetric eigenvectors. This is also true for the eigenspace
corresponding to the eigenvalue 0.

Proof. As noted above, if Ax = �0, then �0 = ±KAx = ±AKx. If x = ±Kx,
we’re done, so assume x �= ±Kx. As in the proof of Lemma 3.3, we finish by noting
that A(x ± Kx) = �0 and that x + Kx is K-symmetric and x − Kx is K-skew-
symmetric.

Combining the real symmetric case of Proposition 3.1 with Proposition 3.5, we
arrive at the following characterization of real symmetric generalized centrosymmetric
matrices.

Theorem 3.7. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, and K2 = I.
Then AK = KA if and only if Λ(A) = ±Λ(KA).

Corollary 3.8. Let J ∈ R
n×n be the exchange matrix. A symmetric matrix

A ∈ R
n×n is centrosymmetric if and only if Λ(A) = ±Λ(JA).

Proof. Let K = J in the statement of Theorem 3.7.
It is convenient at this stage to quantify the number of eigenvalues of A which

differ (by sign) from those of KA, where A ∈ R
n×n is symmetric generalized K-

centrosymmetric. We begin by making the following observations.
Lemma 3.9. Suppose K ∈ R

n×n is a symmetric involutory matrix, and A ∈ R
n×n

is a symmetric generalized centrosymmetric K-matrix. Assume that we have expressed
A’s eigenvector basis in terms of K-symmetric and K-skew-symmetric eigenvectors
(Remark 3.6 guarantees that this can be done), and assume that

(I) for any {λi, λj} ∈ Λ(A), |λi| = |λj | implies λi = λj .

Then the nonzero eigenvalues of A which differ by a sign from the eigenvalues of KA
are precisely those corresponding to A’s K-skew-symmetric eigenvectors.
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890 DAVID TAO AND MARK YASUDA

Proof. If Ax = λx, then KAx = λKx. If x is K-symmetric, then KAx = λx. If x
is K-skew-symmetric, we have that KAx = −λx. Condition (I) precludes −λ ∈ Λ(A)
for λ �= 0.

Remark 3.10. Examples of matrices satisfying condition (I) include the positive
definite and semidefinite matrices.

Lemma 3.11. Let K ∈ R
n×n be a symmetric involutory matrix and let A ∈

R
n×n be symmetric generalized K-centrosymmetric. Assume that K’s eigenvalue 1

has multiplicity n1 and that K’s eigenvalue −1 has multiplicity n2, where n1+n2 = n.
If V is a basis for the eigenspace of A consisting entirely of K-symmetric and K-skew-
symmetric eigenvectors, then V must contain precisely n1 K-symmetric eigenvectors
and n2 K-skew-symmetric eigenvectors.

Proof. The lemma is clearly true for K = ±I, so assume this is not the case.

Let x be a K-symmetric eigenvector of A, and let X be the eigenvector matrix of
K used in the proof of Proposition 3.1. Then we may express the K-symmetry of x
as

KXy = Xy,(5)

where y = X−1x. Since X−1KX = ( I0
0
−I ), we may rewrite (5) as

(
I 0
0 −I

)
y = y.(6)

Equation (6) holds only if the last n2 components of y are zero. Therefore, V
cannot consist of more than n1 K-symmetric eigenvectors without violating linear
independence. Similarly, we can show that V cannot consist of more than n2 K-skew-
symmetric eigenvectors. Since n = n1 + n2, the basis V must consist of precisely n1

K-symmetric eigenvectors and n2 K-skew-symmetric eigenvectors.

Remark 3.12. Lemma 3.11’s quantification of the breakdown of V into K-sym-
metric eigenvectors and K-skew-symmetric eigenvectors generalizes a result in [3].
For real symmetric centrosymmetric matrices, Cantoni and Butler showed that V is
composed of

⌈
n
2

⌉
symmetric eigenvectors and

⌊
n
2

⌋
skew-symmetric eigenvectors. This

result follows from Lemma 3.11 applied to K = J , together with observations made
in Remark 3.2.

Proposition 3.13. Let K ∈ R
n×n be a symmetric involutory matrix and let

A ∈ R
n×n be symmetric generalized K-centrosymmetric. Assume that K’s eigenvalue

−1 has multiplicity n2. If we let d(X,Y ) equal the number of eigenvalues of X which
differ from those of Y , then d(A,KA) ≤ n2. If we further stipulate condition (I)
above, we also have the lower bound max {n2 −m, 0} ≤ d(A,KA), where m is the
multiplicity of A’s zero eigenvalue.

Proof. The proposition clearly holds for K = ±I, so assume this is not the case.

The proof of Lemma 3.9 shows that the eigenpairs of A associated with the K-
symmetric eigenvectors are also eigenpairs of KA. From Lemma 3.11, A has n2

K-skew-symmetric eigenvectors and so it follows that d(A,KA) ≤ n2. Under the
additional constraint of condition (I), Lemma 3.9 shows that the maximum amount
by which d(A,KA) can differ from n2 is equal to the multiplicity of A’s zero eigen-
value.

Remark 3.14. The lower bound in Proposition 3.13 is sharp. For example, the
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GENERALIZED CENTROSYMMETRIC AND CENTROSKEW MATRICES 891

spectrum of the rank 2 centrosymmetric matrix

A =




2 1 1 2
1 1 1 1
1 1 1 1
2 1 1 2




satisfies condition (I), Λ(A) = Λ(JA), and n2 − m =
⌊
n
2

⌋ − m = 0. Here, the
nonzero eigenvalues correspond to symmetric eigenvectors while the zero eigenvalues
correspond to skew-symmetric eigenvectors. Of course, when condition (I) holds and
the matrix A is nonsingular, the upper and lower bounds in Proposition 3.13 coincide.

We next prove a result that holds for any real symmetric matrix satisfying con-
dition (I).

Proposition 3.15. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, with
K2 = I. Assume further that if {λi, λj} ∈ Λ(A) that |λi| = |λj | implies λi = λj.
Then Λ(A) = Λ(KA) if and only if A = KA.

Proof. The ⇐ direction is obvious.
⇒ From Proposition 3.5, Λ(A) = Λ(KA) implies that A is a generalized cen-

trosymmetric K-matrix. Therefore, Remark 3.6 shows that we can construct a basis
for the eigenspace of A consisting entirely of K-symmetric and K-skew-symmetric
eigenvectors. Assume we have done so.

If x is any K-symmetric eigenvector of A, then Ax = λx if and only if KAx =
λx. From Lemma 3.9, we know that all of the K-skew-symmetric eigenvectors of A
correspond to an eigenvalue of 0 (a sign change would arise for any nonzero eigenvalue
corresponding to a K-skew-symmetric eigenvector), so Ay = KAy = �0 for any K-
skew-symmetric eigenvector y.

Since A and KA agree on a basis (e.g., the eigenvectors of A), they must in fact
represent the same operator.

Remark 3.16. In the case where K = J , Proposition 3.15 states that if one row
reverses any real symmetric matrix satisfying condition (I), then the spectrum of the
resulting matrix will always differ from that of the original matrix unless the original
matrix is unchanged from the row reversal.

Remark 3.17. The reader may wish to confirm (if he or she has not already done
so) that A2 = KA2 in the generalized centrosymmetric example given earlier.

Using the same type of argument as in the proof of Proposition 3.15, we can also
show the following.

Proposition 3.18. Suppose A ∈ R
n×n and K ∈ R

n×n are symmetric, with
K2 = I. Assume further that if {λi, λj} ∈ Λ(A) that |λi| = |λj | implies λi = λj.
Then Λ(A) = Λ(−KA) if and only if A = −KA.

4. Generalized skew-centrosymmetric matrices. The following result is the
generalized skew-centrosymmetric analogue of Proposition 3.1.

Proposition 4.1. Suppose A ∈ Fn×n and K ∈ Fn×n, where F is a field of
characteristic not equal to 2 and K is an involutory matrix. If AK = −KA, then
Λ(A) = iΛ(KA).

Proof. If K = ±I, then A must be the zero matrix and the result clearly holds.
Assume K �= ±I and let X ∈ Fn×n be the same matrix used to diagonalize the

matrix K in the proof of Proposition 3.1:

K ′ = X−1KX =

(
I 0
0 −I

)
.
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892 DAVID TAO AND MARK YASUDA

Notationally, let the I block be n1 × n1 and let the −I block be n2 × n2 where
n1 + n2 = n. Proceeding as we did in Proposition 3.1, we can show that conjugation
of A by X yields a matrix of the form

A′ ≡ X−1AX =

(
0 A′

12

A′
21 0

)

and that

K ′A′ =
(

0 A′
12

−A′
21 0

)
,

where we have the same block partitioning for these matrices as for K ′.
Consider the case where n1 ≥ n2. Using elementary row operations on the ma-

trices A′ − λI and KA′ − λI, we can construct the block upper triangular matrices

( −λI A′
12

0 1
λA

′
21A

′
12 − λI

)
(7)

and ( −λI A′
12

0 − 1
λA

′
21A

′
12 − λI

)
.

Taking determinants, we obtain the characteristic polynomials for A′ − λI and
KA′ − λI as

(−1)n1λn1−n2 det
(
A′

21A
′
12 − λ2I

)
(8)

and

(−1)n1λn1−n2 det
(
A′

21A
′
12 + λ

2I
)
,(9)

respectively. From (8) and (9), the similarity of A to A′, and the similarity of KA to
K ′A′, we conclude that λ ∈ Λ(A) if and only if iλ ∈ Λ(KA).

When n1 < n2, one can apply elementary row operations to the matrices A′ −λI
and KA′ − λI to obtain block lower triangular matrices analogous to those in (7).
Taking determinants, one obtains the characteristic polynomials

(−1)n2λn2−n1 det
(
A′

12A
′
21 − λ2I

)

for A′ − λI and

(−1)n2λn2−n1 det
(
A′

12A
′
21 + λ

2I
)

for K ′A′ − λI. Again, we conclude that λ ∈ Λ(A) if and only if iλ ∈ Λ(KA).
A skew-centrosymmetric example. Consider the matrices

A3 =




2 −1 1 −1 0
−1 1 1 0 1
1 1 0 −1 −1

−1 0 −1 −1 1
0 1 −1 1 −2


D
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and

JA3 =




0 1 −1 1 −2
−1 0 −1 −1 1
1 1 0 −1 −1

−1 1 1 0 1
2 −1 1 −1 0


 .

A3 is skew-centrosymmetric and, consequently, so is JA3.

Λ (A3) =
{
−
√
10,−

√
3, 0,

√
3,
√
10
}

and

Λ (JA3) =
{
−
√
10i,−

√
3i, 0,

√
3i,

√
10i

}
.

A generalized skew-centrosymmetric example. Let

A4 =


 −3

√
2 −√

2 2

−√
2

√
2 −2

2 −2 2
√
2




and

K =




1
2

−1
2

√
2

2
−1
2

1
2

√
2

2√
2

2

√
2

2 0


 .

Since A4K = −KA4 andK2 = I, we say that A4 is a generalized skew-centrosym-
metric K-matrix.

Λ (A4) =
{
−2

√
6, 0, 2

√
6
}

and

Λ (KA4) =
{
−2

√
6i, 0, 2

√
6i
}

We end this article by establishing the real symmetric converse to Proposition 4.1.
Proposition 4.2. Suppose A ∈ R

n×n and K ∈ R
n×n are symmetric, with

K2 = I. If Λ(A) = iΛ(KA), then AK = −KA.
Proof. We can assume that A is nonzero, as the proposition clearly holds when

A is the zero matrix.
Since A is real symmetric and Λ(A) = iΛ(KA), the eigenvalues of KA must be

imaginary. As noted earlier, symmetry of A guarantees a full set of n independent
eigenvectors. Let x be an eigenvector of the matrix KA corresponding to the eigen-
value iλ, where λ ∈ R has the largest magnitude of KA’s eigenvalues. We shall write
x as u + iv and x̄ = u − iv, where u and v are real n-vectors so that u = x+x̄

2 and
v = x−x̄

2i .
Since KAx = iλx, we have that KAx̄ = −iλx̄. Therefore KA(x+ x̄) = iλ(x− x̄)

or, equivalently,

Au = −λKv.(10)
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894 DAVID TAO AND MARK YASUDA

Using the symmetry of A, we obtain

uTAKv = (Au)TKv = (−λKv)TKv = −λ ‖v‖2
.(11)

Similarly, the equation KA(x− x̄) = iλ(x+ x̄) yields
Av = λKu,(12)

and so

vTAKu = (Av)TKu = (λKu)TKu = λ ‖u‖2
.(13)

If ‖u‖ < ‖v‖, then (11) implies that ‖AKv‖ > |λ| · ‖v‖, which is impossible due to the
extremality of λ. A similar argument applied to (13) demonstrates that ‖u‖ > ‖v‖ is
impossible. Hence, ‖u‖ = ‖v‖.

Applying the Cauchy–Schwarz inequality to (11), we have that

‖u‖ · ‖AKv‖ ≥ ∥∥uTAKv∥∥ = |λ| · ‖v‖2
.

We may freely take ‖u‖ = ‖v‖ = 1 and therefore write ‖AKv‖ ≥ |λ|. Again, because
of the extremality of λ, this must in fact be an equality. Therefore, we have shown
that

‖u‖ · ‖AKv‖ =
∣∣uT (AKv)

∣∣ .
Since Cauchy–Schwarz implies equality only if the vectors in question have the

same direction up to sign, we have

AKv = ±λu.(14)

The same argument applied to (13) shows that

AKu = ±λv.(15)

Multiplication of A against (14) and (15) and then using (10) and (12) gives A2Kv =
∓λ2Kv and A2Ku = ±λ2Ku. As A2 has only nonnegative eigenvalues, we can
dispense with the sign ambiguities in (14) and (15):

AKv = −λu,(16)

AKu = λv.(17)

Utilizing the relations (10), (12), (16), and (17), we obtain

A(Ku+ v) = λ(Ku+ v),

A(Ku− v) = −λ(Ku− v),

A(Kv + u) = −λ(Kv + u),

A(Kv − u) = λ(Kv − u).
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So, starting with two eigenvectors of KA (x = u+ iv and x̄ = u− iv) corresponding
to ±iλ, we have obtained four (not necessarily independent) eigenvectors of A corre-
sponding to ±λ. More manipulation with (16) and (17) will show that x and x̄ also
generate two additional eigenvectors of KA corresponding to ±iλ:

KA(Kv + iKu) = iλ(Kv + iKu),

KA(Ku+ iKv) = −iλ(Ku+ iKv).

Note that the real span of the eigenvectors of A obtained from x and x̄ is the
same as the real span of the eigenvectors of KA also obtained from x and x̄, namely,
the vector space

T0 ≡ spanR {u, v,Ku,Kv} .

Let y1 ∈ spanR {u+ v, u− v} and y2 ∈ spanR {Ku+Kv,Ku−Kv}. Then using
(10), (12), (16), and (17), it is easy to see that (KA+AK)y1 = �0 and (KA+AK)y2 =
�0. In other words, KA+AK maps the space T0 to zero.

T0 is clearly K invariant. Using the same method as in the proof of Proposi-
tion 3.5, we can show that T⊥

0 is also K invariant. Therefore, we can apply the same
argument as above to the space T⊥

0 and continue doing so (as needed) to show that
KA + AK maps each of the (say m total) eigenspaces corresponding to A’s nonzero
eigenvalues to zero. The last of these repeated arguments shows that the eigenspace
Tm = T⊥

m−1 corresponding to A’s 0 eigenvalues (if any) is K invariant, so KA and
AK will both be zero when restricted to Tm. Therefore KA+ AK maps each of the
invariant subspaces Tj associated with A’s eigenvalues to zero. Since R

n = ⊕m
j=0 Tj ,

we conclude that KA = −AK.
Together, Proposition 4.1 and Proposition 4.2 yield the following characterization

of real symmetric generalized skew-centrosymmetric matrices.
Theorem 4.3. Suppose A ∈ R

n×n and K ∈ R
n×n are symmetric, with K2 = I.

Then AK = −KA if and only if Λ(A) = iΛ(KA).
Corollary 4.4. Let J ∈ R

n×n be the exchange matrix. A symmetric matrix
A ∈ R

n×n is skew-centrosymmetric if and only if Λ(A) = iΛ(JA).
Proof. Let K = J in the statement of Theorem 4.3.
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