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ABSTRACT 

Aging is strongly correlated with the accumulation of oxidative damage in DNA, particularly in 
mitochondria. Oxidative damage to both mitochondrial and nuclear DNA is repaired by the base 
excision repair (BER) pathway. The �mitochondrial theory of aging� suggests that aging results 
from declining mitochondrial function, due to high loads of damage and mutation in 
mitochondrial DNA (mtDNA). Restriction of caloric intake is the only intervention so far proven 
to slow the aging rate. However, the molecular mechanisms underlying such effects are still 
unclear. We used caloric-restricted (CR) mice to investigate whether lifespan extension is 
associated with changes in mitochondrial BER activities. Mice were divided into two groups, 
receiving 100% (PF) or 60% (CR) of normal caloric intake, a regime that extends mean lifespan 
by ~40% in CR mice. Mitochondria isolated from CR mice had slightly higher uracil (UDG) and 
oxoguanine DNA glycosylase (OGG1) activities but marginally lower abasic endonuclease and 
polymerase γ gap-filling activities, although these differences were tissue-specific. Uracil-
initiated BER synthesis incorporation activities were significantly lower in brain and kidney 
from CR mice but marginally enhanced in liver. However, nuclear repair synthesis activities 
were increased by CR, indicating differential regulation of BER in the two compartments. The 
results indicate that a general up-regulation of mitochondrial BER does not occur in CR. 
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he basis of the modern free radical theory of aging was outlined by Harman in 1956 (1). 
Subsequently, abundant evidence has accumulated linking the oxidation of cellular 
macromolecules with aging and age-associated diseases. The rate of aging is under 

genetic control, and much progress has recently been made in understanding the genetic program 
underlying this process (2). Environmental factors also affect the rate of aging, perhaps most 
notably the restriction of caloric intake. Caloric restriction (CR) is a robust and apparently almost 
universal means of extending lifespan in organisms, from yeast to mammals. In addition to 
lifespan extension, CR decreases the occurrence of diseases associated with aging, including 
cancers (3) and neurodegenerative disorders (4). 

T 



 

 

Hart and Setlow (5) first described a strong correlation between the rate of unscheduled DNA 
repair and mammalian lifespan, suggesting a connection between DNA repair and lifespan. It has 
subsequently been shown that extension of lifespan within a given mammalian species, via CR, 
is also associated with an enhancement of unscheduled DNA repair (6). In both of these studies, 
unscheduled DNA repair was stimulated by UV irradiation of isolated cells, a treatment that is 
likely to promote primarily adducts that are repaired by the nucleotide excision repair pathway. 
However, aging is strongly correlated with the accumulation of oxidative damage, including 
oxidative DNA modifications, which are repaired primarily by the base excision repair (BER) 
pathway. BER is catalyzed in four consecutive steps by a DNA glycosylase, which removes the 
damaged base; an apurinic/apyrimidinic endonuclease, which processes the abasic site; a DNA 
polymerase, which inserts the new nucleotide(s); and DNA ligase, which rejoins the DNA strand. 
Cabelof et al. (7) recently reported that nuclear BER is enhanced in rats by CR, suggesting that 
BER plays a role in the lifespan extension associated with CR. 

A wealth of evidence suggests that mitochondria are the most important cellular source of the 
reactive oxygen species (ROS) involved in macromolecular damage during the aging process (8). 
They are also critical targets of their action (9). Perhaps the most important target of ROS in 
mitochondria is mitochondrial DNA (mtDNA). Whereas oxidized protein and lipid can be 
replaced by de novo synthesis, oxidation of DNA can potentially lead to fixation of damage as 
mutation. The mutagenicity of the common oxidative mtDNA lesion 7,8-dihydroxyguanine (8-
oxodG) has been demonstrated (10). The mitochondrial free radical hypothesis of aging proposes 
that the observed decline in mitochondrial function with aging results from mutated respiratory 
complex proteins, which cause enhanced superoxide production leading to further oxidation of 
macromolecules, including mtDNA (see 11 for review). Indeed, point mutations and deletions 
accumulate in the mtDNA of aging somatic cells (12). These are in some instances associated 
with the appearance of functional deficits, although the extent to which mitochondrial genomic 
instability plays a causative role remains to be determined. 

Mitochondria efficiently remove oxidative DNA lesions, via the BER pathway. CR slows the 
age-associated accrual of oxidative damage in mitochondria (13) and lowers the levels of some 
oxidative mtDNA lesions (14, 15). Concomitant with decreased levels of oxidative damage in 
mtDNA, CR also appears to enhance mitochondrial genomic stability (16, 17). Thus, up-
regulation of BER activity may be required to preserve both nuclear and mitochondrial genomic 
integrity in the longer-lived CR animals. Here we have tested this hypothesis by comparing 
mitochondrial and nuclear DNA repair activities in 16-month-old mice maintained on a 40% 
calorie-restricted diet for 14 months with pair-fed (PF; 100% caloric intake) controls. We 
measured the activities of individual enzymes that catalyze single steps in the BER pathway, 
such as the oxoguanine DNA glycosylase (OGG1), which recognizes and removes 8-oxodG 
from DNA; the uracil DNA glycosylase (UDG); endonuclease III homologue 1 (NTH1); AP 
endonuclease; and DNA polymerase γ. We also measured the total activity of the BER pathway 
by following uracil-initiated repair synthesis incorporation. These measurements of DNA repair 
activity provide insights into the extent of changes in BER efficiency in the maintenance of 
mitochondrial and nuclear genomic stability during caloric restriction. 



 

 

MATERIALS AND METHODS 

Animals 

Six-week-old C57BL6 mice were obtained from Charles River Laboratories (Wilmington, MA), 
housed in the National Institute on Aging Gerontology Research Center animal colony, and fed a 
standard NIH-07 diet (Harlan-Teklad, Indianapolis). Food was provided ad libitum until 9 weeks 
of age. At that time, mice were randomly divided into two groups, one receiving 100% of the 
average ad libitum food consumption (PF group) and the other 60% (CR group). Water was 
available ad libitum. The animals were kept on a 12 h light:dark schedule. At ~14 months of age, 
mice were killed by cervical dislocation, and hearts, brains, livers and kidneys were removed, 
placed on ice, and used immediately for preparation of mitochondrial and nuclear extracts. All 
experiments were performed in accordance with the Guidelines for the Use and Care of 
Laboratory Animals (NIH publication 85-23). 

Materials 

All chemicals were ACS grade and purchased from Sigma (St. Louis, MO), with the following 
exceptions. Leupeptin and benzamide were from Roche (Indianapolis, IN). Isotopes were from 
NEN Life Science Products (Boston, MA), and G25 columns were from Amersham (Little 
Chalfont, UK). T4 polynucleotide kinase and T4 DNA ligase were from Stratagene (San Diego, 
CA). Tris-glycine gels for protein electrophoresis and PVDF membranes for Western blotting 
were from Invitrogen (Carlsbad, CA). 

Oligonucleotides 

Control and modified oligonucleotides were from Midland Certified Reagent Co. (Midland, TX), 
except 5-OH-deoxycytosine and 5-OH-deoxyuracil, which were kindly provided by Michelle 
Ham (Massachusetts Institute of Technology, Cambridge, MA). The sequences of all 
oligonucleotides used are presented in Table 1. For BER synthesis assays, an unlabeled uracil-
containing double-stranded oligonucleotide was used. For incision assays, oligonucleotides 
containing either a defined lesion or an unmodified base (controls) were 5′-end labeled with T4 
polynucleotide kinase and [γ-32P]ATP. Reaction mixtures were centrifuged through Sephadex G-
25 columns to remove unincorporated [γ32P]ATP, then annealed to their complement, with the 
exception of uracil, which was used in single stranded form for incision assays. 

Isolation of mitochondrial and nuclear fractions 

Protocols for mitochondrial isolation were tissue specific. Liver and kidney mitochondria were 
prepared essentially as described in Croteau et al. (18). Briefly, tissues were minced, placed in 10 
volumes of MSHE buffer (0.21 M mannitol; 70 mM sucrose; 10 mM HEPES; 1 mM EGTA; 2 
mM EDTA; 0.15 mM spermine; 0.75 mM spermidine; 5 mM dithiothreitol; 2 µg/ml leupeptin; 2 
µg/ml benzamide, pH 7.4) and homogenized with a Potter-Elvejhem homogenizer. Mitochondria 
isolated by differential centrifugation were further purified by Percoll gradient centrifugation 
(1:1 mixture of 2 × MSHE and Percoll (Amersham Biosciences, Uppsala, Sweden). The pellet 
(nuclear fraction) from the first low-speed centrifugation step was collected and frozen at �80°C 



 

 

for preparation of nuclear extracts. The mitochondrial band from the Percoll gradient 
centrifugation step was washed twice in MSHE and frozen at �80°C for future use. 

Heart and brain mitochondria were isolated essentially as described in Karahalil et al. (19). For 
heart mitochondria, hearts were placed in 5 ml of ice-cold MSHE and minced. Buffer was 
discarded and 5 ml of fresh MSHE added. Protease (0.5 mg; Nagarse, Sigma) was added, and 
hearts were homogenized gently and slowly for 8 min. The homogenate was centrifuged at 9500 
g for 9 min, the pellet was resuspended in MSHE (without protease) and homogenized with 
another 10 strokes. This homogenate was centrifuged at 500 g for 12 min. The pellet (nuclear 
fraction) was stored at �80°C for future use. Mitochondria were isolated by centrifugation of the 
supernatant at 9500 g for 9 min, followed by a single wash in MSHE. For brain mitochondria 
isolation, brains were placed in MSHE and homogenized with 15 passes of a Potter-Elvejhem 
homogenizer. Homogenates were centrifuged at 1200 g for 12 min. The pellet (nuclear fraction) 
was stored at �80°C for future use. Mitochondria were sedimented by centrifugation at 10,500 g 
for 15 min, then resuspended in MSHE/3% Ficoll 400, gently layered onto an equal volume of 
6% Ficoll 400, and centrifuged at 10,500 g for 25 min. The mitochondrial pellet was washed in 
MSHE, and digitonin was added to 1.5 mg/ml and incubated on ice for 15 min. This suspension 
was centrifuged at 10,500 g for 15 min and washed once in MSHE. The resultant mitochondrial 
fraction was stored at �80°C. 

Western blots 

Nuclear contamination of mitochondrial fractions was assessed by probing for the presence of 
the abundant nuclear protein Lamin B2 by Western blot. Mitochondrial or nuclear protein (60 
µg) was diluted 1:1 in protein loading buffer (Invitrogen, Carlsbad, CA), supplemented with 50 
mM 2-mercaptoethanol, sonicated, heated at 90°C for 10 min, centrifuged briefly, and  then 
separated in an 8�16% Tris-glycine gel (130 V, 1.5 h). Proteins were transferred to PVDF 
membranes (250 mA, 2 h), blocked overnight at 4°C in phosphate buffered saline containing 
0.1% Tween 20 and 5% milk protein. Membranes were probed with a 1:500 dilution of anti-
Lamin B2 (Novocastra, Newcastle upon Tyne, UK). Equal protein loading and transfer was 
determined by amido black staining of membranes. 

Preparation of mitochondrial extracts 

Mitochondrial fractions were treated as described in Souza-Pinto et al. (20) before use in incision 
assays for measurements of DNA glycosylase or AP endonuclease activities. For measurements 
of BER synthesis, mitochondrial extracts were prepared as following: ~50 µl of mitochondrial 
suspension was made up to 250 µl in lysis buffer A (20 mM HEPES, pH 7.5; 1 mM EDTA; 5% 
glycerol; 0.5% Triton X-100; 300 mM KCl; 5 mM DTT; 1 µg/ml aprotonin; 1 µg/ml pepstatin 
A; 1 µg/ml chymostatin A; 2 µg/ml leupeptin; 2 µM benzamide; 1 mM PMSF; and 1 µM E-64). 
The mixture was incubated on ice for 30 min, with occasional vortexing, then centrifuged at 
130,000 g for 1 h. The lysis buffer was exchanged for buffer B (as buffer A, but with 100 mM 
KCl, 25% glycerol, 0.015% Triton X-100) and concentrated to ~100 µl, using Microcon 30 
(Millipore) microconcentrators. Mitochondrial extracts were stored at �80°C. 



 

 

Preparation of nuclear extracts 

Nuclear extracts were prepared from nuclear pellets isolated as described above. Pellets were 
thawed and centrifuged at 20,000 g for 20 min. Five volumes of lysis buffer A (as above) were 
added, and the suspension incubated on ice for 10 min, vortexed twice. The mixture was 
centrifuged at 130,000 g for 1 h. The supernatant was concentrated and exchanged for buffer B 
using Microcon 30. The nuclear extracts were stored at �80°C. 

DNA glycosylase assays 

Incision of uracil, 5-OH-uracil, or 5-OH-cytosine in 30-mer oligonucleotides (see Table 1) was 
measured essentially as described in Nyaga and Bohr (21). Reactions (20 µl) contained 70 mM 
HEPES (pH 7.5), 1 mM EDTA, 1 mM DTT, 75 mM NaCl, 0.5% BSA, 90 fmol of 
oligonucleotide, and 25 µg of nuclear or mitochondrial protein. Assays were incubated at 37°C 
for 1 h and terminated as described below. Incision of 8-oxodG from a 28-mer oligonucleotide 
was measured essentially as in (20). Reactions (20 µl) contained 40 mM HEPES (pH 7.6), 5 mM 
EDTA, 1 mM DTT, 75 mM KCl, 10% glycerol, 88.8 fmol of oligonucleotide, and 50 µg 
mitochondrial or nuclear protein. Reactions were incubated for 6 (mitochondria) or 2 h (nucleus) 
at 32°C then terminated by adding 5 µg of proteinase K (PNK) and 1 µl of 10% SDS and 
incubating at 55°C for 30 min. DNA was precipitated by addition of 1 µg glycogen, 4 µl of 11 M 
ammonium acetate, 60 µl of ethanol, and overnight incubation at �20°C. Samples were 
centrifuged, dried, suspended in 10 µl of formamide loading dye (80% formamide, 10 mM 
EDTA, 1 mg/ml xylene cyanol FF, and 1 mg/ml bromophenol blue) and loaded onto a 20% 
acrylamide and 7 M urea gel. Substrate and product DNA were resolved by electrophoresis at 15 
W for 1 h 10 min. Gels were visualized by PhosphorImager and analyzed by using 
ImageQuantTM (Molecular Dynamics). Incision activity was determined as the intensity of 
product bands relative to the combined intensities of substrate and product bands. 

AP endonuclease assays 

AP endonuclease activity in mitochondria and in nuclear extracts was assayed in 50 mM HEPES 
(pH 7.5), 50 mM KCl, 100 µg/ml BSA, 10 mM MgCl2, 10% glycerol, and 0.05% Triton X-100. 
Double-strand oligonucleotide substrate (1 pmol) containing a tetrahydrofuran (abasic site 
analog; Table 1), and 500 ng (mitochondria) or 50 ng (nuclear) extract were added to a final 
reaction volume of 10 µl. Reaction mixtures were incubated at 37°C for 10 min. The reactions 
were terminated by addition of 10 µl of formamide loading dye and incubation at 95°C for 10 
min. Samples were loaded directly on gels and analyzed as above. 

Base excision repair synthesis assays 

Repair synthesis of a uracil containing duplex was measured in mitochondrial and nuclear 
extracts, essentially as described in Nyaga and Bohr (21). Reactions contained 40 mM HEPES, 
0.1 mM EDTA, 5 mM MgCl2, 0.2 mg/ml BSA, 50 mM KCl, 1 mM DTT, 40 mM 
phosphocreatine, 100 ug/ml phosphocreatine kinase, 2 mM ATP, 40 µM dNTPs, 4µCi 32P-dCTP, 
3% glycerol, and 120 ng double-strand oligonucleotide, in 20 ul. Nuclear or mitochondrial 
extract (40 µg) were added, and reaction mixtures were incubated at 37°C for 15, 30, or 60 min, 
followed by addition of 1 unit of T4 DNA ligase. Reactions were terminated and processed as 



 

 

described above for DNA glycosylase assays. Substrate and product DNA were resolved by 
electrophoresis at 15 W for 1 h 10 min. Gels were visualized by PhosphorImager and analyzed 
by using ImageQuantTM (Molecular Dynamics). Quantification of repair synthesis activity was 
performed by comparing the average relative intensities of the 32P-dCTP-containing 30-mer in 
CR vs. PF extracts. 

Polymerase γ assays 

Polymerase γ gap-filling activity was measured by using essentially the same approach as for 
measurement of uracil-initiated repair synthesis outlined above, except a 39-mer oligonucleotide 
containing a single nucleotide gap was used (GAP; Table 1). In these assays 5 ug of brain or 
kidney mitochondrial extract was incubated with 1 pmol of GAP oligonucleotide in a final assay 
volume of 10 µl for 100 min at 37°C, followed by addition of 10 units T4 ligase and continued 
incubation for 20 min to ensure full product ligation. 

RESULTS 

Nuclear contamination of mitochondrial fractions was assessed using Western blot to probe for 
the highly abundant nuclear protein Lamin B2 (Fig. 1). Lamin B was detected in nuclear pellets, 
but no signal was present in mitochondrial fractions, which were thus free of nuclear 
contamination. Equal protein loading of nuclear and mitochondrial fractions was confirmed by 
amido black staining (not shown). 

Effects of CR on mitochondrial BER pathway flux 

The ability of mitochondria to remove DNA damage, to process and fill the resultant gap, and to 
religate the DNA strands (BER synthesis) was measured by monitoring the incorporation of 32P-
dCTP into a double-strand oligonucleotide containing a single uracil at a defined position (dsU; 
see Table 1). Following incubation of the oligonucleotide with the mitochondrial extracts, a 
saturating amount of T4 DNA ligase was added to promote complete ligation of repaired but 
unligated DNA, thus allowing quantification of a single, 30-nucleotide, band. Fig. 2a shows a 
representative gel in which the repaired oligonucleotide has been resolved. BER synthesis 
activity was determined at three time points to ensure that repair capacity was not saturated 
under these experimental conditions (Fig. 2b, d, f). Incubation of the extracts with a control 
oligonucleotide (dsC; see Table 1) typically produced negligible synthesis incorporation. Where 
32P-dCTP incorporation into the control oligonucleotide was detected, it was subtracted as 
background from the dsU values (not shown). Statistical comparisons of the mean levels of 
product were made at 90 (liver, kidney) or 60 min (brain). The effect of CR on mitochondrial 
BER was found to be tissue-dependent. In liver, ~18% more repaired product was present at 90 
min in CR mice, although this was not statistically significant (Fig. 2c). In contrast, the rate of 
dsU repair was significantly lower in kidney (Fig. 2e) and brain (Fig. 2g) mitochondria of CR 
mice. Both tissues had ~30% lower mitochondrial BER activities than in PF mice (P≤0.06). 
Thus, the effect of CR on mitochondrial BER activity was tissue-specific. 

Activities of individual steps in the BER pathway were measured to determine the source(s) of 
differences in pathway flux. The first three steps in uracil-initiated BER synthesis are catalyzed 
by UDG, AP endonuclease, and polymerase γ. Mitochondrial UDG activity was measured using 



 

 

the ssU (Table 1) oligonucleotide. Mitochondrial lysates used for these measurements have high 
AP endonuclease activities, which catalyze the cleavage of the abasic strand following UDG 
removal of uracil. A representative gel showing full-length ssU and the 11-nt product is 
presented in Fig. 3a. UDG activity was slightly enhanced in mitochondria from all tissues 
examined, although this was statistically significant only in kidney, where UDG activity was 
almost 40% greater in CR mice (Fig. 3b). AP endonuclease activity was measured by using a 
THF (abasic site analog) containing oligonucleotide (Table 1). The kinetics of AP endonuclease 
activity is particularly rapid under the conditions of the assay used here. Therefore, this activity 
was determined at different time points, from 3 to 10 min, to ensure that saturation of incision 
activity did not occur (data not shown). AP endonuclease activity was found to be approximately 
linear over this range, and statistical comparisons were made at 10 min (Fig. 3d). Mitochondrial 
AP endonuclease activities were marginally lower in all tissues of CR mice examined, except in 
brain, where an ~55% (P<0.05) decrease occurred. This tissue also had significantly lower 
mitochondrial uracil-initiated repair synthesis incorporation activity (Fig. 2f, g). Polymerase γ 
gap-filling activities were measured in brain and kidney mitochondrial extracts, in which uracil-
initiated repair synthesis incorporation activities were reduced in CR mice. Polymerase γ activity 
in kidney mitochondria was 29% lower in CR mice relative to controls (P = 0.07; Fig. 3e). Brain 
polymerase γ activity was ~20% lower in CR mice (P = 0.21; Fig. 3f). 

DNA glycosylases each recognize a defined subset of DNA lesions. We next measured the 
activities of OGG1 and NTH1 in mitochondria from CR and PF mice using oligonucleotides 
containing 8-oxodG and 5-OHdC/5-OHdU, respectively (Table 1), to determine whether repair 
of oxidative DNA damage is also modulated by CR. Incision of 8-oxodG was almost 20% 
greater in liver mitochondria of CR mice (P<0.05), but not different in brain or heart 
mitochondria (Fig. 4a). Incision of 5-OH uracil and 5-OH cytosine were marginally decreased in 
CR mouse kidney mitochondria (Fig. 4b, c), but only the 5-OH cytosine measurement was 
significantly different (P<0.05). No significant differences in NTH1 activities were found for 
other tissues. 

Thus, CR induced tissue-specific changes in mitochondrial DNA repair activities. However, a 
general up-regulation of mitochondrial DNA repair was not observed. 

Effects of CR on nuclear BER 

BER synthesis activity was also measured in liver and kidney nuclear extracts from CR and PF 
mice. The appearance of the repaired oligonucleotide containing the 32P-dCTP was measured 
following incubation for 45, 60, or 90 min. Fig. 5a shows a representative gel in which the 
repaired 30-mer has been resolved. Statistical comparisons were made between values measured 
at 90 min. A control oligonucleotide containing no uracil was also used to assess background 
levels of 32P-dCTP incorporation (not shown). The effect of CR on nuclear BER synthesis 
activity differed from that found in mitochondria. An ~26% enhancement of BER synthesis 
activity was found in liver nuclear extracts of CR mice relative to PF (Fig. 5b), although this was 
not statistically significant. Kidney nuclear extracts of CR mice had ~42% greater BER activity 
than controls (P<0.05). 



 

 

We measured UDG and AP endonuclease activities essentially as was done for mitochondrial 
fractions, but found no differences between CR mice and PF (Fig. 6). OGG1 and NTH 1 
activities were also assessed and found to be unaffected by CR (Fig. 7). 

DISCUSSION 

Mutations in mtDNA accumulate with aging at a much faster rate than in nuclear DNA, and at 
faster rates in short-lived than in long-lived animals (22). They are thought to result primarily 
from high levels of oxidative damage, such as 8-oxodG, in the mitochondrial genome. Increased 
levels of 8-oxodG occur concomitantly with increased mutation load in aging (23) and in species 
with different maximum lifespans (24). One interpretation of these observations has been that 
mtDNA repair is less efficient in shorter-lived species, as are some forms of nuclear DNA repair 
(22). A corollary of this is that increasing mtDNA repair efficiency should increase lifespan by 
maintaining the integrity of the mitochondrial genome over a greater length of time. CR is a 
robust experimental manipulation that increases lifespan and resistance to oxidants and 
carcinogens (3) while decreasing the steady-state levels of mtDNA oxidative lesions (15, 25) and 
mtDNA mutation load (26). Here we have tested the hypothesis that CR initiates a program of 
enhanced mtDNA repair to reduce the accumulation of mutations and lengthen lifespan. 

Our findings do not support the hypothesis of universally enhanced mtDNA repair in the CR 
model of lifespan extension, as no clear pattern of induction of mtDNA repair was observed. 
Although numerous tissue-specific increases in mtDNA repair activities were noted, the most 
significant effect of CR was a reduction of uracil-initiated BER activity in brain and kidney 
mitochondria. The absence of enhanced BER activity in mitochondria from these post-mitotic 
tissues was somewhat surprising, particularly as mtDNA oxidative damage (8-oxodG) and 
mutation load are both decreased in post-mitotic tissues by CR. However, the levels of mtDNA 
oxidative adducts, such as 8-oxodG, at a given time point represent an equilibrium between the 
opposing effects of de novo formation by oxidative attack and removal by BER. Lower steady-
state levels of oxidative damage can therefore be achieved by lowering the rate of lesion 
formation. In mitochondria, a key source of oxidative stress is electron leakage to molecular 
oxygen during respiration, resulting in formation of superoxide anions on the matrix side of the 
inner membrane (27), apparently close to the site of mtDNA (28). The rate of superoxide 
generation by mitochondria in both liver and heart is decreased 45�50% by CR in mice (15, 25). 
The rate of formation of 8-oxodG in mtDNA is probably dependent on numerous factors, but all 
other parameters being equal, increased or decreased ROS production should affect a 
proportional increase or decrease, respectively, in lesion formation. Thus, a 45�50% reduction in 
rate of ROS formation, even combined with a 30% reduction in the rate of removal, will result in 
a lower steady-state level of lesions. This is in fact what is observed: mtDNA from post-mitotic 
tissues of CR mice have ~30% lower 8-oxodG levels than controls (15, 25, 29). 

In contrast to kidney and brain, mitochondrial uracil-initiated repair synthesis incorporation 
activity in liver was maintained or perhaps slightly enhanced by CR. Similarly, OGG1 activity 
was increased by CR in liver mitochondria, but not in mitochondria from other tissues. These 
observations are consistent with data from studies of CR effects on liver mitochondria (23). Like 
heart mitochondria, liver mitochondria from CR mice produce 45�50% less ROS. However, 
whereas skeletal muscle and heart mtDNA 8-oxodG levels are ~30% lower in CR mice, levels of 
the lesion in liver mtDNA are 46% lower in CR. This finding suggests that the maintenance of 



 

 

higher DNA repair capacity in livers of CR mice, combined with lower rates of lesion formation, 
affects greater reductions in the steady-state levels of lesion. Taken together with published data, 
our results allow us to conclude that the enhancement of mitochondrial genomic stability by CR 
involves an emphasis on decreasing ROS production at source, rather than reversing the effects 
of ROS-mediated mtDNA damage. 

The lower BER activities of mitochondria from kidney and brain associated with CR suggest that 
mtDNA repair capacity in these tissues is regulated either by levels of oxidative lesions in 
mtDNA or directly by ROS. The agreement between the reductions in steady-state 8-oxodG 
levels and BER capacity is striking�30% reductions in both 8-oxodG levels in mtDNA in post-
mitotic tissues (15) and BER capacity. Several recent publications suggest that mitochondrial 
BER activity is regulated by cellular oxidative stress. BER repair synthesis activity is up-
regulated in brain following ischemia (30). Cytosolic AP endonuclease (APE1) translocates to 
mitochondria following H2O2 exposure (31). DNA polymerase γ activity in heart is increased 
fourfold by injection of the ROS-inducer adriamycin (32) Thus, it seems likely that 
mitochondrial BER is regulated, at least in part, by prevailing oxidative conditions in the cell or 
mitochondrial matrix. 

Given that mtDNA glycosylase activities were not universally down-regulated by CR, how is the 
regulation of mitochondrial BER activity in CR achieved? Our data suggest that AP 
endonuclease and/or polymerase γ activities may be important determinants of overall BER 
capacity in mitochondria. AP endonuclease activities were lower in mitochondria from all tissues 
of CR mice, particularly brain. Translocation of APE1 from cytosol to mitochondria is regulated 
by oxidative stress (31), and the lower AP endonuclease activities in mitochondria from CR mice 
may therefore indicate reduced cellular oxidative stress in CR. However, neither the sensitivity 
of mitochondrial BER to AP endonuclease activity, nor the identity of the major mitochondrial 
AP endonuclease have been determined, so the significance of these observations with respect to 
BER activity is unclear. 

Differences in polymerase γ activity closely paralleled changes in uracil-initiated BER activity in 
kidney and brain mitochondria, all of which were 20�30% lower in CR mice. These 
observations, and the particularly low deoxyribose phosphate lyase activity, an important step in 
the BER pathway, of polymerase γ (33) suggest that this enzyme may be particularly important 
in regulating overall mitochondrial BER activity in CR. Polymerase γ activity is apparently also 
highly responsive to cellular oxidative stress (32). Thus the reduced cellular oxidative stress of 
CR may down-regulate mitochondrial polymerase γ, and therefore BER, activities. 

The reduced BER activities measured in kidney and brain mitochondria of CR mice were absent 
from liver mitochondria. This finding indicates a difference in the regulation of BER in mitotic 
vs. post-mitotic tissues in response to CR. A recent study from our laboratory (19) showed that 
mitochondrial DNA glycosylase activities are particularly high in tissues, like testes, with high 
mitotic potential. They are notably lower in post-mitotic tissues, even those such as heart, with 
high aerobic capacity. Amongst post-mitotic tissues (kidney, skeletal muscle, brain, and heart), 
OGG1 activity scaled to citrate synthase activity (an index of aerobic capacity) is remarkably 
similar. This indexed value is higher in liver and much higher in testes, both of which are mitotic 
tissues. Taken together with the present data, these results suggest that both oxidative stress and 
mitotic capacity are involved in the regulation of mitochondrial BER. 



 

 

Effects of CR on nuclear BER differed markedly from mitochondria. Both kidney and liver 
uracil-initiated repair synthesis incorporation activities were higher in CR mice. This finding is 
in agreement with a previous report (7), which describes up-regulated nuclear BER in CR rats. 
The authors showed that BER synthesis and polymerase β activities both increase in tissues of 
CR rats, relative to controls. However, they did not measure other BER enzyme activities. We 
found no differences in the activities of DNA glycosylases (OGG1, UDG and NTH1) or AP 
endonuclease in nuclear extracts of CR mice. Taken together with the results of Cabelof et al. 
(7), this suggests polymerase β plays the central role in stimulating nuclear BER during CR. A 
recently published mathematical model of BER supports the idea that polymerase β exerts a high 
level of control over nuclear BER pathway activity (34). 

In conclusion, the extension of lifespan and attenuation of mtDNA damage and mutation in post-
mitotic cells achieved by CR is associated with alterations in mitochondrial BER but is not a 
universal up-regulation of repair activities. Indeed, in post-mitotic tissues such as kidney and 
brain, lower BER activities were found in CR mice. These lower BER activities may have been 
mediated by AP endonuclease and/or polymerase γ, in response to reduced intramitochondrial 
oxidative stress accompanying CR. In contrast, CR up-regulated nuclear BER activity. This 
finding was not associated with increased DNA glycosylase or AP endonuclease activities in the 
nucleus, consistent with a DNA polymerase β-mediated modulation of nuclear BER in CR. 
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Table 1 
 
Oligonucleotide substrates used. 

Name Sequence 
dsC 5’-ATA TAC CGC GGC CGG CCG ATC AAG CTT ATT-3’ 

3’-TAT ATG GCG CCG GCC GGC TAG TTC GAA TAA-5’ 
ssC 5’-ATA TAC CGC GGC CGG CCG ATC AAG CTT ATT-3’ 
dsU 5’-ATA TAC CGC GG(U) CGG CCG ATC AAG CTT ATT-3’ 

3’-TAT ATG GCG CC(G) GCC GGC TAG TTC GAA TAA-5’ 
ssU 5’-ATA TAC CGC GG(U) CGG CCG ATC AAG CTT ATT-3’ 
GAP 5’-CGG ATC TGC AGC TGA TGC GC-OH P–GTA CGG ATC CCC GGG TAC-3’ 

3’-GCC TAG ACG TCG ACT ACG CGG CAT GCC TAG GGG CCC ATG-5’  
OG 5’-GAA CGA CTG T(OG)A CTT GAC TGC TAC TGA T-3’ 

3’-CTT GCT GAC A (C)T GAA CTG ACG ATG ACT A-5’ 
OHC 5’-ATA TAC CGC GG(OHC) CGG CCG ATC AAG CTT ATT-3’ 

3’-TAT ATG GCG CC (G) GCC GGC TAG TTC GAA TAA-5’ 
OHU 5’-ATA TAC CGC GG(OHU) CGG CCG ATC AAG CTT ATT-3’ 

3’-TAT ATG GCG CC (G) GCC GGC TAG TTC GAA TAA-5’ 
THF 5’-AAT TCA CCG GTA CG(F) TGA ATT CG-3’ 

3’-TTA AGT GGC CAT GG(C) TCT TAA GC-5’ 

The important features are underlined: ds = double stranded; ss = single stranded; U = deoxy-uracil; OG = 8-oxodG; OHC = 5-OHdC; OHU = 5-
OHdU; THF = tetrahydrofuran. 

 
 
                       
 
 



Fig. 1 
 

 
Figure 1. Western blot analysis of Lamin B2 in nuclear and mitochondrial fractions isolated from mouse tissues. 
Samples of 30 µg of liver nuclear or heart, liver, brain, or kidney mitochondrial extracts were loaded and resolved as 
described. 



Fig. 2 
 

                             
Figure 2. BER synthesis in liver (a–c), kidney (d, e), and brain (f, g) mitochondrial extracts. a) A representative gel 
showing the product of uracil-initiated repair synthesis incorporation following incubation of dsU oligonucleotide with 
CR and PF liver mitochondrial extracts for 45, 60, or 90 min; (b) kinetics of dsU repair in liver mitochondria. Solid line = 
PF; broken line = CR.; (c) relative repair activity at 90 min. Repair activity was quantified as 32P-dCTP signal strength, 
relative to PF = 100%. d) Kinetics of dsU repair in kidney mitochondria; (e) relative repair activity at 90 min. f) Kinetics 
of dsU repair in brain mitochondria; (g) relative repair activity at 60 min. For all graphs: squares = PF, circles = CR, open 
bars = PF, filled bars = CR. Values presented are means ± SE of duplicate measurements from four to five animals for 
each experimental group (error bars omitted from line graphs for clarity). * Denotes statistically significant difference 
[P<0.05 (brain); P<0.065 (kidney)]. 



Fig. 3 
 

             
Figure 3. DNA glycosylase, AP endonuclease and polymerase γ activities in mitochondria from CR and PF mice. 
a) UNG activity: representative gel showing incision of a U-containing substrate by mitochondrial extracts. U = ssU 
oligonucleotide (substrate; see Table 1) ; C = ssC oligonucleotide; L = liver; B = brain; H = heart; K = kidney. b) UNG 
activity in CR and PF mice; (c) AP endonuclease activity: representative gel showing the incision of a THF-containing 
substrate. d) AP endonuclease activity in CR and PF mice; (e) polymerase γ gap-filling activity: representative gel 
showing the 39 nt product following incorporation of 32P-dCTP into an oligonucleotide containing a 1 nt gap by kidney 
mitochondrial extracts from PF and CR mice; (f) mean gap-filling activities in kidney and brain mitochondria. *Denotes 
P=0.07 for comparison of PF and CR kidney. 



Fig. 4 
 

 
               
Figure 4. a) OGG1 activity in CR and PF mouse mitochondria. b) OHU incision activity; (c) OHC incision activity. In 
all graphs, open bars = PF; filled bars = CR. Values are mean ± SEM (n = 5–6). *Significantly different from control mice 
(P<0.05). 



Fig. 5 
 

 
               
Figure 5. BER synthesis in liver and kidney nuclear extracts. a) Representative gel showing BER product following 
incubation of dsU oligonucleotide with kidney nuclear extracts of CR and PF mice for 45, 60, or 90 min. b) Relative 
repair activity following 90 min incubation with liver and kidney nuclear extracts. Values are means ± SEM of duplicate or 
triplicate measurements on four to five independent samples. Open bars = PF mice, closed bars = CR mice. *Significantly 
different from control, P<0.05. c) Kinetics of BER synthesis in liver nuclear extracts. d) Kinetics of BER synthesis in 
kidney nuclear extracts. Squares = PF, circles = CR. Values in (c) and (d) are means of duplicate measurements from four 
to five individuals/experimental group. Error bars omitted for clarity. 



Fig. 6 
 

 
               
Figure 6. UDG and AP endonuclease activities in nuclear extracts from CR and PF mice. a) Mean UDG activities; 
(b) Mean APE activities. Values are mean ± SEM (n=4–5). 



Fig. 7 
 

                       
 
Figure 7. OGG1 and NTH1 activities in nuclear extracts from CR and PF mice. a) Representative gel showing 
incision of an 8-oxodG substrate following incubation with kidney nuclear extracts. b) OGG1 activity in kidney and liver 
nuclear extracts. c) Representative gel showing incision of an OHU-containing oligonucleotide by liver nuclear extracts. 
d) OHU incision activity in kidney and liver nuclear extracts from CR and PF mice. e) Representative gel showing OHC 
incision by liver nuclear extracts. f) OHC incision activity in kidney and liver nuclear extracts. All values are mean ± SEM 

(n = 4–5). Open bars = PF; filled bars = CR. 




