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In modern physics the vacuum is not a tranquil void but a quantum state with fluctuations having
observable consequences. The present concept of the vacuum has its roots in the zero-point energy
of harmonic oscillators and the electromagnetic field, and arose before the development of the
formalism of quantum mechanics. This article discusses these roots in the blackbody research of
Planck and Einstein in 19121913, and the relation to Bose-Einstein statistics and the first
indication of wave—particle duality uncovered by Einstein’s fluctuation formula. Also considered
are the Einstein—Stern theory of specific heats, which invoked zero-point energy in a way which
turned out to be incorrect, and the experimental implications of zero-point energy recognized by
Mulliken and Debye in vibrational spectroscopy and x-ray diffraction.

“The existence of a zero-point energy of size § Av [is]
probable.”—Albert Einstein and Otto Stern (1913).

L. INTRODUCTION

According to contemporary physics, the Universe is
made up of matter fields, whose quanta are fermions, and
force fields, whose quanta are bosons. All these fields have
vacuum fluctuations and zero-point energy. Although the
concept of zero-point energy arises in introductory courses
on quantum mechanics, usually in connection with the har-
monic oscillator, it is typically brushed aside as one of the
formal peculiarities of quantum theory, and even in ad-
vanced treatises there is seldom any discussion of its theo-
retical significance or experimental relevance.

The concept of zero-point energy actually arose well be-
fore the development of the quantum formalism in 1925-
1926; quantum mechanics confirmed that zero-point ener-
gy is physically real. Zero-point energy was especially in
vogue during the second decade of this century, probably in
part because of the great interest at the time in low-tem-
perature phenomena. As far as we have been able to deter-
mine, zero-point energy first appeared in Planck’s *“second
theory” of blackbody radiation.' It was quickly adopted by
Einstein and others.

This article is a discussion of these roots of the concept of
zero-point energy. We do not proffer any sort of rigorous
historical analysis, but only a glimpse into some of the early
physics of energy at the absolute zero of temperature.

We begin in Sec. II with some background on the black-
body problem, including the failure of the classical model
of an atom as an elastically bound electron. In Sec. III we
review Planck’s “first theory” in a way that leads us conve-
niently, in Sec. IV, to Planck’s later introduction of zero-
point energy for the elastically bound electron but not the
electromagnetic field. The material in Secs. I and III is
readily available in various historical analyses,” but we
have found concise discussions of Planck’s original argu-
ments to be surprisingly rare in the pedagogical literature.
For this reason and because of its obvious historical impor-
tance and relevance to our subject, we feel justified in in-
cluding this material here. In Secs. V and VI we discuss
some work of Einstein where again zero-point energy was
assumed only for material oscillators. We speculate as to
why the concept of zero-point energy was not extended to
the electromagnetic field.

We show in Sec. VII that the well-known “particle
term” in the Einstein fluctuation formula may be regarded
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as a consequence of zero-point energy. We elaborate on this
point in Secs. VIII and IX, and discuss the connection to
Bose—-Einstein statistics and spontaneous emission. In Sec.
X we describe the Einstein—Stern theory of specific heats,
where zero-point energy plays a crucial role in obtaining a
specific heat with the correct low-temperature behavior.
We explain why this ingenious theory turned out to be in-
correct. Sections XI and XII focus on the role of zero-point
energy in x-ray diffraction and molecular vibrations, as
first explained by Debye and Mulliken, respectively. Sec-
tion XIII is a brief summary with some additional notes
about the history of zero-point energy.

Although much of the material herein is perhaps not
suitable for inclusion in standard courses, we believe that
parts of it could usefully supplement the standard texts
and, furthermore, that it might be appropriate for seminars
or research projects for theoretically inclined students. But
our main purpose in this article is to trace the origins of
zero-point energy in a unified way that, to our knowledge,
is not available elsewhere in the literature.

I1. THE BLACKBODY PROBLEM AND THE
CLASSICAL OSCILLATOR MODEL OF AN ATOM

In 1860 Kirchoff derived a law relating the radiative and
absorptive strengths of a body held at a fixed temperature
T.? According to Kirchoff’s law, the ratio of the radiative
intensity to the absorption coefficient for radiation of
wavelength A is the same for all bodies at temperature T
and defines a universal function F(A,T). This led to the
abstraction of an ideal blackbody for which the absorption
coefficient is unity at all wavelengths, corresponding to to-
tal absorption. Thus, F(4,T) characterizes the radiative
strength at wavelength A of a blackbody at temperature 7.
The problem was to determine the universal function
F(A,T).

An important step was taken in 1884 by Boltzmann, who
invoked several aspects of Maxwell’s electromagnetic theo-
ry. The most important of these for the present discussion
is the result that isotropic radiation exerts on a perfectly
reflecting surface a pressure #/3, where u is the energy
density of the radiation.’ Boltzmann considered blackbody
radiation confined in a cylinder of volume ¥, one end of
which is a perfectly reflecting piston. The radiation pres-
sure on the piston increases the volume by d¥, and in order
to maintain a constant temperature, an amount of heat,

dQ=dU+ PdV=duV) +udV="Vdu+iudV,
(D
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must be added, according to the first law of thermodynam-
ics. KirchofP’s law implies that the total energy density u
over all wavelengths is a function only of T, so that

4
d V———dT —udV. 2
0= aT + 3" (2)

Associated with the expansion of the cylinder is an increase
in entropy by

V du
dS———a’ =——dT ———a’V 3
Q T dT + T )
which, accordmg to the second law of thermodynamics, is

an exact differential. Thus,

aS _Vdu IS _ 4 u 4)
c?T T dT 8V 3T
and
axs _ as _Lj_u_:i_d_(u) )
arav  ovaer T dT 3 dT
from which it follows that du/dT = 4u/T and
u=>bT* (Stefan—Boltzmann law), (6)

where b is a universal constant. Stefan in 1879 had in fact
suggested such a relation from an analysis of experimental
data.

The Stefan—Boltzmann law stands in conflict with ele-
mentary classical models of equilibrium between radiation
and matter. Consider the classical oscillator model of an
atom, where an electron is assumed to be bound by an elas-
tic restoring force.* If p(v)dv denotes the energy per unit
volume of radiation in the frequency interval [v,v + dv],
then the rate at which the atom absorbs energy from the
radiation field may be shown to be given by the formula
(see Appendix A)

W, = (me/3m)p(v,), (7)

where W, is the electron energy, ¢ and m are its charge and
mass, respectively, and v, is the natural oscillation frequen-
cy of the electron in the atom. The rate at which the elec-
tron radiates electromagnetic energy Wy, is given by the
well-known classical Larmor formula:

WEM = 29202/36'3, ) (8)
where a is the acceleration of the electron. For oscillation at
frequency v, = w,/27, a = — wjx and

Wem = (3203 /3¢%) %2, 9)

where x is the electron displacement from its equilibrium
position in the classical oscillator model of the atom. Now,
according to the virial theorem of classical mechanics, the
average potential energy Jmw} x* of the (one-dimensional)
electron oscillator is equal to the average kinetic energy,
and their sum is the total oscillator energy U. In a state of
equilibrium between radiation and matter, furthermore,
the energy absorption rate (7) should equal the emission
rate (9). Thus,

p(vo) = (8m/c*) (maix?) = (8mv2/c*) U, (10)
or, more generally,
p(v) = (8m?/c)U, (11)

for a blackbody, which absorbs at all frequencies v. Finally,
the equipartition theorem of classical statistical mechanics
demands that the average value of U in thermal equilibri-
um is k7, where k is Boltzmann’s constant, so that the
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spectral energy density of thermal radiation must be

p(v) = (8m72/c>)kT (Rayleigh-Jeans distribution).
(12)

The total electromagnetic energy density

u= on p(v)dv
0

violates the Stefan-Boltzmann law. Furthermore, the Ray-
leigh-Jeans law suffers from the ultraviolet catastrophe:
diverges when (12) is used for p(v). Equation (11) was
derived by Planck and played a very important role in his
work on the blackbody problem.

Equation (12) was first deduced in a less explicit form
by Rayleigh in 1900.° Although the derivation just outlined
might be criticized for its reliance on a particular model of
an atomic electron, it is easy to derive the Rayleigh—Jeans
distribution on more general classical grounds. An electro-
magnetic field mode of frequency v is basically just a linear
harmonic oscillator which, according to the classical equi-
partition theorem, has an average energy k7 at thermal
equilibrium.® Since the number of modes per unit volume
in the frequency interval [v,v + dv] is (8mv?/c*)dv, the
electromagnetic energy per unit volume in this frequency
interval should be (8m*/c*) (kT)dv = p(v)dv, which is
the Rayleigh-Jeans law, independently of any particular
model for the atoms with which the radiation is in thermal
equilibrium. From this perspective the failure of classical
theory, according to Kelvin and Rayleigh, must lie in its
equipartition theorem.

Another classical result, due to Wien in 1893, must be
mentioned. Wien basically followed Boltzmann’s model of
radiation contained in a cylinder with a piston, but includ-
ed the Doppler shift of radiation reflected by the moving
piston. This allowed radiant energy to be exchanged among
different frequencies. Wien showed that the spectral energy .
density must follow the general form

p(v) =vé, (v/T)

or, in terms of wavelength,

=1 7%, (AT)

(13)

(Wien displacement law), (14)

dv
1) = av
pA) =pv) 7

(Wien displacement law), (15)

where ¢, and ¢, are undetermined functions. The Ray-
leigh—Jeans distribution obviously obeys Wien’s *““displace-
ment law” (14).

A few years later, Wien presented arguments in support
of the distribution

p(A) =al ~%e~#/*T (Wien distribution), (16)

where o and 3 are constants. A similar distribution func-
tion, with the factor A ~ replaced by A ~7, had just been
proposed by Paschen as a fit to his experimental data. Pas-
chen’s data indicated that ¥ was between 5 and 6, thus
providing some support for the displacement law. Further
measurements showed that ¥ was indeed close to 5.
Wien’s arguments for (16) seem to have been guided
more by the desired result than by physics. To wit, he made
the peculiar assumption that the wavelength and intensity
of the radiation from a given atom (or molecule) are deter-
mined only by that atom’s velocity. This allowed him to
adduce the exponential term in (16) from the factor
exp( — mv*/2kT) in the Maxwell-Boltzmann velocity
distribution function. In any case, the Wien distribution
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was soon to find a more secure provenance in Planck’s
work.

III. PLANCK’S FIRST THEORY

Given that Planck was an expert in thermodynamics, it
is not surprising that his work on the blackbody problem
emphasized the concept of entropy. In a series of papers in
the late 1890s, Planck produced a derivation of the Wien
distribution from general thermodynamical considerations
plus an assumption that the entropy of a collection of radia-
tors depends only on their total energy. An important re-
sult was the following relation between the entropy .S and
average energy U of an elementary radiator (or “molecule”
for our purposes) in thermal equilibrium with radiation at
temperature 7:

2

a%s _ A ’ (17

aUu? U
where for a given radiator 4 is a constant. From this equa-
tion and the general relation dS /dU = 1/T, it follows that

U= Be~ "7, (18)

where B is another constant which, like 4, may depend on
the frequency of a given radiator. This result, together with
(11), yields the radiation spectral energy density

p(v) = flv)e 7, (19)

where f(v) is some function of v. Wien’s displacement law
implies that f(v) and A are proportional to v* and v,

respectively, so that

3e~Dv/T

pv) =Cv (C,D constants) (20)

or
p(A) =al ~%e~#*T (a,B constants), (21)

which is the Wien distribution.

The Wien distribution, however, was soon found to be
incorrect as experimentalists extended their spectral mea-
surements to higher wavelengths. This was accomplished
by the “residual rays” method, whereby longer wave-
lengths were isolated by multiple reflections off an appro-
priate crystal. In February 1900, Lummer and Pringsheim
reported data that deviated from the Wien distribution by
40%-50% for wavelengths between 12 and 18 gm, and in
October similar conclusions were reported by Rubens and
Kurlbaum.

It was the work of his friend Rubens that led Planck to
his formula for the spectral energy density of thermal radi-
ation.” In particular, the data indicated that p(v) was pro-
portional to the temperature T for small v and large T.
Planck found a formula with that behavior at small v anid
which approximated the Wien distribution for large v.

In a paper delivered at a meeting on 19 October, Planck
presented his formula and provided some justification for
it.»” For small v and large 7, the experimental result
p(v) < T and Eq. (11) imply U« T, and therefore, since
3S/0U=T""',825/8U%« U ~? and S« log U. On the
other hand, (17) leads to the Wien distribution, which has
the correct form for large v and smali 7. Planck therefore
proposed the interpolation

s _ 4
U UB+)

According to Planck, Eq. (22) ““is the simplest by far of all
the expressions which yield S as a logarithmic function of U

(A,B constants). (22)
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(acondition which probability theory suggests) and which
besides coincides with the Wien law for small values of U.”
Using again the relation S /dU = 1/T, Eq. (11), and the
Wien displacement law, one obtains from (22) the spectral
energy density

p(A) =al ~*/(#*" —1) (a,Bconstants).  (23)

This formula was found to agree with all the existing data.
In order to give it “‘a real physical meaning,” Planck began
what he later described as *“a few weeks of the most strenu-
ous work of my life.”” The culmination of that work was the
birth of quantum theory.

Planck’s reasoning may be summarized as follows. Con-
sider N radiators of frequency v and total energy
U, = NU = Pe, where P is a large integer and € is some
finite element of energy. The entropy
Sy = NS = k log Wy, where W, is the number of ways in
which the P energy elements can be distributed among the
N radiators. If N = P = 2, for instance, then the different
partitions of the energy between the two radiators are
(2€,0), (€,€), and (0,2¢€) if the energy elements are as-
sumed to be indistinguishable. Under this assumption we
have, in general,

_ (N-1+P)!

PAN—1)!’
which is the number of ways in which P indistinguishable
balls can be put into NV distinguishable boxes. Stirling’s ap-
proximation (log M!=Mlog M — M for large M) then
gives, for N,P> 1,

(24)

N

5 = K jog N=1+P)
N PN 1)
P P\ P, P
;k[(l +—)lo (1 —)——lo —]
N TN TN By
—k [(1 + E)log(l + 2) LS -’1]. (25)
€ . € € €
Thus
i?_:_l_:ilog(Hi) (26)
U T e U
or
U=c¢/(e*T — 1), 27

for the average energy of each radiator. The excellent
agreement between (23) and experiment, together with
Eq. (11), suggests that ¢ is inversely proportional to the
wavelength or directly proportional to the frequency of the
oscillator:

" e=hv. (28)
Then
U=hv/(e"™ T _ 1), (29)

and (11) implies

p(v) = 8Thv*/c*)/(e"*T — 1)
(Planck spectrum), (30)

for the spectral energy density of thermal radiation.

The expression (25) for S satisfies Eq. (22) with 4 =k
and B = €. Once (25) is obtained, therefore, one is led to
the form (23) for the spectral energy density. The great
success of (23) in fitting the experimental data led Planck
to what he later called an “act of desperation” needed to
derive (25).
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One aspect of this desperate act is the way Planck count-
ed the number of ways, or “‘complexions,” in which Pener-
gy elements could be distributed among N radiators. His
counting procedure was totally at odds with classical statis-
tical methods in its treatment of the energy elements as
fundamentally indistinguzshable In one sense Planck was
following Boltzmann in regarding all complexions as
equally likely, but, of course, his way of counting the num-
ber of complexions was radically different and might well
be regarded as a precursor of Bose-Einstein statistics.

Boltzmann had also employed energy elements in his
counting of complexions, but in his calculations € had no
particular significance and, in fact, could ultimately be tak-
en to be zero once a formula for W), had been obtained. If
Planck had taken the limit e~ 0in Eq. (26), however, then
38 /dU~k /U and 3%S /38U~ — k /U?, which leads to
the Rayleigh-Jeans distribution. In Planck’s derivation of
his spectrum, therefore, the quantization of energy would
appear to be essential.’

This is the traditional view of Planck’s innovation.® It
should be noted, however, that one of the main conclusions
of Kuhn’s research? is that Planck did not in 1900 intro-
duce any physical quantization of either radiation or mate-
rial oscillators: “Planck’s concern ... had been and re-
mained - with radiation. His resonators were imaginary
entities, not susceptible to experimental investigation.
Their introduction was simply a device for bringing radi-
ation to equilibrium, and it was justified, not by knowledge
of the physical processes involved, but by Kirchhoff’s law,
which made the equilibrium field independent of the equi-
librium-producing material.”®

Until about 1905 Planck’s formula was regarded as little
more than a superb fit to the experimental data. Its true
significance began to be appreciated only when it was real-
ized that the Rayleigh-Jeans law was an inevitable conse-
quence of classical physics and the equipartition theorem,
and therefore that the blackbody experiments had uncov-
ered a fundamental failure of known (classical) theory.

A curious circumstance relating to zero-point energy,
which was noted by Einstein and Stern,'° is worth mention-
ing. Consider the classical limit kT’ hv of the expression
(29) for the average energy of an oscillator in thermal equi-
librium with radiation:

U= hv - hv
T 1 1+ hv/kT + J(hv/kT)? — 1
S Y R N WE I
1+ hv/kT 2

Thus U does not reduce to kT, the energy predicted by the
equipartition theorem, in the classical limit. But

U+-;—hv=——hv——+ihv,

ehv/kT_ 1 2

(32)

which includes the zero-point energy \hv, does reduce to kT

in the classical limit. In Planck’s “second theory,” Uwas in
fact replaced by U + lhv.

1V, PLANCK’S ZERO-POINT ENERGY

It was mentioned above that it took several years for the
profound significance of Planck’s distribution to be appre-
ciated. Planck himself was unsatisfied with the largely ad
hoc theory he had used to derive his spectrum, and for
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many years he explored alternative hypotheses that might
lead to it.

In 1912, Planck published his “second theory.”' The ab-
sorption of radiation was assumed to proceed according to
classical theory, whereas emission of radiation occurred
discontinuously in discrete quanta of energy. Assume that
an oscillator can radiate only after it has (continuously)
absorbed an energy hv. Let P, be the probability that it has
energy between (n — 1)hv and nhv. When, as a result of
absorption of radiation, its energy reaches niv, there is a
probability p that it will lose all its energy in the form of
radiation and a probability 1 — pthatit continues to absorb
w1thout emission of radlatlon Thus, P, =P,(1—p),

=P, (1 —p)=P,(1-p)*.,P,=P (1—p)"~'and

EP" =1= ZPI(I—p)”_l_-:ﬁ-’
n=1 n=1 P
or P, = pis the probability that an oscillator in equilibrium
with radiation has energy between O and 4v, P, = p(1 — p)
is the probability that it has energy between Av and 2hv,
and P, = p(1 — p)"~ ' is the probability that it has energy
between (n — 1)hv and nhv. Following Boltzmann,

Planck defines the oscillator entropy as

(33)

S=-k3 P, logP,

n=1

= —kip(l—p

n=1

_ —k[——logp+(—— )log(%—l)]. (34)

Planck now assumes that all energies between
(n — 1)hv and nhv are equally likely, so that the average
energy of the oscillators with energy between (n — 1)hv
and nhv is {(n + n — 1)hv = (n — }) hv. The average os-
cillator energy is then

U= Z(n——)th —hvn_l(n——)p(l— yr-t

n=1

)"~ 'loglp(1 —p)"~']

=(1/p—hv (35)
or 1/p = U/hv + }. From (34), therefore,
U 1 U 1
s=k|(-L )1 ( + )
[( hv o8 hv
U 1 U 1
——=] (———-—)]. 36
(hv 2 ) B 2 (30)
Using once again the relation 45 /dU = 1/T, Planck ob-
tained
1, 41 hy 1
U=?h' VKT 1 okT | +7hv. (37

This implies that U %0 when T-0: When T-0, U- lhv.
Planck’s equation (37) marked the birth of the concept of
zero-point energy.

To derive p(v), Planck could not resort to Eq. (11),
since the derivation of that equation assumed continuous
absorption and emission processes. Instead, he made the
assumption that the ratio of the probability that an oscilla-
tor does not emit radiation, to the probability that it does, is
proportional to p(v):(1—p)/p=Cp(v) or l/p=
Cp(v) + 1, where C is a constant of proportionality. This
assumption is plausible in that, the greater the radiation
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intensity, the more absorption should dominate emission.
(Planck, of course, was not at this time aware of the possi-

bility of stimulated emission!) Then, from (35),
U= [Cp(v) +i]lhvor
pivy=L 1 (38)

C ehv/kT__ 1

To determine C, Planck appeals to the classical limit,
where the Rayleigh-Jeans law should apply: For kT Av,
p(v) should reduce to (12), which requires that
1/C = 87h+v?/c* and therefore that

3
p(v) =_87.T_h."3/_c_ (39)

ehv/ kT __ 1
It is interesting that, in deducing Cin this way, Planck was
employing what would soon come to be called the “corre-
spondence principle.” Furthermore, Planck’s probability p
might well be regarded as the first example of a quantum
transition probability.’

It is also noteworthy that in Planck’s second theory the
material oscillators have zero-point energy, but the electro-
magnetic field does not: p(v) »0 for T—0. Had Planck
simply used Eq. (11) to relate g(v) and U, he would have
obtained from (37) the spectral energy density

3 /.3 3
drhv’ _ 8mhv/c + Arhv’ (40)

] &R 1 e

p'(v)y=p) +

The zero-point energy appearing in Planck’s expression
(37) is perfectly correct according to modern theory, even
though Planck’s route to it is not. Furthermore, the zero-
point electromagnetic energy appearing in (40) is also cor-
rect from the standpoint of modern quantum theory. By
1914, Planck was convinced that zero-point energy would
be of no experimental consequence. However, the concept
attracted much attention and soon came to play a major
role in the work of Einstein.

V. THE EINSTEIN-HOPF MODEL

In his paper “Concerning a heuristic point of view to-_

ward the emission and transformation of light,” Einstein
deduced that radiation satisfying the Wien distribution
“behaves thermodynamically as though it consisted of a
number of independent energy quanta of magnitude
[Av].”"! Based on this viewpoint, he predicted the linear
relation between radiation frequency and stopping poten-
tial in the photoelectric effect, a prediction confirmed by
Millikan’s experiments in 1916. In 1906 he argued that “in
emission and absorption the energy of a [Planck oscilla-
tor] changes by jumps which are integral multiples of
hv.”'? These were the beginnings of the photon concept.

Finstein struggled with the blackbody problem for more
than 10 years after he introduced his heuristic viewpoint
concerning energy quanta of radiation. In one important
paper, Einstein and Hopf studied a simple model for the
thermal equilibrium between oscillating dipoles and elec-
tromagnetic radiation.'? Imagine each dipole to consist of a
particle of mass m and charge e, bound by an elastic restor-
ing force to a mass M( > m) of opposite charge. The equa-
tion of motion for a linear dipole oscillator is then (see
Appendix A)

d’z | , d’z e

dt2+woz th3 mEz(l), (41)

where w, ( = 2mv,) is the natural oscillation frequency,
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E, (¢) is the z component of the electric field acting on the
particle, and ¥ = 2¢*/3mc>. The two oppositely charged
particles define an electric dipole moment ez(¢). Implicit in
Eq. (41) is the electric dipole approximation of neglecting
any spatial variation of E, (¢) over the distance separating
the particles. It is also assumed that the interaction of the
dipole with the magnetic field is negligible.

Equation (41) is essentially the same equation used ear-
lier by Planck to derive Eq. (11) (see Appendix A). In the
Einstein—-Hopf model, however, the dipole oscillators of
mass M + m=M are allowed to move; for simplicity they
are constrained to move only along the x axis. Einstein and
Hopf showed that there is a retarding force on a moving
dipole as a result of its interaction with the field. This force
acts to decrease its kinetic energy. Because of recoil asso-
ciated with emission and absorption, however, the field
also acts to increase the kinetic energy of a dipole. The
condition for equilibrium is that the increase in kinetic en-
ergy due to recoil balances the decrease in kinetic energy
associated with the retarding force.

Assuming v/c <1, Einstein and Hopf showed that the
retarding force due to motion through a thermal field of
spectral energy density p(w,) is

F= — Ry, (42)
where
2 @,
R=s [”“"0"7"2, ! 3
(1]

and v is the velocity of the dipole. Essentially this same
result is derived in Appendix B.

Consider now a dipole with linear momentum Mv(¢) at
time ¢. After a short time 7, its momentum is

My(t+7) = Mv(t) + A — Ruv(1)7, (44)
where A is the impulse imparted to the dipole in the time
interval 7 as a result of recoil associated with emission and
absorption of radiation. Then,

M2 (t+ 1) — M2 (1)
= A2~ 2IMRV* ()T + (2M — RT)v(D)A, (45)
when M is taken to be large enough that terms quadratic in

r are negligible. Now, take the equilibrium ensemble aver-
age of both sides of (45):

2M [ (MY (1 + 7)) — (M (D)) ]
= 0= (A%) — 4RT(JMV*(D) ). (46)

In writing this expression, we have used the fact that
(v(£)A) = 0, since A is equally likely to be positive or nega-
tivein the timeinterval from ¢ toz + 7. Inthermal equilibri-
um, furthermore, the equipartition theorem requires the
average kinetic energy to be (JMv*(¢)) = IkT. The condi-
tion for thermal equilibrium is therefore

77 '(A?) = 2RKT. 47

It remains to determine (A?).
The force in the direction % in which an electric dipole

moment 2p(¢) is allowed to move in the Einstein—Hopf

model is

JE, 1.

dz c

so that the impulse to the dipole during the time interval

B,, (48)

JE, ..
F.=p + L(szB)x =p
dz c
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fromt=0toris

A= fth

JB, )
ot

dt( (pB,) —p

:J; dtp 0z c 7
__Jddtp(— oF, + aEX)
o dx Jz

i JE,

1 ,
- —(pBy)|0
c

(49)

0
_ f dr 20y °ED -E[z(t)By 013,
0

where in the third line we have used the Maxwell equation
VXE = — ¢~ ' 3dB/dt. The second term in the last line of
Eq. (49) is easily shown, using Eq. (51) below and a super-
position similar to (50) for B, to be independent of 7. Since
Tis arbitrary, therefore, this term makes no contribution to
(A?) /1 below and may be ignored for our purposes.

Einstein and Hopf write the electric field as a superposi-
tion of plane waves with independent random phases 6, , :

. — i{w 6, i(ew, 6,
E(rn) =iy (dge 70 — A T M )ey, (50)
kA

where e, , is a unit polarization vector for a plane wave with

wave vector k and linear polarization index 4 ( = 1,2). A
similar expression may be written for B(r,?). The steady-
state solution of Eq. (41) is then

ie — it + 6 1) (it + 0, )
2() == (Fye "™ —Fre T, (5]
m

where the origin of coordinates has been chosen to be at the
position of the dipole and F,; = — 4,;e,,, (0% — w}
+ ivwy) ~', where e, is the z component of e, ;. In a
separate paper, Einstein and Hopf show that E,(¢) and
JE,/dx must be treated as independent random variables
in the time integral (49)."* It then follows from (49)—(51)
by straightforward manipulations that (A) = 0 and

77 (A?) = (47 c*y/505 ) p*(ey), (52)

where thé ensemble average is taken over the random
phases 6, , .

Equation (47), together with (43) and (52), now gives a
differential equation that must be satisfied by the spectral
energy density of thermal radiation:

dp c’
-2 _( 20 Yo, .
o 3 4o kT (@) (33)
The solution of this equation satisfying p(0) = 0 is
pl@) = kT /77, (54)

which is seen to be just the Rayleigh-Jeans law when we
recall that @ = 27v and p(w) = p(v)/27.

The beautifully cogent arguments of Einstein and Hopf
provide further evidence that the Rayleigh-Jeans law is an
inexorable consequence of classical physics. However, we
shall see that their results are dramatically altered when
zero-point energy is postulated.
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VI. EINSTEIN AND STERN’S ZERO-POINT
ENERGY

In 1913, Einstein and Stern noted that an ad hoc postu-
late about zero-point energy in the Einstein— Hopf model
would lead to the Planck spectrum. '® First, let us note that
Eq. (11) allows us to write (53) in a form in which the
average dipole energy U appears explicitly-

w dp 1 ‘
wd 1 U 55
3 do  w?? (59

Now, suppose the average oscillator energy U is replaced
by U + #w. This means that the dipole oscillators are now
assumed to have a zero-point energy fiw. Equation (55) is
then replaced by

plw) —

w dp 1 fiw
_waep U4 22
p(@) 3 do 3kTp(w) + 3kTD(w)

T, i
“ 3ot @

c’ ( ) i’ )
= (@) ). (56)
30’kT 726’3p
The solution of this equation satisfying p(0) =0is
3
plw) = M (Planck spectrum). (57)

oo/ KT _

In other words, if it is assumed that the dipole oscillators in
the Einstein—-Hopf model have a zero-point energy fiw,
then the equilibrium spectrum of radiation is found to be
the Planck spectrum.

The oscillator zero-point energy postulated by Einstein
and Stern is twice that found earlier by Planck. Since we
now know that Planck’s zero-point energy 1w is the cor-
rect one, it is interesting to see how Einstein and Stern
arrived at the correct spectrum using the wrong zero-point
energy.

According to quantum theory, a field mode of frequency
, like a material oscillator, has a zero-point energy iw.
The total zero-point energy of a linear dipole oscillator of
frequency » and a field mode of the same frequency is
therefore 1%w + i = #w. Einstein and Stern’s zero-point
energy fiw is just this, but they attributed it solely to the
material dipole oscillators.

Suppose we include in the Einstein—-Hopf model a zero-
point energy J#iw for a dipole oscillator and a zero-point
energy lfiw for each field mode. Since there are
(8m7/c*)dv = (0’ /7 c*)dw field modes per unit volume
in the frequency interval [w,0 + dw], the spectral energy
density of the zero-point field is

Po (@) = (/7)o = i’/ 27°C . (58)
If we replace p(w) in (55) by p(®) + py(@), the left-hand
side is unchanged:

[p(@) 4+ po(@)] — (0/3) [p(@) + po (@) ]

_ _2_/1 59
=p(w) 3 do (59)

If we also account for the zero-point energy of the dipole
oscillators by replacing Uby U + 1fiw, the product p(w) U
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on the right-hand side of (55) is changed to
[p(@) + po (@) ] (U + jfiv)
= p(@) U+ Jfwp(w) + po (@) U + Hiwp, (@)

3
———%(pz(w) +po (@)p(@) + hﬂf 3p(a)))
+ §fimp, (@)
_re (v (w>+:§"1p(w))+ fiopy (@), (60)

where we have used (58) and (11) in the form
U= (7 /o*)p(w).

The term Miwp, (@) in (60) results from a coupling of
the zero-point motion of a dipole oscillator to the zero-
point oscillations of the field. In quantum theory, in effect,
no such coupling arises; an oscillator in its ground state in
the absence of any applied field remains in its ground state.
For our purposes here, let us just accept this result'’ and
drop the term {fiwp,(w) in (60):

[p(©) +po (@) ] (U + ¥iw)

”JC( (w)+:j’3 (w)) (61)
From (54), (58), and (60), then, we have

_ﬂﬁﬂz.ﬂ( 2 ) 62

p(w) 3 do 3o kT p (o) + = 3p(w) (62)

which is exactly the Einstein-Stern equation (56). The
complete spectrum p(e) + py(@) is then given by Eq.
(40).

This route to the Planck spectrum may be summarized
as follows. We modified the Einstein—-Hopf model to in-
clude a zero-point energy {#iw for a dipole oscillator and a
zero-point energy Jfiw for each mode of the electromagnet-
ic field, and anticipated a result of quantum theory that
there is no contribution from the coupling of the zero-point
oscillations of the dipole and the field. This led to the Ein-
stein-Stern equation (56). Einstein and Stern, however,
did not invoke any zero-point energy of the field, and to
arrive at the Planck spectrum their dipole oscillators had to
have a zero-point energy 17w plus what we know to be the
zero-point energy of a field mode of the same frequency.

Why did Einstein and Stern not assume zero-point ener-
gy for the field? After all, one might have thought that the
relation (11) between p(w) and U would have made it
obvious that, if either the dipole oscillator or the field has a
zero-point energy, then so must the other. If Planck’s zero-
point energy {fiw is added to Uin (11), for instance, then
for consistency we must add the spectral energy density
Pol@) of the zero-point field to p(w):

p(@) + pol®) = (0*/7°E) (U + Hiw) (63)

(E¥*(r,t)) = —2Re z

kA kydy

— Ay 2,4 tz,lz exp [ — (e, —

a)kz)t]e

i(ky — ky)er

{exp [ — (6 4,

or again py(w) = #iw’/27>c’, which in turn implies that
each field mode has a zero-point energy ifiw.

However, such a “consistency” argument rests on the
usual acuity of hindsight. The fact is that at various stages
in Einstein’s long efforts to understand the Planck spec-
trum he seriously doubted the general validity of Planck’s
equation (11). This is not surprising, for if Planck had
simply invoked equipartition of energy, and used U = kT
in (11), he would have obtained the Rayleigh—Jeans spec-
trum. It is not clear whether Planck was even aware at the
time of the classical equipartition theorem. If he had
known and believed the equipartition theorem, as Einstein
later remarked, “he would probably not have made his
great discovery.”"®

There is anather reason why Einstein and Stern might
have been unwilling to attribute a zero-point energy to the
field. If p(w) and U are replaced by p(w) + py(@) and
U + Lfiw, respectively, in the Einstein-Hopf model, then
one obtains the Rayleigh--Jeans spectrum for the total spec-
tral density p(@) + po(@). Crucial to the derivation of the
Planck spectrum is the omission of the term #iwp, (@) in
(59). This omission occurs automatically in the quantum
theory of the Einstein~Hopf model.'* Without this conse-
quence of quantum theory available to them, Einstein and
Stern may have simply discounted the possibility of zero-
point electromagnetic energy. Indeed, the first suggestion
that there might be a zero-point electromagnetic field is

due not to Planck or Einstein and Stern, but to Nernst.!”

VII. EINSTEIN’S FLUCTUATION FORMULA

Prior to his work with Hopf and Stern, Einstein had de-
rived a formula for the energy fluctuations of thermal radi-
ation.'® Denoting the variance in energy in the volume V
and in the frequency interval [w,0 4 dw] by (AE2), we
may write the Einstein fluctuation formula as

3
(AE?) :(ﬁwp(w) +i§~p2(w))Vdco. (64)
w

The importance of this formula lies in Einstein’s interpreta-
tion of it. The first term in brackets, according to Einstein,
may be obtained “if radiation were to consist of indepen-
dently moving pointlike quanta of energy Av’":

<AE (2u )particles = ﬁa}p(w) de’ (65)

whereas the second term follows when the field is treated as
a superposition of independently fluctuating waves:

(AEL) yuves = (76 /0%)p* (@) V doo. (66)

Thus, (AE2) has both wave and particle contributions.
The Einstein fluctuation formula was the earliest indicator
of the wave—particle dualism in quantum theory.'®

The “wave” term (66) may be derived from the superpo-
sition (50) of waves with independent random phases. For
instance,

S {Au1, A, exp [ — iy, + o)t ] T exp [ — iy, + 6,1 ])

— 6,1, | )}ekl/ll.ekz/lzs (67)

where again the average is over the phases 6, ;, which are assumed to be independent, uniformly distributed random

variables on the interval [0,27]. Thus

(BX(r,0)) =23 Az |?
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(68)
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and, similarly,

(EX(r) = s(guu ).

so that

(69)

(E4(l',t)> - (Ez(ryt)>2 = 4(2|AM l2)2 = (Ez(l',t)>2.
kA
(70)

Since the electromagnetic energy density is proportional to
(E?), it follows from (70) that the variance in energy asso-
ciated with frequency w is proportional to p*(w). We omit
the trivial details of the derivation, which leads directly to
Eq. (66).

The “particle” term (65) in the Einstein fluctuation for-
mula is of far less obvious origin, and to derive it we tempo-
rarily assume the field energy can be written as

E= gnuhfuk, (71)

so that its variance is

(AED)

w2

(ﬂ'zc (@) +ﬁwp(a)))de +

17,2
= (AEi >waves + (AEi )panicles

= (AE(ZU)waves + (AEZ;>particles + %ﬁwpo ((1)) Vdo.

The “extra” (third) term in this expression does not ap-
pear in the Einstein fluctuation formula. Indeed, it does not
appear at all in quantum theory, for the same reason that
the term Jfiwp, (@) in Eq. (60) is absent in quantum theo-

But aside from this spurious “extra” term, we have ob-
tained the Einstein fluctuation formula from a classical
wave perspective that includes zero-point field energy. Ob-
viously, the argument is essentially the same as in our ap-
proach to the Einstein-Stern theory and suggests that the
particle term in the Einstein fluctuation formula may be
regarded as a consequence of zero-point field energy.

The particle term was in fact the novel element in Ein-
stein’s fluctuation formula, and Finstein emphasized that
this term was incompatible with classical wave theory. If
there were only classical wave fluctuations in thermal radi-
ation, we could ignore the term proportional top(w) in Eq.
(62). The result is

1) _& c
pErr Sl

and the solutlon is the Rayleigh-Jeans spectrum
p(@) = (&*/7°c®)kT. Without the wave term, on the oth-
er hand, (62) becomes

_?7((0)’

and the solutlon of this equation is the Wien distribution
p(w) = (Fiw*/m*c)e~"*T, This is consistent with the

plw) — (76)

plw) — (71
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. 5
waves-')_z—[p (a)) + 2P(0)o )p((l)) +p0 ((0)] de
w

(AE?) = Y (Any, ) o, (72)
i

where the n,; are integers. Thus, we are assuming that the

field energy is composed of discrete quanta of energy #iw,

and that the numbers of quanta associated with different

modes fluctuate independently. We assume Poisson statis-

tics for these quanta, so that

(Any;) = (my) (73)
and
(AE?) = 3 (m, Yol (74)
kA

Since p(w) is proportional to the average number of pho-
tons at frequency w, Eq. (74) leads easily to the particle
term (65) in the Einstein fluctuation formula.

The Einstein fluctuation formula is easily derived more
thoroughly.'® For the present discussion, we simply note
that we can obtain both the “wave” and “particle” terms
using the classical wave picture with zero-point energy. That
is, if we replace p(w) in (66) by p(@) + Po(®), where the
spectral energy density p,(w) of the zero-point field is giv-
en by (57), we have

po(a)) Vdo

¢ p0 () Vdw

(75)

r
fact that in 1905 Einstein had deduced his “heuristic point
of view” concerning radiation energy quanta by consider-
ing only radiation satisfying the Wien distribution.!!

VIIL. EINSTEIN’S 4 AND B COEFFICIENTS

Einstein wrote to his friend Besso in November 1916 that
A splendid light has dawned on me about the absorption
and emission of radiation.” He was referring to his new
insight into the “heuristic principle” of 1905 and the basis
it provided for an “astonishingly simple” derivation of the
Planck spectrum.*

For the sake of completeness, we summarize the argu-
ment here. Einstein assumes that an atom (or molecule)
has discrete energy levels. Let N, and N, be the numbers of
atoms in energy levels E, and E,, respectively, with
E, > E,. (For simplicity we ignore the possibility of level
degeneracies, which does not affect the result for the spec-
tral density of thermal radiation.) The rate at which N,
changes due to the absorption of radiation, with the atom
making an upward transition to the level E,, is assumed to
be proportional to V, and the spectral energy density p (@)
at the Bohr transition frequency w, = (E, — E,)/#i:

(jvl )absorption = - Bllep(wo)' (78)

Einstein proposes two kinds of emission processes by
which an atom can jump from level E, to E, with the emis-
sion of radiation of frequency w,. One is spontaneous emis-
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sion, which can occur in the absence of any radiation and is
described by the rate constant 4,,:

(jvl )spontaneous emission — A21 NZ . (79)

The other is stimulated emission, which is assumed to pro-
ceed at a rate proportional to both N, and p(w,):

(Nl )stimulated emission — BZlsz(a)O)' (80)
The condition for equilibrium is

(Nl )absorption + (Nl )spontaneous emission

+ (Nl )stimulated emission — 0 (81)
or
Ay Ny + By Nyp(wy) = By, Nip(a,), (82)
_ A,,/B,,
play) =
(B,,/B,; }(N,/N,) — 1
45,/B;, (83)

(B, /B, )T 1

since N,/N, = e~ %27 50/ — o= %0/XT 1) thermal equi-
librium. We are wusing Bohr’s postulate that
E, — E, = fiw,, but it is worth noting that this relation in
fact emerged naturally from Einstein’s analysis once the
assumption of discrete energy levels was made and the
Wien displacement law was invoked.

At very high temperatures, p(w,) becomes so large that
spontaneous emission is much less probable than stimulat-
ed emission. Then, from (82) we must have B,, = B, and,
from (83),

plwo) = (A5 /By )/ (54T — 1), (84)
For kT> fiw,, furthermore,
plag) = (A4,,/B, Y (kT /fiw,). (85)

This is the limit where the radiation energy quanta become
so small compared with kT that the classical Rayleigh—

Jeans law should be applicable. This requires
(A5 /By (KT /Hiwy) = (wd /7T or
A,,/B,, =ﬁ0)3/77'zc3: (86)

and Eq. (84) then yields the Planck spectrum for p(w).

This derivation of the Planck spectrum combined
aspects of Einstein’s earlier work on radiation quanta with
the theories of Planck and Bohr. But in it Einstein had
made several profoundly important theoretical advances,
and he suggested that “The simplicity of the hypotheses
makes it seem probable...that these will become the basis of
the future theoretical description.” He was absolutely cor-
rect. None of the developments since 1917 have required
any modification of Einstein’s derivation of the blackbody
spectrum.

One major consequence of Einstein’s work, of course,
was the introduction of the concept of stimulated emission.
Without the stimulated emission term, (82) and (83) are
replaced by

A, N, =B,,N pla,), ‘ (87)

p(wo) — @_ I_Vg_ — ﬁa)g Z—ﬁ(u.,/kT'
B, N, ¢
Without stimulated emission, therefore, Einstein would
have obtained the Wien distribution.
Einstein’s work was also the first to reveal atomic radi-
ation in the form of spontaneous emission as a nonclassical

'(88)
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process in which “God plays dice”: There is nothing to tell
us exactly when the atom will make a spontaneous jump to
a state of lower energy. Einstein later wrote to Born that
“That business about causality causes me a lot of trouble...
Can the quantum absorption and emission of light ever be
understood in the sense of the complete causality require-
ment, or would a statistical residue remain?... I would be
very unhappy to renounce complete causality.”” That dis-
pleasure prevented Einstein from ever accepting quantum
theory as a complete description of Nature.

Another novel aspect of Einstein’s work was that it
brought out the fact that photons carry linear momentum
hv/c as well as energy Av. This part of Einstein’s work of
1917 is not nearly as widely known as the derivation of the
Planck spectrum just reviewed. According to Einstein,
however, ‘““a theory [of thermal radiation] can only be re-
garded as justified when it is able to show that the impulses
transmitted by the radiation field to matter lead to motions
that are in accordance with the theory of heat.” Einstein
showed that the momentum transfers accompanying emis-
sion and absorption are consistent with statistical mechan-
ics if the thermal radiation follows the Planck distribution.

Consider the interaction with radiation of an atom ini-
tially at rest in the laboratory frame of reference. After a
time 7, it acquires some linear momentum A as a result of
emission and absorption of radiation. Each emission or ab-
sorption process imparts to the atom a linear momentum
A;swhich may be positive or negative. If n emission and
absorption processes occur during the time interval 7, then

and, assuming the 4, to be independent random variables
of zero mean,

n 2
)= 3 an- L (B, (%)
= 3\ ¢

if we associate with each process of emission or absorption
a momentum transfer (photon momentum) #iwy/c. We
have also included a factor of | because, as in the Einstein—
Hopf model, the atoms are assumed to move in only one
direction. The average number # of emission and absorp-
tion events occurring in the time interval 7 is given, accord-
ing to the foregoing analysis, by

n=N,A, 7+ (N, + N,)B\;,p(@,)7, ‘ 91)
so that
—1 2 1 h(‘)o 2
7~ {4A%) 23 [No43 + (N + Ny)Byp(a) |
c
iy \?
Z%( 0) NxBlzp(wo), (92)
c

where we have used the equilibrium condition (82).

This result shows that an atom interacting with radi-
ation will continually gain Kinetic energy unless there is
some retarding force to maintain the fixed average kinetic
energy (imv*) = 1kT demanded by statistical mechanics.
The origin of this retarding force is the same as in the Ein-
stein—-Hopf model, except that now we must express it in
terms of quantities characteristic of an arom rather than a
classical dipole oscillator. As shown in Appendix B, this
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force is given by the formula

)(N1 —N,)

F= —Rv= -(ﬁ“"’
c2

X B, (p(wo) ~—°——ﬂ) (93)

3 dw,

As in the classical Einstein—Hopf model, the condition for
thermal equilibrium is (A%)/7 = 2RKT or, from (92) and

93,
_ 9 dp =( o ( )p
PO = T (@)
fiw, /3kT
Z(I—:fm (). (94)

The solution of this equation is the Planck spectrum. Thus,
Einstein showed that in his theory of thermal radiation,
“the impulses transmitted by the radiation field to matter
lead to motions that are in accordance with the theory of
heat.”

IX. ZERO-POINT ENERGY, SPONTANEOUS
EMISSION, AND BOSE-EINSTEIN STATISTICS

In Sec. VI we alluded to the fact that an oscillator (or
atom) in its ground state does not absorb zero-point elec-
tromagnetic radiation. The question arises whether an ex-
cited atom undergoes stimulated emission due to the zero-
point field.

Let us suppose that it does. Then, according to the Ein-
stein theory described in Sec. VIII, the rate at which an
atom in level 2 is stimulated by the zero-point field to drop
to level 1 should be given by

(N2 )gtimulaled emission — BZI,DO (C‘)O )NZ
= — B, (fiw}/2m°c*)N,,  (95)

where we have used Eq. (58) for the spectral energy den-
sity py (@) of the zero-point field. Using (86), therefore, we

infer
A
(NZ )snmulated emission — BZI (25211 )NZ
= - %A21 N.
= %(NZ )spomaneous emission * (96)

Thus, we can almost interpret spontaneous emission as sti-
mulated emission due to the zero-point field—almost be-
cause we calculate within this interpretation only half the
correct A coefficient for spontaneous emission. In spite of
this discrepancy, one repeatedly hears and reads state-
ments to the effect that “spontaneous emission appears as a
forced emission caused by the zero-point oscillations of the
electromagnetic field.””?!

The result (96), however, does suggest that spontaneous
emission has something to do with zero-point radiation,
even if it is not simply emission induced by this radiation.
Another way to infer this is to use the equation

—_N_l._z 1 +ﬁp(w )
N, — N, a7
which follows from (81), in Eq. (94):
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97)

@, _ (
(o )———P—- —p(w ))p(w
P00 T oy KT\ 4, 0

_ <
= 30 kT(p (0) + P(wo))
(98)

The identity (86) shows that this result is equivalent to
(62). But now it is evident that the second term in brackets
is associated with spontaneous emission. In other words,
the particle term in the Einstein fluctuation formula is relat-
ed to spontaneous emission. The fact that the particle term
may also be related as in Sec. VII to the zero-point field
thus suggests again some connection between spontaneous
emission and the zero-point field.?

Earlier, we remarked that Planck’s “desperate” method
of counting energy elements was a foreshadowing of Bose—
Einstein statistics. A connection between zero-point ener-
gy and Bose-Einstein statistics is revealed by Einstein’s
fluctuation formula. Recall first that Bose-Einstein statis-

‘tics imply the variance

([An(@)]?) = (n(@)) + (n(0))?, (99)

at thermal equilibrium, where (n(w)) is the average num-
ber of photons at frequency wo. Since p(w)

= (fiw’/mc){n(w)), (99) implies the Einstein-fluctu-
ation formula (64). Based on our discussion in Sec. VII, we
can infer that the term (n(w)) in (99) is attributable to
zero-point energy and is closely connected, furthermore,
-with the possibility of spontaneous emission. This has been
discussed in more detail elsewhere.'>

X. SPECIFIC HEATS

The specific heat of a solid will in general have contribu-
tions from both electronic and vibrational degrees of free-
dom. Except at very high temperatures, however, the elec-
trons are all in their ground states and make no
contribution to the specific heat. Then, the N atoms mak-
ing up the solid may be regarded as inert vibrators, and
under the approximation of harmonic vibrations the total
energy for the 3NV degrees of freedom is U = 3NkT. Thus,
dU /dT = 3Nk, and the specific heat per mole is

¢, =3N k=3R=cal/mol K (Dulong-Petit law).

(100)

This classical prediction is the Dulong—Petit law, named
after the experimenters who observed it in 1819 for 12 met-
als and sulfur at room temperature. As the temperature is
decreased, however, ¢, is found to decrease, and ¢, -0 as
T—0, contradicting the classical prediction (100) based on
the equipartition theorem.

It was found in 1840 that the specific heat of diamond is
smaller than 6 cal/(mol K) even at room temperature.
This anomaly was first explained by Einstein in 1907.%Ein-
stein argued that Planck’s equation (29) gives the average
energy in thermal equilibrium of each (harmonic) vibra-
tional degree of freedom, so that

U= 3Nhv/ (""" — 1) (101)
and
¢, =3R(0/T)* [T/’ T —1)?] (102)

is the specific heat per mole, where 6=hv/k is the “Ein-
stein temperature,” the one adjustable parameter in Ein-
stein’s theory. For high temperatures (7> ), Eq. (102)
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reduces to the Dulong-Petit law. At low temperatures,
however, ¢, is less than the Dulong—~Petit value, and in
particular ¢, —0 as T—0. From a fit to experimental data,
Einstein deduced that 6=~ 1300 K for diamond. A sub-
stance with such a large value of 8 will have a small value of
¢, even at room temperature.

In 1913, Einstein and Stern, in the same paper discussed
in connection with the blackbody problem in Sec. VI,
turned their attention to the specific heats of gases. Their
work was motivated by the recent report by Eucken?* that
the molar specific heat for H, at room temperature was
about 5 cal/(mol K) at room temperature, but about 3
cal/(mol K) at T=60 K. Einstein and Stern suggested
that this behavior was a consequence of molecular rota-
tions and zero-point energy.

The energy of a dumbell rotator with moment of inertia 7
and rotational frequency v is 11(27v)*. Suppose, following
Einstein and Stern, that in thermal equilibrium this energy
is given by the Planck equation (29):

U=UQrv) = hv/(™*T — 1). (103)

The rotational contribution to the specific heat is then

du dU dv
¢ =N =N,
dT dv dT

dv

=N, Iv)=—

4 ( V)dT

:(5 yi"_’ (104)

k dT

where p=27°1. From Eq. (103) it is clear that v is a func-
tion of T} dv/dT follows by differentiation of both sides of
that equation with respect to 7,

dv v kT -1
_=_1+.___) , (105)
daT T( pv:+ hv
and it follows from (104) that
—1
¢, =R®V(1 4 kT ) (106)
KT\ " pv* + hy

where v(T) is found by solution of (103). The rotational
specific heat calculated in this way for the example
p=2.9X10"* g cm’ considered by Einstein and Stern is
shown in Fig. 1. The predicted dependence of the specific
heat on temperature is quite different from the dependence
observed by Euken, and in particular the predicted specific
heats at low temperatures are much too large.

Now suppose, however, that Eq. (103) is modified to
include zero-point energy:

U=pv’ = hv/(e""*" — 1) + 1hv. (107)

Following the same steps leading from (103) to (106), itis
found that
—1

20V ( 14 kT ) ,
KT\ pv?—h%/4p
where v(T) is obtained by solving (107) for vin terms of 7.
The resulting ¢, plotted in Fig. 1 is seen to agree very well
with Eucken’s observations. At high temperatures c,
asymptotes to R =2 cal/(mol K), but at low temperatures
¢, —0 at much larger temperatures than predicted by Eq.
(106).

Einstein and Stern thus gave a very interesting interpre-

(108)

¢, =R
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Fig. 1. Experimental data (X ) of Eucken (Ref. 24) on specific heat of
molecular hydrogen; specific heat computed by Einstein and Stern (a)
without zero-point energy [Eq. (106)] and (b) with zero-point energy
(Eq. (108)]. :

tation of Eucken’s observation that the specific heat of H,
decreased from 5 to 3 cal/(mol K) as T decreased from
300 to 60 K: Because of zero-point energy, the rotational
contribution to the specific heat decreases from 2 to 0 cal/
(mol K) as T decreases. That is, the existence of zero-point
energy causes the rotational specific heat of a gas to “freeze
out.” Einstein and Stern concluded that ‘“The existence of a
zero-point energy of size 14v [is] is probable.”

The Einstein—Stern explanation turned out to be incor-
rect. The quantum-mechanical rotational energy levels of a
diatomic molecule are given by £, =BJ(J + 1), where Bis
a constant characteristic of the molecule and J = 0,1,2... .
There, a molecule has no zero-point rotational energy. On
the other hand, Einstein and Stern were correct in their
hypothesis that the observed decrease of specific heat with
temperature of H, was connected to molecular rotations.

According to quantum mechanics, the fact that ¢, and c,
—0as T—0is due simply to the fact that there are discrete
energy levels associated with the internal degrees of free-
dom of a molecule. If £ T'is small compared with the energy
separation between the lowest and first-excited energy lev-
els, there is a high probability that only the lowest-energy
state is occupied, and so the specific heat corresponding to
that degree of freedom is “frozen out” in the sense that
dU /dT decreases with T and approaches zero as T-0.

XI. X-RAY DIFFRACTION

An important question, prior to the first experiments,
was whether x-ray diffraction would be spoiled by the ther-
mal motions of the atoms in crystal lattices. It was first
shown by Debye in 1914 that these thermal motions basi-
cally just reduce the intensity of a diffracted beam from
that predicted for an idealized lattice of stationary atoms.>
Debye also showed that if Planck’s zero-point energy were
real, then there should be such a reduction in intensity even
as T—0. We now know that zero-point motion can indeed
have a significant effect on x-ray diffraction. In this section
we will briefly sketch a derivation of the so-called Debye—
Waller factor that accounts for the motion of lattice atoms.

Consider the field far from a collection of identical scat-
terers. We assume the nth scatterer at r, has strength p,
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and write the total scattered field at r as

E.(r) = 2 Dy — (i — [r=r,)/C
o e—r,|

e D ik [r—r,|
—=e fwt e n.
2": |l'—l'n|

For distances large compared with the dimensions of the
scattering volume,

[r—r,| = (¥ =2rt, +72)'"?
=r(1 =2rr,/P+ 7/
=r(l —rr,/r)=r—rr,/r

so that
k|r—r,|=kr— (kr/r)r,=kr —kr,,

in the exponential in (109), where k is the wave vector of
the (elastically) scattered wave. Thus

(110)

E(r)=-te =705y o= (111)
r n

We take the strength p, of the nth scatterer to be propor-
tional to the field E,e™™ (k,=k) incident upon it:

ke,
P, = aEye™" " and

E, (1) gﬁe—i(mtfl<r)2e—"'("'n’ (112)
r n
where K=k — k.

For a periodic lattice of scatterers, the scattered field
(112) is nonvanishing only in directions such that K be-
longs to the reciprocal lattice. For a one-dimensional lat-
tice, for instance, this means that Kd = 27n, where d is the
lattice spacing and 7 is an integer. Since

K = (k*+k} —2k,k)"?
= (2k? — 2k ?%cos 26)'?
=2k sin 8 = (4w/A)sin 0,

the condition that X belongs to the reciprocal lattice is just
the Bragg condition, 2d sin @ = nA, where 26 is the angle
between the incident and scattered (diffracted) waves.

Now, let us take into account the thermal motion of the
atoms, replacing r, above by r, + u, where u represents a
displacement from a fixed lattice site. Then,

ze — il(-r,,_) e Ko z e - l](-r,,'
n

n

(113)

We are interested in the average of ¢ — ¥

thermal motion:
(e-_il(-u> =1 lK.(u) — %((K'u)2> +
=1 KX 4 -, (114)

since {(u) = 0. The two terms shown explicitly are the first
two terms of the Taylor series for exp[ — (1/6)K %{(u?)].
In fact, if the oscillations of u are assumed to be harmonic,
we have

as u undergoes

K- _ 2,2
(e fl(u) —e (1/6)K “(u ),

(115)

and {mw; (w’) = kT, where m and o, are the mass and
frequency of the harmonic oscillations; for simplicity we
assume the elastic restoring force is the same in all direc-
tions. Thus the thermal fluctuations in the atomic positions
cause the diffracted beam to be reduced in intensity by the
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(109) .

factor

(e~ ")’ =e =" = (116)

This is called the Debye—Waller factor. Our classical hand-
waving derivation gives the correct order of magnitude for
this factor.

But the classical model of lattice vibrations breaks down,
of course, at low temperatures. In particular, as 70 there
is a nonvanishing (u®) associated with zero-point energy:

e~ KT /2mw}y

Imaf (w’) = 3 (Y, ), (117)
so that
e W =e Km0 for TS0, (118)

This gives the correct order of magnitude for the zero-tem-
perature Debye-Waller factor.

XII. MOLECULAR VIBRATIONS

Direct evidence for the reality of zero-point energy was
provided by Mulliken in 1924.%° Consider the vibrational
spectra of two diatomic molecules differing only by having
different nuclear isotopes. The masses of these two vibra-
tors are then different and, consequently, so are their vibra-
tional frequencies. For relatively heavy molecules, these
differences are small but readily observable. According to
quantum mechanics, each molecule has vibrational energy
levels given by E, = (n + 1)#w plus anharmonic correc-
tions, where n = 0,1,2,... . Mulliken studied the two mole-
cules B'° O'® and B''0'%. He found that a good fit to the
emission spectra could be obtained only if zero-point ener-
gy were included, or in his words, “if one assumes that the
true values of the vibrational quantum numbers are not n
and »’ but each ] unit greater ... It is then probable that the
minimum vibrational energy of BO (and doubtless of oth-
er) molecules is | quantum.”It is worth noting that Mulli-
ken reached this conclusion based on his spectroscopic
data, before Heisenberg (1925) derived the zero-point en-
ergy of a harmonic oscillator from matrix mechanics.

XIII. SUMMARY AND REMARKS

Zero-point energy first appeared in Planck’s “second
theory” of blackbody radiation. The concept was quickly
adopted by Einstein and Stern, who showed that it could be
used to derive the Planck spectrum from largely classical
considerations. They also showed that rotational zero-
point energy might account for an observed decrease with
temperature of the specific heat of molecular hydrogen.
None of these ingenious theories turned out to be quite
correct from a modern perspective.

Zero-point motion played no role in Einstein’s epiphanic
paper of 1917 in which he derived the Planck spectrum
using his 4 and B coefficients. It was the great simplicity of
Einstein’s derivation, perhaps, that ended speculations
about the role of zero-point energy in the blackbody prob-
lem. However, we have seen that zero-point energy of the
electromagnetic field has something to do with the 4 coeffi-
cient for spontaneous emission, although it cannot be re-
garded as the sole “‘cause” of emission. Furthermore, this
zero-point energy appears to be important in connection
with the Einstein fluctuation formula, historically the first
indicator of wave-particle dualism, and Bose-Einstein sta-
tistics.

We have described how zero-point energy appeared and
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was used during the development of quantum theory. Al-
though interest in the concept in connection with black-
body theory declined after Einstein’s 1917 paper, it was by
no means abandoned. In particular, direct spectroscopic
evidence for the reality of zero-point energy was provided
by Mulliken in 1924, just months before it appeared so nat-
urally in the quantum formalism established in 1925-1926.
And during the 1930s, the concept of zero-point energy
was applied to a variety of problems in physical chemis-
try.?” Stern in 1913 had already employed zero-point ener-
gy in a calculation of the vapor pressure of solids,*”** and
according to Enz,*® Stern tried for some time to “convert
Pauli to the zero-point energy against which he had the
gravest hesitations.”

For two decades after the invention of the quantum for-
malism, physicists for the most part seemed not to pay
much attention to zero-point energy. This changed in the
late 1940s with the measurement of the Lamb shift and its
interpretation as an effect of the zero-point electromagnet-
ic field. And around that time Casimir described several
implications of zero-point electromagnetic radiation, in-
cluding the “Casimir force” between two conducting
plates. With the full development of quantum theory “all
the consequences of Planck’s second hypothesis were
proved although the point of view became very different. It
would seem that the careful, cautious, and conservative
Max Planck had exhibited in some decisive questions about
nature more prescience than many a so-called revolution-
ary physicist.”?’

The idea of the vacuum as a quantum state with zero-
point energy and fluctuations of physical consequence is
now a commonplace, with implications ranging from opti-
cal communications to quantum chromodynamics to infla-
tionary models of the Universe. From relatively humble
origins in the second decade of this century and after long
periods of neglect, the concept of zero-point energy has
become firmly ingrained in the worldview of contemporary
physicists.
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APPENDIX A: OSCILLATOR EQUATION AND
ABSORPTION RATE

The Newton equation of motion for a particle of mass m
and charge e, acted upon by an elastic restoring force
— mw?z and an external electric field E, (¢), is

2

92 2= E,(0) + L Em (1).

dt? m m
For simplicity, and to follow Planck, Einstein, and Hopf,
we assume the particle is constrained to one-dimensional
motion.

The field Eg (2) in (A1) is the field of radiation reac-
tion, i.e., the electric field produced by the charged particle
at the position of the particle. In other words, it is the elec-
tric field that the charge exerts on itself. For our purposes
here a simplified derivation and expression for this field
will suffice.

We recall first the expression (8) for the rate at which an

(A1)
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accelerating charge radiates electromagnetic energy. The
energy radiated in the time interval from ¢, to 7, is

2 1y 2 2
Wen (t,,0) = 2e” (3'1—2-) dt

3c f dt?
3N\ dt?  dr |, J, dttdr
(A2)

where the second equality follows from an integration by
parts. We assume the motion of the charge is periodic and
choose ¢, — ¢, to be an integral number of periods, in which
case

22 L 73
WEm(tz,tl):“i d’zdz

—_— A3
3¢t Ji, dt’ dr (A3)

The change in energy of the charge, — Wg,,, is attributed
to the force eEry () of radiation reaction:

2 ] 3
2e dzg’gdt

— hot) =—

em (12,01) 3 J, dt? dt
=f'eERR(t)ilfdt (A4)

1 dt

or
2e dz

Epp (1) = — ——. AS
e (1) 3¢* dr’ (A3)

Although this expression for the radiation reaction field
was derived under the assumption of periodic motion, it
actually holds more generally. When it is used in (A1), we
obtain the equation (41) used by Planck, Einstein, Hopf,
and others.

For the case of a monochromatic applied field E, (¢)

=E, cos(wt + 6,), Eq. (41) has the solution
_ E — i(wr + 9;”)
2(1) :Re(( /b ) (A6)
w? - a)é + Yo

so that the rate at which the oscillator absorbs energy from
the field is found after some simple algebra to be
i 2> a)4E 2
W, = ez()E, (1) »—=— ik T
zm (w2__w(2))2_+_7/,.a)6

(AT)

where we have taken an average over the oscillations of the
field, replacing cos*(wt + 6,,) by 1/2 and sin(w? +6,,)
cos (wt +8,) by 0.

Now suppose the applied field has a broad distribution of
frequencies, with energy density in the interval
[w,w + dw] given by p(w)do = E},/87. In this case,
(A7) is replaced by

. 4me® o'plw)dw

W, = . -
m Jo (0 —w}) + 70

The time ¥ = 2¢*/3mc® = 6.3 X 10~ ** sis so short that for

natural oscillation frequencies , of interest yo,<1. Fur-

thermore, p () may be assumed to be flat compared with
the sharply peaked function

(A8)

4 o
w 0
2 242 o= 3 2 6’ (A9)
(0 — 02) + Y0’ 4wi(w— wg) + Y
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in the integrand of (A8), so that

2 o
e 7/0)(2)[)(% )f dow
m o Jo

(0 —y)* + Ywi/4

()
Yo

P(wo) = "—‘P(Vo ) —'—3‘_)0(1’0)

W, =

77'(?

[l

276’

i

(A10)

In the last step, we have replaced p(v,) by p(v,)/3, where
now the spectral energy density is defined by
p(w)dw = (E;, +E}, + E2,)/87=3E?, /8 for (iso-
tropic and unpolarized) thermal radiation. We have thus
arrived at Eq. (7) for the energy absorption rate.

By replacing ¢’/m by ¢*f/m in Eq. (7), where fis the
oscillator strength of an atomic transition of frequency w,,
we obtain the energy absorption rate given by quantum
mechanics up to second order in perturbation theory.?

APPENDIX B: FORCE ON AN ATOM IN A
THERMAL FIELD

We shall follow Einstein’s derivation of the force acting
on an atom moving with velocity v in a thermal field. A
classical derivation can be given along similar lines for the
Einstein—Hopf force (42) acting on a classical dipole oscil-
lator. Since the result differs from (93) only by simple mul-
tiplicative factors, we will not go-through the classical deri-
vation here.

The field energy density in the frequency interval

[w,0 + dw] and within the solid angle 4Q is
p(w)dw dQ)/4m, where p(w) is independent of direction
since thermal radiation is isotropic in the laboratory frame.
Consider radiation propagating in a direction 8 with re-
spect to the axis defined by the atom’s velocity. The fre-
quency of radiation in the atom’s frame is Doppler shifted
to -

o' =[]l — (v/c)cos @] (v/c<l). (B1)

The radiation appears to the atom to be directed at an angle
@’ given by the aberration formula

cos 8'=cos 8 — (v/c)sin® 6. (B2)

The field energy density p'(w',8')do’ dSY' /47 in the
frame of the moving atom can be obtained straightforward-
ly from the well-known transformation properties of the
electric and magnetic fields under Lorentz transformations
of the coordinates. We simply write the result:

p'(0',0")do' dV =[1 —2(v/c)cos 6 |p(w)dwdQ (B3)
or
p w0’ )~(1 — 2—cos G)p(a))dw M
do' d(cos8')
=[1-— (3v/c)cos/6’ lo(@), (B4)

where we have used (B1) and (B2) and continue to assume
v/c<1. From (B1) it also follows that

plo)=plo’ + (vo'/c)cos ']

~p(w)+dp(w)( ) ' cos 67,
d c

@

(B5)

so that (B4) becomes
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p(@',0"y=[1—3(v/c)cos 6']
p(a))—{-dp(w)() ’cosB’]. (B6)
do \c

Radiation in the solid angle df}’ induces in the moving
atom an average number

n, =B,N,p'(0,0")dS) /4, (B7)

of stimulated emission transitions per unit time, and a
number

n, =B, N,p'(e',0')dQ /4, (B8)

of absorption transitions. The net momentum per unit time
imparted to the atom due to stimulated emission and ab-
sorption of photons of momentum #w'/c is thus
fiw' ,
F=d—p— (n, —nz)—cosﬁ
dt
since absorption causes the atom to recoil in the same direc-
tion as the field propagation, whereas, from conservation
of linear momentum stimulated emission causes recoil in
the opposite direction. From (B7)-(B9),

F=(#iw'/c) (B,/4m) (N, — N,)p'(®',0")cos 8" df)'.
(B10)

Note that spontaneous emission adds no net momentum on
average to the atom since it is equally likely in all direc-
tions.

We now add up the forces associated with all directions
of propagation of radiation of frequency w:

F_ﬁ—w—’m(N, Nz)j d¢f a6’

(B9)

Xsin 8'p'(w',0")cos 6’
ﬁw’ (N — N, )f df’ sin6’ cos 6'p’' (w',0")
2c 47
=~ — (ﬁa)_..)(Nl _]V2 )Blz(p(w) _BM)U’
c? 3 dw
(B11)

where to lowest order in v/c we have dropped all primes.
This is Einstein’s equation (93) for the force on an atom
moving in a thermal field.

) This paper is based on the introductory chapter of The Quantum Vacu-
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permission to submit this material for publication in The American
Journal of Physics.
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It is shown very simply that for any two observables represented by Hermitian operators that do
not commute, there is a state for which there is no joint probability distribution for the two

observables.

I. INTRODUCTION

Does quantum mechanics not allow hidden variables? If
$0, it is not easy to see why from the classic proofs.' They
are too complicated. They assume as little as possible and
prove as much as possible. To do so, they avoid full use of
quantum mechanics'? and/or use unfamiliar language in-
volving a lattice of propositions? or partial algebra.® They
left an impression that questions about hidden variables are
only for specialists.

That has changed. Hidden variables are used to derive
Bell inequalities.* We see the absence of these hidden vari-
ables as a basic property of nature which quantum mechan-
ics accommodates and describes. It was tested when experi-
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ments’ showed Bell inequalities are false. Still, arguments
for these hidden variables, involving separated subsystems,
are the most difficult to dismiss.

Recently, Sudarshan and Rothman® pointed out that
calculations of correlations in quantum mechanics can be
done in a way that is similar in structure to derivations of
Bell inequalities. It highlights the key difference. In deriva-
tions of Bell inequalities, the distributions used to calculate
correlations are supposed to be actual nonnegative proba-
bilities. They are joint probability distributions for observa-
bles that in quantum mechanics are represented by opera-
tors that do not commute.” Fine® showed that existence of
these joint probability distributions is equivalent to the Bell
inequalities and equivalent to the assumptions about hid-
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