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Current models for the cohesive energy of nanoparticles generally predict a linear dependence on
the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root
of the number of atoms in the cluster. Although this is generally true for metals, the authors find that
for the group IV semiconductors, C, Si, and Ge, this linear dependence does not hold. Instead, using
first principles, density functional theory calculations to calculate the binding energy of these
materials, they find a quadratic dependence on the inverse of the particle size. Similar results have
also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to
current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of
semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In
addition, the melting point of these nanoparticles will experience less suppression than experienced
by metal nanoparticles with comparable bulk binding energies. This nonlinearity also affects
sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties
that depend on the nanoparticle binding energy. The reason for this variation in size dependence
involves the covalent nature of the bonding in semiconductors, and even in the “poor” metals.
Therefore, it is expected that this result will hold for compound semiconductors as well as the
elemental semiconductors. © 2007 American Vacuum Society. �DOI: 10.1116/1.2748415�

I. BACKGROUND

While the effect of nanoparticle or quantum dot size on a
variety of physical properties, such as adsorption or emission
frequency, melting point, etc., is well known, its effect on
vapor pressure is less commonly considered. Kelvin’s equa-
tion, which was derived to describe the vapor pressure of
small droplets, predicts that the logarithm of the vapor pres-
sure of such droplets is inversely proportional to the radius
of the droplet. That is,

ln�P/P0� = 2M�/RT�r , �1�

where P is the vapor pressure of the droplet, P0 is the pres-
sure from a planar surface, M is the molecular weight, � the
surface tension, R the gas constant, T the temperature, � the
density, and r the radius. While the Kelvin equation is ap-
propriate for macroscopic structures, particularly liquid drop-
lets, it is less suitable for solid nanoparticles below about
10 nm in size. The reasons for this are several fold. One is
that the surface tension itself becomes a size-dependent pa-
rameter in the lower end of this regime. Another is that, at
least for solid particles large enough to display well devel-
oped facets, the surface energy is expected to vary with the
index of the particular face under investigation.

Some of the current theoretical formalisms that consider
the size dependence of quantities such as the melting point
consider the problem in terms of the “cohesive energy” of
the system rather than the surface tension. Arguably, for solid
nanoparticles, the cohesive energy of the particle is a more
useful parameter than surface tension. However, there is gen-

erally an equivalence between the two different constructs.
Both can also be used not only to determine vapor pressure
over a particle but also to estimate its melting point, sintering
rate, and a variety of other physical phenomena.

There currently exist several detailed theoretical models
for determining the thermodynamic properties of solid nano-
particles based on either their cohesive energy or their sur-
face tension. These formalisms include the liquid drop model
�LDM�,1 the surface area difference �SAD� model,2 the bond
order length �BOL� model,3 and the “thermodynamic”
model.4 Several of these models consider the size depen-
dence of nonspherical nanoparticles. As an interesting ex-
ample of a high aspect ratio nonspherical case, Sun et al. use
their BOL model to predict that the melting point of a mon-
atomic chain of Au atoms will be suppressed by a factor of
about 4.2 from the bulk value of 1337.32 to around 320 K.3

The other models also predict suppression of either the
binding energy or the melting point as the size is diminished.
Vanithakumari and Nanda have developed their LDM based
on the coordination number of the surface atoms relative to
that of the interior, bulk atoms.1 They assume that the total
cohesive energy of a nanoparticle is equal to that of a bulk
aggregate of the same volume of the nanoparticle minus the
surface energy of the nanoparticle. They predict that the per-
atom cohesive energy for a spherical nanoparticle will be

Eb = Eb
� − 6v0�n/D , �2�

where Eb
� is the per-atom cohesive energy for the bulk ma-

terial, v0 is the atomic volume, �n is the surface tension
�which they consider to be size dependent below about 5 or
10 nm�, and D is the diameter of the nanoparticle.a�Electronic mail: helen.farrell@inl.gov
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The SAD model of Qi et al. takes surface effects into
account by considering the areal atomic density of the planes
or facets that bound the nanoparticle, which is assumed to
have the bulk structure internally.2 It is expected to be appli-
cable for nanoparticles in the 1–100 nm range. For a spheri-
cal nanoparticle, where all of the surfaces or interfaces have
the same plane index, they find

Eb = Eb
��1 − �3pdhkl/D�� , �3a�

where p= ��i /�0� and �i and �0 are the energies, per unit area
at 0 K, for the interface, or surface, and for the crystal, re-
spectively. Here, d=a / ��h2+k2+ l2�, with a being the lattice
parameter, and, again, D is the diameter of the nanoparticle.
For spherical nanoparticles, they also predict a parallel ex-
pression for the size dependence of the melting point as

Tm = Tm
��1 − �3pdhkl/D�� , �3b�

where Tm
� is the melting point of the bulk material.

Wautelet et al. have developed still another approach to
describe the thermodynamic properties of both spherical and
nonspherical nanoparticles.4 Based on their formalism, they
expect that the melting point of a spherical nanoparticle will
be given by

Tm = Tm
��1 − ��/D�� , �4�

where �=6��c−�l� /C and �c and �l are the surface tensions
of the crystal and the liquid, respectively, and C is the latent
heat for melting. �They also note that a careful evaluation of
� will take into account the change in density upon melting.�

As can be seen from Eqs. �2� to �4�, these models all
predict an inverse dependence on the diameter or radius of
the nanoparticle for either or both the binding energy or the
melting point. In fact, Vanithakumari and Nanda make the
statement that “According to all theoretical models, the co-
hesive energy of free nanoparticles decreases linearly with
the inverse of the particle size.”1 While this is somewhat of a
generalization, it is true that the LDM, SAD, and thermody-
namic models all predict that the per-atom binding energy for
spherical nanoparticle having n3=N atoms all scales with
size or n as either

Ebn = Eb
��1 − c/r� �5a�

or

Ebn = Eb
��1 − c�/n� , �5b�

where c and c� are materials-dependent constants, and r is
the radius of the cluster. �Note that for spherical nanopar-
ticles, where the radius r is equal to nr0 and r0 is the effec-
tive radius for one atom, Eqs. �5a� and �5b� are essentially
equivalent.� It should also be noted that, for nonspherical
configurations with high aspect ratios, such as nanowires and
thin films, Qi et al., among others, have given a detailed
description as how to modify Eq. �5a� and �5b� to accommo-
date shape effects.2

While these models agree in their general functionality for
low aspect ratio clusters, they vary somewhat in the form for
c or c�. To parse the relative validity of these models, a

detailed comparison with a substantial body of experimental
data is desirable. However, while a number of experimental
studies do exist,5–7 there are often difficulties in interpreting
the experimental results, particularly for very small particles.
These difficulties can involve a number of factors including
inadvertent oxidation, size changes due to sintering or subli-
mation, substrate effects, and artifacts or uncertainties intro-
duced by the measurement technique.

Therefore, in order to supplement these experimental re-
sults, we set out to calculate the cohesive energy or bonding
energy for a wide variety of simple, elemental materials. In
this work, we focus on the group IV elements, C, Si, Ge, Sn,
and Pb. In a companion work, we studied a range of “good”
metals, including those with the face-centered cubic, the
body-centered cubic, and the hexagonal close packed struc-
tures, from various parts of the Periodic Table.8 For the met-
als studied in this companion work, we generally found that
for the more stable clusters, a reasonably good agreement
with Eq. �5b� was obtained. �The one exception to this trend
was Mg, which is arguably not a good metal.�

A normalized version of this dependence is shown in Fig.
1 for a subset of these metals that we studied. Here, we plot
Eb /Eb

� vs 1/n for several metals including Al, Au, Cs, W, and
Zr. Similar results were also found for a variety of other
metals. To a good approximation, we found that Eb was lin-
early dependent on 1/n at least for nanoparticles up to about
2 nm. Somewhat more surprisingly, we found that c� is about
unity in this size range. However, and rather more surpris-
ingly, this linear dependence does not hold for the semicon-
ductors, C, Si, and Ge, nor does it hold for the “poor” metals
Sn and Pb. The details of this nonlinearity will be discussed
below and are the motivation for this article. �For simplicity,
we will use the term poor metals to denote one with a sig-
nificant covalent, or directional, character. Conversely, good
metals will denote those with predominantly nondirectional
bonding.�

II. MODELING

In order to study these enthalpies of sublimation, we have
performed first principles, density functional theory calcula-
tions on a variety of different clusters to obtain binding en-

FIG. 1. Ratio of the per-atom binding energy to the bulk value is shown as
a function of 1/n, where n3=N is the number of atoms in the cluster, for Al,
Au, Cs, W, and Zr. The straight line is the best fit to the Al data. The point
on the far right corresponds to a single atom while that on the far left
corresponds to bulk materials.
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ergies and �Hs in the generalized gradient approximation
�GGA�, including spin polarization. The modeling program
that we used for calculating clusters was the commercially
available DMol4.0 or DMol4.1 codes.9,10 Unless otherwise
noted, with this program we used an all electron, relativistic,
real-space numerical basis set �“DND”�. In the DMol4.0 and
DMol4.1 codes, the GGA is implemented with the Perdew-
Wang-91 �Ref. 11� parameterization of the correlation en-
ergy. For the bulk reference materials, we first used the com-
panion CASTEP program to calculate geometries, and then
used the DMol programs to calculate binding energies.

As a check on the general validity of our calculations, we
show a comparison between our calculated values and the
tabulated experimental values for the bulk lattice
parameters,12 bulk heat of formation,13 and the bond
strengths for the diatomic molecules14 in Table I. It should be
noted that all of the calculated values are essentially for 0 K,
while the experimental values for the lattice parameters and
diatomic molecules are for room temperature. Therefore, in
the case of the lattice parameters, it is to be expected that the
calculated values are slightly smaller than the experimental
values. �The well known tendency for density functional
theory calculations to “overbind” is also a contributing factor
here.� Even so, the calculated bulk lattice parameters all
agree to within 2%, with a rms deviation of 1.54%. This
comparison primarily checks the CASTEP formalism.

In the case of the bulk enthalpies, we used the negative of
the 0 K value for the standard heat of formation for a single,
neutral atom. �By convention, the bulk is taken as the stan-
dard state for all of these elements.� Note that the calculated
value is for “gray,” or �-Sn, while the tabulated value is for
“white,” or �-Sn, which is the form stable at room tempera-
ture. Here, excluding Sn, the calculated values agree with the
experimental values to within 17% for Pb and to within
2%–7% for the lighter elements. In this comparison, we use
both the CASTEP formulation and the localized DMol4 formu-
lation, so that this is a good check on both computational
methods.

The experimental values for the diatomic molecule bond
strengths are taken from a compilation of different experi-
mental values.14 These values are generally measured either
spectroscopically or by mass spectrometer analysis of hot
gases effusing from a Knudsen cell. The reported values
have all been corrected to room temperature with varying

degrees of approximation.14 As can be seen in Table I, while
the detailed agreement is not as good for the diatomic bond
strengths as it is, for example, for the lattice parameters, the
same general trend occurs for both the calculated and experi-
mental values.

A number of authors have carefully studied the variations
in binding energy as a function of the detailed geometry or
configuration of nanoparticles with a given number of atoms.
These include, for example, the work by Xiao and Wang on
Pt clusters15 and by Chuang et al. on Sn clusters.16 While we
generally sought the most stable configuration for a given
number of atoms, it is not our purpose to make a careful
study of the variation in binding energy as a function of
detailed configuration, and we note this effect only briefly in
the next section.

III. RESULTS

Carbon shows the greatest flexibility in forming different
types of strong, directional bonds with varying hybridiza-
tions; a fact that makes it the key element in the multitudi-
nous organic compounds necessary to life. In Fig. 2 we show
the per-atom binding energy for a wide variety of carbon
clusters including linear arrangements, nanotubes, and the
C60 “buckeyball.” Also shown are the binding energies for
graphite, diamond, and two types ��5-5� and �12-0�� of nano-
tubes of infinite length. At 0 K, graphite is the most stable
bulk allotrope, having a binding energy of −7.7195 eV rela-

TABLE I. Comparison between experimental and calculated lattice parameters, bulk heat of formation, and
diatomic molecule bond strength for the group IV elements.

a �Å� Eb
� �eV� Ed �eV�

Expt. Calc. Expt. Calc. Expt. Calc.

C 3.567 3.533 −7.371 −7.615 −6.29±0.22 −6.672
Si 5.431 5.375 −4.677 −4.363 −3.39±0.10 3.968
Ge 5.658 5.548 −3.874 −3.763 −2.73±0.07 3.232
�-Sn 6.412 6.383 −3.13 −3.017 −1.94±0.17 2.727
Pb 4.939 5.032 −2.028 −2.363 −0.90±0.01 −1.778

FIG. 2. Per-atom binding energy is shown as a function of 1/n, where n is
the cube root of the number of atoms in a cluster, for a variety of different
types of C structures. These calculations were done with the GGA method.
The solid line corresponds to a quadratic �1− �1/n�2� dependence.
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tive to a free, isolated C atom. This is 0.104 eV lower than
the calculated binding energy for diamond at 0 K.

The two infinite nanotubes are slightly less stable, having
per-atom binding energies of −7.656 and −7.570 eV for the
�12-0� and �5-5� configurations, respectively. Not surpris-
ingly, among the near-spherical clusters for which we per-
formed calculations, the C60 buckeyball was the most stable,
having a binding energy of −7.399 eV. As can be seen from
Fig. 2, nanotubes in this mass range were also relatively
stable with the 100 atom �5-5� structure having a binding
energy of −7.176 eV, and the 60 atom �5-5� structure having
−6.1905 eV.

While it is not the purpose of this work to explore the
detailed differences among different bonding configurations,
it is of interest to note in passing that, at least on the scale of
the bulk binding energy, the per-atom binding energy is
rather similar for a variety of different cluster configurations
in the size range between several atoms and several hundred
atoms. This is true even in the extreme of linear chains of
carbon atoms. In fact, for an infinite chain of carbon atoms
�Fig. 2�, the binding energy is −6.771 eV, which is about
88% of the bulk value. This can be compared to the case for
a linear chain of Au atoms where the suppression is reported
to be considerably larger �e.g., to less than 25% of the bulk
value�.3

Perhaps the most important feature of Fig. 2 is the non-
linear dependence of the per-atom binding energy on 1/n,
the cube root of the total number of atoms in a cluster in this
mass range. For the near spherical nanoparticles, this is
equivalent to a nonlinear dependence on the inverse of the
radius or diameter of the particles. This behavior is in
marked contrast to that which we observed for the metallic
clusters shown in Fig. 1 and discussed in Sec. I. Further, it is
different from the dependence predicted by the current theo-
retical models.1,2,4 In fact, for these group IV elements, rather
than being linear in 1/n, Eb is better fitted by a quadratic
�1/n�2 functionality, as shown by the solid curve in Fig. 2.
Therefore, for C �and, as we shall see, for Si, Ge, Sn, and Pb
as well� we can write

Ebn = Eb
��1 − �1/n�2� . �6�

Though some scatter exists in our calculated values for
Eb, as can be seen in Fig. 2, this quadratic functionality is a
reasonable approximation for the more stable clusters. Given
that, at sufficiently high temperature, if the clusters do not
sinter or sublime, they will eventually evolve into the most
stable configurations, we can use this �1/n�2 functionality to
describe the behavior of the binding energy of an ensemble
of nanoparticles. This gives us a powerful predictive tool not
only for individual particles but also for physically realistic
distributions of nanoparticles.

As a final point before turning to our calculations for Si
and the other group IV elements, we would like to note that,
as an additional check on the general validity of our compu-
tations, we also performed calculations on a variety of clus-
ters using both relativistic and nonrelativistic �not shown�
basis sets. In both cases, to a good approximation, the qua-

dratic dependence of Eb on 1/n was observed. We take this
result as one indication that this quadratic behavior is not an
artifact of our computational methods. In fact, the underlying
physics is rather simple. Carbon, and to a lesser extent the
other group IV elements, has directional bonds and the abil-
ity to form a variety of differently hybridized states.

Therefore, decreasing the number of nearest neighbors by
forming, for example, a surface does not decrease the bind-
ing energy in proportion to the decrease in the number of
nearest neighbors. This is because the C will rehybridize
from its bulk configuration to form additional bonds to the
remaining neighboring atoms. In the extreme of an isolated
C2 dimer molecule, there will actually be roughly three
bonds �one � and two �� between the C atoms rather than
just one bond. As most of the current theories of cluster
binding energies either explicitly or tacitly assume that the
binding energy is proportional to the number of nearest
neighbors �an assumption that works more or less for good
metals�, they underestimate the binding energies for the
group IV elements and most likely for compound semicon-
ductors as well.

Continuing with our examination of the other group IV
elements, in Fig. 3, we show the per-atom binding energy of
Si as a function of 1/n. As can be seen, the general behavior
is similar to that for carbon. Here again, Eb for the most
stable clusters is fitted to a reasonable approximation by a
�1/n�2 functionality, as shown by the solid line. Therefore,
we expect Eq. �6� to be a reasonable approximation for Eb

for Si as well as for C.
Similar comments can be made about the binding energy

of Ge clusters, as shown in Fig. 4. Again, to a good approxi-
mation, the most stable clusters have binding energies that
are fitted by a �1/n�2 rather than a 1/n dependence, and Eq.
�6� is expected to hold. As a second check on our computa-
tions, we calculated Eb for both Si and Ge using two differ-
ent methods, the local density approximation �LDA� and the
GGA. As can be seen here and in Fig. 3, both methods pro-
duced a nonlinear dependence of Eb on 1/n, though it is
slightly less pronounced for the presumably less reliable
LDA method.

FIG. 3. Per-atom binding energy is shown as a function of 1/n for a variety
of different types of Si clusters. These calculations were done with both the
LDA and the GGA method. The solid line corresponds to a quadratic
dependence.
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These general trends continue for the more metallic group
IV elements, Sn �Fig. 5� and Pb �Fig. 6�. As before, in the
mass range that we investigated, both LDA and GGA calcu-
lations were reasonably approximated by a quadratic �1/n�2

behavior, though the LDA values diverge from the more ac-
curate GGA values for these heavier elements. For simplic-
ity, only the GGA values are shown in Figs. 5 and 6.

Our cluster calculations indicate that for small, low aspect
ratio clusters of the elemental semiconductors and the more
metallic group IV elements a significantly different behavior
is to be expected in those physical properties that are
strongly dependent on Eb, such as melting point, vapor pres-
sure, sintering behavior, solubility, etc., than is predicted by
the commonly accepted current theories. Specifically, in the
case of the melting point, we expect a size-dependent behav-
ior that can be approximated by

Tm = Tm
��1 − �1/n�2� �7a�

or

Tm = Tm
��1 − �r0/r�2� �7b�

rather than by Eq. �4�, for example.17,18 This means that the
melting point of clusters of these materials will be higher
than expected on the basis of a linear dependence of Eb on
1/n. As this behavior is undoubtedly due to the covalent or
directional nature of the bonding in these materials, it is to be
expected that similar behavior will occur for compound

semiconductors as well. Good experimental evidence will be
needed to verify these predictions. As noted above, obtaining
experimental evidence on small �e.g., 	2 or 3 nm� nanopar-
ticles is a nontrivial process, but we hope that this will be
taken as a challenge by first class surface scientists. �A par-
ticular complication for semiconductors is that, while Eqs.
�6� and �7� have been derived for isolated nanoparticles, sub-
strate effects, particularly if the nanoparticles are strongly
epitaxied, will significantly influence experimental results.�

The vapor pressure of nanoparticles is also an extremely
important physical property, though one less frequently con-
sidered than the melting point. We assume that the vapor
pressure is given by an expression like

P = P0 exp�− �Hs/kT� , �8�

where P0 is a prefactor that is only slowly temperature de-
pendent, and �Hs is the enthalpy of sublimation. A careful
examination of the statistical mechanical derivation of the
vapor pressure shows that the term P0 is derived from the
properties of the gas phase rather than from those of the
solid. Therefore, P0 should be independent of the form of the
solid, and we can use the same form and values as deter-
mined from bulk materials. For the enthalpy of sublimation,
to a good approximation, we can neglect entropy effects and
equate �Hs with Eb as

�Hs = Ebn = Eb
��1 − �1/n�2� . �9�

As with the melting point, the vapor pressure of these group
IV materials will deviate from the bulk values to a lesser
extent than would be expected if Eb was linearly dependent
on 1/n. However, it should be noted that as �Hs appears in
an exponent in Eq. �8�, the size dependence of the vapor
pressure of nanoparticles is very strong, even for the group
IV elements and other semiconductors, and vapor pressures
that are orders of magnitude larger than that of the bulk
material may occur, particularly at elevated temperatures.

A third area of physical behavior that will be strongly
affected by the size dependence of Eb is that of sintering or
Ostwald ripening. Following the classic work of Wynblatt
and co-worker,19,20 we can write the time rate of change of a
nanoparticle radius as

FIG. 5. Per-atom binding energy is shown as a function of 1/n for a variety
of different types of Sn clusters. Only the GGA calculations are shown in
this figure. The solid line corresponds to a quadratic dependence.

FIG. 6. Per-atom binding energy is shown as a function of 1/n for a variety
of different types of Pb clusters. Only the GGA calculations are shown in
this figure. The solid line corresponds to a quadratic dependence.

FIG. 4. Per-atom binding energy is shown as a function of 1/n for a variety
of different types of Ge clusters. These calculations were done with both the
LDA and the GGA method. The solid line corresponds to a quadratic
dependence.
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dr/dt = �K1/�r2 ln�L/r sin 
����exp���*/kT�

− exp���/kT�� , �10�

where

�� = Eb
� − Eb

��1 − 1/n2� = Eb
�/n2 �11�

and

K1 = a2�p
cs
eq exp�− �Hps + Hm

s �/kT�/2�1. �12�

Here, a is the interatomic spacing, 
 is the atomic volume,
�p is the vibrational frequency of a adatom on the nanopar-
ticle, cs

eq is the concentration of adatoms on the substrate
support surface, �1 is a geometric factor which has the value
of 0.5 when the nanoparticles are hemispherical and make an
angle of 90° with the substrate surface,19,20 and �* is the
equilibrium mean binding energy at infinite time.

Also in Eq. �12�, the quantity Hps is equal to Hp−Hs

where the former is the adsorption energy of an adatom on a
nanoparticle and the latter is the adsorption energy on the
support. Hp is actually the previously determined Ebn

=Eb
��1− �1/n�2�. The quantity Hm

s is the activation energy for
diffusion of an adatom on the substrate surface.

To better understand the differences in sintering behavior
between nanoparticles with directional bonding and metallic
bonding, let us focus on the term in brackets in Eq. �10�,
�exp���* /kT�−exp��� /kT��. First, let us consider the case
of a directionally bonded material. For Si, for example, Eb

� is
on the order of 4.3 eV such that for a temperature of 525 °C
�e.g., 873.16 K�, Eb

� /kT is 62.52. Therefore, if the equilib-
rium radius of the nanoparticles is �10 nm, the first term,
exp���* /kT�, will be on the order of unity. �Here, we have
taken the atom volume of Si to be 20.02 Å3, with a corre-
sponding radius of 1.68 Å, such that for r*�10, we will
have n�60.� However, for very small nanoparticle, n will be
much smaller, and the second term will be very much larger.
For example, for hemispherical nanoparticles with r
�0.635 nm, n=3, and the second term, exp��� /kT�, will be
1.04�103. As this term is much larger than the first term
�which is on the order of unity�, it will dominate the expres-
sion in brackets in Eq. �10�. Its negative sign indicates that
these small nanoparticles are shrinking, or being consumed,
during the formation of larger particles through the ripening
process.

Now let us consider the case of a hypothetical metal with
the same binding energy and atom size as Si. Here, ��
=Eb

�−Eb
��1−1/n�=Eb

� /n rather than being inversely depen-
dent on n2 as was the case for Si. As a consequence,
exp���* /kT� will be on the order of 10, and exp��� /kT�
will be on the order of 1.12�109. Note that the second term
will still dominate and the nanoparticles of this size will still
shrink. However, the rate at which they will do so will be
much larger than for the case of Si. Therefore, the metallic
material will undergo Ostwald ripening much faster than will
the directionally bonded material. Conversely, semiconduc-
tors will sinter much more slowly than will metallic materi-
als with similar binding energies under similar conditions.

For larger particles, the difference between the metallically
bonded case and the directionally bonded case will decrease,
but the same order will hold.

This is, of course, a much more complicated process than
either sublimation or melting �though melting, per se, has a
number of potential complications that we have not consid-
ered in this article6,16� and requires the calculation or deter-
mination of many more parameters than Eb. Despite these
complications, the strong exponential dependence shown in
Eqs. �10� and �11� and for Hp shows that this process is
significantly controlled by the size dependence of the bind-
ing energy and so will be markedly different for semiconduc-
tors and poor metals than for good metals.

While other physical phenomena are also dependent on
the per-atom binding energy, these three examples should be
adequate to illustrate the fact that the approximately qua-
dratic dependence of Eb on 1/n for the group IV elements
�and probably for compound semiconductors as well� should
have a profound influence on the behavior of nanoparticles
of these materials that would be incorrectly estimated by
using the currently accepted inverse size dependence. Again,
decisive experimental evidence is badly needed to verify or
invalidate our theoretical results.

IV. CONCLUSION

Current theoretical models describing the binding energy
of nanoparticles based on the assumption that the binding
energy is proportional to the number of nearest neighbors are
not applicable to group IV elements. For low aspect ratio
clusters, the prediction that the binding energy is inversely
proportional to the size of the particle �or to n, the cube root
of the number of atoms in a particle� does not hold for these
materials. Instead, for small nanoparticles, an approximately
quadratic functionality occurs such that the binding energy is
inversely proportional to the square of the particle size �or
n2�.

Similarly, the melting point of such particles will also
have a �1/n�2 dependence, in contradiction to current theo-
ries. The vapor pressure of these materials will also be closer
to the bulk value than would be expected by a 1/n depen-
dence of the sublimation energy, and other physical phenom-
ena, such as sintering, solubility, etc., will also be strongly
affected.

The physics of the situation is simple. Unlike most met-
als, where the binding energy is a function of the number of
nearest neighbors in a cluster, the group IV elements have a
strong degree of covalent, or directional, bonding. Though
the trend diminishes as we go down the Periodic Table, these
bonds can rehybridize, to varying degrees, to compensate for
the loss of nearest neighbors at a surface. Therefore, the de-
gree of bonding of surface atoms of these elements is higher
than the simple number of nearest neighbors would predict.
As this is a property associated with covalent bonding, it is
expected that compound semiconductors, in addition to the
elemental semiconductors, will also show this nonlinear de-
pendence on 1/n.
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