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ABSTRACT

Cytochrome P450 2D6 (CYP2D6) is the first well-characterized polymorphic phase I

drug-metabolizing enzyme, and more than 80 allelic variants have been identified for

the CYP2D6 gene, located on human chromosome 22q13.1. Human debrisoquine and

sparteine metabolism is subdivided into two principal phenotypes—extensive

metabolizer and poor metabolizer—that arise from variant CYP2D6 genotypes. It

has been estimated that CYP2D6 is involved in the metabolism and disposition of

more than 20% of prescribed drugs, and most of them act in the central nervous

system or on the heart. These drug substrates are characterized as organic bases

containing one nitrogen atom with a distance about 5, 7, or 10 Å from the oxidation

site. Aspartic acid 301 and glutamic acid 216 were determined as the key acidic

residues for substrate-enzyme binding through electrostatic interactions. CYP2D6

transgenic mice, generated using a lambda phage clone containing the complete wild-

type CYP2D6 gene, exhibits enhanced metabolism and disposition of debrisoquine.

This transgenic mouse line and its wild-type control are models for human extensive

metabolizers and poor metabolizers, respectively, and would have broad application in

the study of CYP2D6 polymorphism in drug discovery and development, and in

clinical practice toward individualized drug therapy. Endogenous 5-methoxyindole-
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ORDER                        REPRINTS

thylamines derived from 5-hydroxytryptamine were identified as high-affinity

substrates of CYP2D6 that catalyzes their O-demethylations with high enzymatic

capacity and specificity. Thus, polymorphic CYP2D6 may play an important role in

the interconversions of these psychoactive tryptamines, including a crucial step in a

serotonin-melatonin cycle.

Key Words: Cytochrome P450; CYP2D6; Polymorphism; Humanized mice;

Drug metabolism; Pharmacokinetics; Debrisoquine; Dextromethorphan; Sparteine;

Tryptamines; Beta-carbolines; Genotype; Phenotype; Parkinson’s disease.

INTRODUCTION TO THE CYP2D6 POLYMORPHISM

Cytochrome P450 (P450 or CYP) enzymes, a superfamily of heme-thiolate

proteins, are found in almost all living organisms and involved in the biotransformation

of a diverse range of xenobiotics, including therapeutic drugs and countless toxins, and

physiologically important hormones such as steroids, arachidonic acid, bile acids, and

retinoic acid (Gonzalez and Nebert, 1990; Guengerich, 1997; Hasler, 1999; Ingelman-

Sundberg et al., 1999; Nebert and Russell, 2002). Fifty-seven functional P450 genes

have been identified in the human genome, among which only those encoding enzymes

belonging to CYP1A, CYP1B, CYP2A, CYP2B, CYP2C, CYP2D, and CYP3A

subfamilies contribute significantly to the biotransformation of exogenous chemicals.

These P450s are mainly expressed in liver and to some extent in gut, kidney, and lung,

and play a central role in drug metabolism and disposition. The efficacy of drug

clearance is affected by many factors such as genetic variation (Bertilsson et al., 2002;

Daly et al., 1996; Ingelman-Sundberg et al., 1999; Kroemer and Eichelbaum, 1995),

transcriptional regulation (Akiyama and Gonzalez, 2003), and enzymatic inhibition and

activation (Szklarz and Halpert, 1998; Tang and Stearns, 2001; Wienkers, 2001;

Wrighton et al., 1996, 2000). In some cases, the metabolism of a drug results in its

toxicity through bioactivation. Therefore, study of P450 enzymes has long been of

interest for the prediction and identification of drug metabolism, drug–drug interactions

and pharmacokinetic profile in drug discovery and development, and the prevention of

adverse drug effects in clinical therapy (Daly, 1995; Evans and Relling, 1999;

Guengerich, 1997; Nebert, 1997; Nebert and Russell, 2002).

Cytochrome P450 2D6 (CYP2D6) is one of the most important phase I drug-

metabolizing enzymes, and it has been estimated to be involved in the oxidation of

20% to 30% drugs in clinical use, including many antiarrhythemics, antihypertensives,

b-blockers, opioids, antipsychotics, and tricyclic antidepressants (Bertilsson et al., 2002;

Evans and Relling, 1999; Ingelman-Sundberg et al., 1999; Kroemer and Eichelbaum,

1995; Nebert, 1997; Nebert and Russell, 2002).

CYP2D6 polymorphism was discovered independently in two laboratories in the

late 1970s, due to the exaggerated responses to debrisoquine and sparteine in humans

(Eichelbaum et al., 1979; Mahgoub et al., 1977), and thus commonly referred to as

debrisoquine/sparteine polymorphism. Although debrisoquine predominantly undergoes

4-hydroxylation (Idle et al., 1979), sparteine was initially thought to be N-oxidized

(Eichelbaum et al., 1979), then found to be metabolized through hydroxylation

followed by dehydration (Ebner et al., 1995). Following these findings, a complete
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cDNA encoding CYP2D6 protein was isolated in the late 1980s, and CYP2D6 gene was

traced to chromosome 22 (Gonzalez et al., 1987, 1988a,b; Kimura et al., 1989).

Poor metabolizer (PM) and extensive metabolizer (EM) are generally recognized as

the two major CYP2D6 phenotypes (Eichelbaum, 1982; Evans et al., 1980; Schmid

et al., 1985). As new information became available, the ultrarapid metabolizer (UM)

and intermediate metabolizer (IM) subgroups were classified to yield a range of

phenotypes with modestly decreased and increased activity, respectively (Bathum et al.,

1998; Dahl et al., 1995; Daly, 1995; Raimundo et al., 2000). The incidence of CYP2D6

PM was investigated extensively in different ethnic populations containing small to

large numbers of subjects. One study (Bertilsson et al., 1992) examined 1011 Swedish

Caucasians and 695 Chinese and found that debrisoquine PMs occur among 6.28% of

the Swedish Caucasian population and only 1.01% of the Chinese (Fig. 1). This finding

is similar to results reported for European and American Caucasians (Alvan et al.,

1990; Droll et al., 1998; Llerena et al., 1993; Marez et al., 1997; Nakamura et al.,

1985; Sachse et al., 1997), and Japanese and Korean Orientals (Horai et al., 1989;

Nakamura et al., 1985; Sohn et al., 1991) performed before and after that study.

Moreover, debrisoquine hydroxylation in Asian EMs is slower than Caucasian EMs, as

judged by the population mean of the metabolic ratio (MR; % dose excreted as

debrisoquine/% dose excreted as 4-hydroxydebrisoquine). Most Caucasian EMs have an

MR less than 1.0, whereas most Chinese EMs have an MR value of more than 1.0. As

Figure 1. Shown is the distribution of urinary debrisoquine/4-hydroxydebrisoquine metabolic

ratio (MR) in 695 Chinese and 1011 Swedish healthy subjects. The arrows indicate MR value of

12.6, an antimode between extensive metabolizers (EMs) and poor metabolizers. A line is drawn at

MR = 1.0. Most Chinese EMs have MR > 1.0, whereas Caucasian EMs have MR < 1.0. This figure

was reprinted from Clinical Pharmacology & Therapeutics, 51(4), 1992. Pronounced differences

between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin

and S-mephenytoin, 388–397, (1992) with permission from Elsevier.
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shown in Fig. 1, urinary debrisoquine MR distribution is shifted to the right in Chinese

EMs compared with Caucasian EMs.

More recently, the molecular basis of the CYP2D6 polymorphism has been

intensively studied. The CYP2D6 gene exhibits more than 80 allelic variations among

different ethnic populations (http://www.imm.ki.se/CYPalleles/cyp2d6.htm). The reces-

sive PM phenotype occurs among individuals carrying two null CYP2D6 alleles, arising

from a broad range of DNA sequence variations, from single nucleotide substitution to

deletion of the complete gene. This may result in a CYP2D6 protein that is unable to

bind the substrate; a truncated protein unable to bind heme and, therefore, unable to

produce recognizable P450 enzymatic activity; or simply no CYP2D6 protein at all

(Haining and Yu, 2003). Other CYP2D6 alleles contain point mutations resulting in one

or more amino acid changes in the proteins compared with wild-type CYP2D6.1, and

may lead to slightly decreased or increased activity (Yu et al., 2002). Generally, the

CYP2D6 polymorphism stratifies the population, depending on the copy number of

wild-type alleles: PM, zero; IM, one; EM, two; and UM, multiple copies (Corchero

et al., 2001; Gonzalez, 1996).

PHENOTYPE AND GENOTYPE

PMs lacking CYP2D6 activity are believed to be physiologically normal, although

no comprehensive investigation has ever been carried out. However, the CYP2D6

polymorphism is expected to influence the therapeutic efficacy and adverse drug

reactions of common drugs such as b-blockers, selective serotonin reuptake inhibitors

(SSRIs), and tricyclic antidepressants during clinical practice (Bertilsson et al., 2002;

Gonzalez and Idle, 1994; Ingelman-Sundberg et al., 1999; Kroemer and Eichelbaum,

1995; Wolf and Smith, 1999; Wolf et al., 2000). For drug substrates with narrow

therapeutic windows, serious consequences may result. Indeed, with fluoxetine

(Prozac), a known substrate and inhibitor of CYP2D6, several phenotype-related

fatality cases have been documented (Kincaid et al., 1990; Sallee et al., 2000).

Nevertheless, it is not known whether these toxic events were related to drug

metabolism. With the benefits of well-established phenotyping and rapidly developing

genotyping methodologies, polymorphism information can be obtained and included in

the patient’s medical records. Here, it could be used to perform individualized drug

therapy by adjusting the dose or selecting an alternative drug, which might reduce the

incidence of similar adverse events (Bertilsson et al., 2002; Idle and Smith, 1995;

Ingelman-Sundberg et al., 1999).

Over the years, several CYP2D6 phenotyping tests were developed, validated, and

used in both genetic and clinical settings. Axiomatically, the best substrates for

uncovering in vivo CYP2D6 polymorphism make capricious clinical tools and thus tend

to fade into medical obscurity. The original debrisoquine (Evans et al., 1980; Mahgoub

et al., 1977) and sparteine (Eichelbaum et al., 1979) phenotyping tests were gradually

replaced by more clinically benign and durable tests, principally with dextromethorphan

(Kupfer et al., 1984; Schmid et al., 1985), plus those involving metoprolol (Lennard

et al., 1982a,b), bufuralol (Dayer et al., 1982), and codeine (Yue et al., 1989). The PM

phenotype is assigned basically according to MRs greater than 0.3, 12.6, or 20, the

antimode values for dextromethorphan/dextrorphan, debrisoquine/4-hydroxydebriso-

quine, or sparteine/(2,3- plus 5,6-didehydrosparteine), respectively (Eichelbaum, 1982;
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Evans et al., 1980; Schmid et al., 1985). In almost all respects, the rivalry between the

different in vivo phenotyping tests was eclipsed by the development of DNA-based ex

vivo genotyping tools (Daly et al., 1991; Gough et al., 1990; Heim and Meyer, 1990)

that followed the cloning and characterization of the CYP2D6 cDNA (Gonzalez et al.,

1988a,b), and principal null alleles and the subsequent analysis of the organization

CYP2D gene locus (Kimura et al., 1989).

Results obtained from phenotype–genotype correlation analysis are generally

concordant with each other (Droll et al., 1998; Marez et al., 1997; Sachse et al., 1997),

and have provided a genetic explanation for CYP2D6 polymorphism. One of these

studies, including 672 unrelated European Caucasians (Marez et al., 1997), used

dextromethorphan, debrisoquine, and sparteine as probe drugs for phenotyping, and

polymerase chain reaction–single-strand conformation polymorphism (PCR–SSCP)

analysis for genotyping. Among them, the frequency of the wild-type CYP2D6*1A

allele (Kimura et al., 1989) is 32.2%. Major alleles (frequency) associated with the PM

phenotype are CYP2D6*4A (Gough et al., 1990; Hanioka et al., 1990; Kagimoto et al.,

1990) (15.6%), CYP2D6*5 (Gaedigk et al., 1991; Steen et al., 1995) (6.9%),

CYP2D6*3 (Kagimoto et al., 1990) (1.6%), and CYP2D6*6A (Saxena et al., 1994)

(0.8%). CYP2D6*2 and CYP2D6*2B (Aklillu et al., 1996; Dahl et al., 1995; Johansson

et al., 1993) alleles, associated with slightly reduced activity is present in 25.2% and

6.7% of this population, respectively. In addition, 29 novel mutations were identified

by PCR–SSCP in this study (Marez et al., 1997).

The CYP2D6*10 allele (Johansson et al., 1994; Yokota et al., 1993), containing the

C188T, G1749C, and G4268C mutations, is found to be strongly associated with

relatively lower CYP2D6 capacity in Asian populations at a high frequency of about

40% to 50% (Droll et al., 1998; Garcia-Barcelo et al., 2000; Tateishi et al., 1999; Teh

et al., 2001). The CYP2D6*17 allele (Masimirembwa et al., 1996), correlating with

markedly decreased activity toward probe substrates, is common among African

Americans and/or Africans at a frequency of 15% to 30% (Aklillu et al., 1996; Leathart

et al., 1998; Wan et al., 2001; Wennerholm et al., 1999). CYP2D6*9 (Broly and Meyer,

1993; Tyndale et al., 1991) occurs at relatively low frequencies (less than 4.0%) among

these populations examined and encodes for the deletion of A2701–A2703 (Leathart et

al., 1998; Teh et al., 2001; Tyndale et al., 1991). As expected, their modestly decreased

catalytic activities are also observed with cDNA-transfected bacteria, yeast, insect, and

mammalian cell membranes (Broly and Meyer, 1993; Fukuda et al., 2000; Johansson

et al., 1994; Masimirembwa et al., 1996; Oscarson et al., 1997; Ramamoorthy et al.,

2002; Tyndale et al., 1991; Yu et al., 2002), and genotyped and/or phenotyped human

liver microsomes (Shimada et al., 2001; Zanger et al., 2001).

The UM phenotype, defined as subjects with debrisoquine MR less than 0.20 (Dahl

et al., 1995) or sparteine MR less than 0.15 (Bathum et al., 1998), is reported to be

present at relatively high frequency among Saudi Arabians (20%) (McLellan et al.,

1997) and Ethiopians (29%) (Aklillu et al., 1996). This group of CYP2D6 phenotype

can be explained by the occurrence of multiple copies of active CYP2D6 alleles, and

enhanced expression of stable and active protein among these populations (Aklillu et al.,

1996; Dahl et al., 1995; Johansson et al., 1993). More recently, CYP2D6*35 (Lovlie

et al., 2001) was identified in Caucasian UMs without a CYP2D6 gene duplication

(duplication negative) at significantly higher frequency than control EMs. However,

in vitro functional analysis revealed that the enzymatic activity of its resulting

allelic isoform CYP2D6.35 is comparable with the wild-type CYP2D6.1 isoform

CYP2D6 Transgenic Mice and Endogenous Substrates 247

D
ru

g 
M

et
ab

ol
is

m
 R

ev
ie

w
s 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

 o
n 

06
/2

1/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



ORDER                        REPRINTS

T
a

b
le

1
.

D
ru

g
su

b
st

ra
te

s
an

d
th

ei
r

m
et

ab
o

li
c

p
at

h
w

ay
s

ca
ta

ly
ze

d
b

y
C

Y
P

2
D

6
an

d
se

le
ct

ed
C

Y
P

2
D

6
in

h
ib

it
o

rs
.

R
ea

ct
io

n
R

ef
er

en
ce

P
sy

ch
o

tr
o

p
ic

d
ru

g
s

A
m

it
ri

p
ty

li
n

e
B

en
zy

li
c

h
y

d
ro

x
y

la
ti

o
n

an
d

N
-d

em
et

h
y

la
ti

o
n

(C
o

u
tt

s
et

al
.,

1
9

9
7

;
G

h
ah

ra
m

an
i

et
al

.,
1

9
9

7
;

M
el

ls
tr

o
m

et
al

.,
1

9
8

3
;

O
le

se
n

an
d

L
in

n
et

,
1

9
9

7
b

)

C
it

al
o

p
ra

m
N

-d
em

et
h

y
la

ti
o

n
(R

o
ch

at
et

al
.,

1
9

9
7

)

C
lo

m
ip

ra
m

in
e

A
ro

m
at

ic
h

y
d

ro
x

y
la

ti
o

n
(B

al
an

t-
G

o
rg

ia
et

al
.,

1
9

9
1

)

C
lo

za
p

in
e

N
-d

em
et

h
y

la
ti

o
n

(L
in

n
et

an
d

O
le

se
n

,
1

9
9

7
)

Im
ip

ra
m

in
e

A
ro

m
at

ic
h

y
d

ro
x

y
la

ti
o

n
(B

ro
se

n
et

al
.,

1
9

9
1

;
S

u
et

al
.,

1
9

9
3

)

D
es

ip
ra

m
in

e
A

ro
m

at
ic

h
y

d
ro

x
y

la
ti

o
n

(B
ro

se
n

an
d

G
ra

m
,

1
9

8
8

;
S

u
et

al
.,

1
9

9
3

)

F
lu

o
x

et
in

e
N

-d
em

et
h

y
la

ti
o

n
(H

am
el

in
et

al
.,

1
9

9
6

)

M
ia

n
se

ri
n

e
A

ro
m

at
ic

h
y

d
ro

x
y

la
ti

o
n

(K
o

y
am

a
et

al
.,

1
9

9
6

)

M
ir

ta
za

p
in

e
A

ro
m

at
ic

h
y

d
ro

x
y

la
ti

o
n

(F
aw

ce
tt

an
d

B
ar

k
in

,
1

9
9

8
)

N
o

rt
ri

p
ty

li
n

e
B

en
zy

li
c

h
y

d
ro

x
y

la
ti

o
n

an
d

N
-d

em
et

h
y

la
ti

o
n

(N
o

rd
in

et
al

.,
1

9
8

5
;

O
le

se
n

an
d

L
in

n
et

,
1

9
9

7
a)

P
ar

o
x

et
in

e
O

-d
em

et
h

y
la

ti
o

n
(S

in
d

ru
p

et
al

.,
1

9
9

2
)

V
en

la
fa

x
in

e
O

-d
em

et
h

y
la

ti
o

n
(B

al
l

et
al

.,
1

9
9

7
)

C
a

rd
io

v
a

sc
u

la
r

d
ru

g
s

A
lp

re
n

o
lo

l
A

ro
m

at
ic

h
y

d
ro

x
y

la
ti

o
n

(A
lv

an
et

al
.,

1
9

8
2

)

B
u

fu
ra

lo
l

A
li

p
h

at
ic

an
d

ar
o

m
at

ic
h

y
d

ro
x

y
la

ti
o

n

(D
ay

er
et

al
.,

1
9

8
2

,
1

9
8

6
;

M
au

tz
et

al
.,

1
9

9
5

;

M
ey

er
et

al
.,

1
9

8
6

)

248 Yu, Idle, and Gonzalez

D
ru

g 
M

et
ab

ol
is

m
 R

ev
ie

w
s 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

 o
n 

06
/2

1/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



ORDER                        REPRINTS

E
n
ca

in
id

e
O

-d
em

et
h

y
la

ti
o

n
(W

an
g

et
al

.,
1

9
8

4
)

F
le

ca
in

id
e

O
-d

ea
lk

y
la

ti
o

n
(B

ec
k

m
an

n
et

al
.,

1
9

8
8

)

M
et

o
p

ro
lo

l
B

en
zy

li
c

h
y

d
ro

x
y

la
ti

o
n

an
d

O
-d

em
et

h
y
la

ti
o
n

(L
en

n
ar

d
et

al
.,

1
9

8
2

a,
b

;
M

au
tz

et
al

.,
1

9
9

5
)

P
ro

p
af

en
o

n
e

A
ro

m
at

ic
h

y
d

ro
x

y
la

ti
o

n
(B

o
ts

ch
et

al
.,

1
9

9
3

;
K

ro
em

er
et

al
.,

1
9

9
1

;

S
id

d
o

w
ay

et
al

.,
1

9
8

7
)

P
ro

p
ra

n
o

lo
l

A
ro

m
at

ic
h

y
d

ro
x

y
la

ti
o

n
(R

ag
h

u
ra

m
et

al
.,

1
9

8
4

;
R

o
w

la
n

d
et

al
.,

1
9

9
6

;

Y
o

sh
im

o
to

et
al

.,
1

9
9

5
)

T
im

o
lo

l
O

-d
ea

lk
y

la
ti

o
n

(L
ew

is
et

al
.,

1
9

8
5

)

M
is

ce
ll

a
n

eo
u

s
d

ru
g
s

C
o

d
ei

n
e

O
-d

em
et

h
y

la
ti

o
n

(D
ay

er
et

al
.,

1
9

8
8

;
Y

u
e

et
al

.,
1

9
8

9
)

D
eb

ri
so

q
u

in
e

A
ro

m
at

ic
an

d
al

ip
h

at
ic

h
y

d
ro

x
y

la
ti

o
n

(L
ig

h
tf

o
o

t
et

al
.,

2
0

0
0

;
M

ah
g

o
u

b
et

al
.,

1
9

7
7

;
W

o
lf

f
et

al
.,

1
9

8
7

)

D
ex

tr
o

m
et

h
o

rp
h

an
O

-
an

d
N

-d
em

et
h

y
la

ti
o

n
(K

u
p

fe
r

et
al

.,
1

9
8

4
;

S
ch

m
id

et
al

.,

1
9

8
5

;
Y

u
et

al
.,

2
0

0
1

)

P
h

en
fo

rm
in

A
ro

m
at

ic
h

y
d

ro
x

y
la

ti
o

n
(O

at
es

et
al

.,
1

9
8

2
)

In
h

ib
it

o
rs

F
lu

o
x
et

in
e,

F
lu

v
o

x
am

in
e,

N
o

rf
lu

o
x

et
in

e,

P
ar

o
x

et
in

e,
Q

u
in

id
in

e,
S

er
tr

al
in

e

CYP2D6 Transgenic Mice and Endogenous Substrates 249

D
ru

g 
M

et
ab

ol
is

m
 R

ev
ie

w
s 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

 o
n 

06
/2

1/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



ORDER                        REPRINTS

(Allorge et al., 2001). Therefore, the role of CYP2D6*35 allelic variant in duplication-

negative Caucasian UMs requires further investigation.

Despite the evolution of PCR technologies since the 1990s, it still remains a

challenge to forecast the CYP2D6 metabolic phenotype from a DNA-based genotyping

assay both cheaply and rapidly. As the potential endogenous substrates were disclosed

for CYP2D6, a third way of ‘‘endogenous phenotyping’’ was proposed (Yu et al.,

2003b,c) that might obviate the problems inherent to both in vivo drug phenotyping and

ex vivo DNA genotyping methods, and represents a new direction in need of study.

DRUG SUBSTRATES AND INHIBITORS

It has been estimated that CYP2D6 is responsible for 20% to 30% of the oxidation

of prescribed drugs for humans (Bertilsson et al., 2002; Evans and Relling, 1999;

Ingelman-Sundberg et al., 1999; Kroemer and Eichelbaum, 1995; Nebert, 1997; Nebert

and Russell, 2002). Of particular note are the tricyclic antidepressants, SSRIs, 5-HT3

receptor antagonists, antipsychotics, opiates, and amphetamines, together with the b-

adrenoreceptor antagonists and the antidysrhythmic drugs, all agents that act either in

the central nervous system (CNS) or on the heart (Table 1). CYP2D6 has also been

shown to metabolize certain neurotoxins, including 1-methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine (MPTP) and its metabolite 1-methyl-4-phenylpyridine, which are believed

to induce Parkinson’s disease (PD) (Coleman et al., 1996; Fonne-Pfister et al., 1987;

Gilham et al., 1997). A study revealed that CYP2D6 also contributes mainly to

the metabolism of the psychotropic b-carboline alkaloids, harmaline and harmine

(Yu et al., 2003d).

Various drugs of abuse are known as substrates (e.g., codeine, dextromethorphan,

hydrocodone) or inhibitors [e.g., (-)-cocaine, pentazocine] of CYP2D6. Recreational

drugs such as 3,4-methylenedioxymethamphetamine (‘‘Ecstasy’’), amphetamine, and

methamphetamine are also oxidized by polymorphic CYP2D6. The metabolism and

disposition, pharmacokinetics, and pharmacodynamics for some of these substrate drugs

of abuse would be expected to vary among people due to CYP2D6 polymorphism. For

other drugs, CYP2D6 may not contribute significantly to their overall disposition, but

may catalyze the formation of highly active metabolites, such as codeine to morphine,

hydrocodone to hydromorphone, and oxycodone to oxymorphone, and thus impact

largely on their efficacy. In drug abuse, the CYP2D6 polymorphism is believed to play

an important protective role as well as being a risk factor (Sellers and Tyndale, 2000;

Sellers et al., 1997).

The best-known chemical inhibitor to CYP2D6 that is widely used in various

studies is quinidine, with a inhibitory potency in the nanomolar range (Dayer et al.,

1988, 1989; Hutzler et al., 2003; Otton et al., 1988; Yu and Haining, 2001a). By

treatment with quinidine, CYP2D6 EMs can be converted to pseudo-PMs (i.e.,

phenocopies) (Ayesh et al., 1991). Interestingly, its stereoisomer, quinine, is a much

less (about two orders of magnitude) potent inhibitor of CYP2D6 compared with

quinidine. SSRIs display good inhibition to CYP2D6-catalyzed sparteine, dextro-

methorphan, and 5-methoxytryptamine oxidations with potency in the order of

paroxetine > fluoxetine � norfluoxetine > sertraline � fluvoxamine > venlafaxine

(Ereshefsky et al., 1995; Yu et al., 2003b). It is clear that the most potent CYP2D6
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ORDER                        REPRINTS

inhibitors belonging to SSRIs, fluoxetine and paroxetine, along with quinidine may

cause serious drug–drug interactions in clinical practice (Ereshefsky et al., 1995;

Kroemer and Eichelbaum, 1995).

These known CYP2D6 drug substrates and inhibitors are characterized as organic

bases containing at least one nitrogen atom serving as an electron donor. The oxidation

site, about 5 or 7 Å from the basic nitrogen, possesses a flat hydrophobic area close to

it (de Groot et al., 1997; Koymans et al., 1992; Strobl et al., 1993). However, the

distance between the basic nitrogen and reaction site is around 10 Å in a few of the

substrates (de Groot et al., 1999a,b). Site-directed mutagenesis and molecular modeling

revealed that the basic nitrogen atoms in the substrates can interact with the negatively

charged carboxyl group of aspartic acid 301 and glutamic acid (de Groot et al.,

1999a,b; Ellis et al., 1995; Guengerich et al., 2003; Paine et al., 2003). Thus, it is likely

that both of these acidic amino acids are key residues for CYP2D6-substrate binding

through electrostatic interactions. Besides, CYP2D6 may provide more than one

binding orientation or site of metabolism for the same substrate (Yu et al., 2001, 2002).

Like other P450-catalyzed oxidations, most of the reactions mediated by CYP2D6

are aliphatic/aromatic hydroxylations and O-demethylation (Table 1). However, some

drug (and other chemical) substrates are N-demethylated by CYP2D6, which was

initially seen as an atypical and rare metabolic pathway, and is now a generally

accepted pathway (Coutts et al., 1994; de Groot et al., 1999a) as more and more

chemicals have been shown to undergo N-demethylation. Dextromethorphan, the

widely used probe drug both in vitro and in vivo, was both O- and N-demethylated by

highly purified and well-characterized CYP2D6 isoforms (Ramamoorthy et al., 2002;

Yu and Haining, 2001a,b; Yu et al., 2001). A combined protein and pharmacophore

model has also been generated for CYP2D6 in order to elucidate all these reactions

including N-demethylation (de Groot et al., 1999a,b), which would provide helpful

information for the research on drug metabolism and drug–drug interactions.

SUSCEPTIBILITY TO DISEASE

It is reasoned that the mutations and polymorphism of P450 genes might lead to

altered individual risk of disease because these enzymes are responsible for the

biosynthesis and biodegradation of physiological compounds, as well as the metabolism

and disposition of environmental chemicals (Gonzalez and Idle, 1994; Guengerich,

2003; Huber et al., 2002; Ingelman-Sundberg, 2001). It is also known that few common

diseases are monogenetic in origin; many diseases are caused by multiple factors such

as multiple genes, diet, exposure to environmental factors, or a combination of these.

Therefore, caution must be exercised before drawing a conclusion about the genetic

determination of a certain disease.

More and more evidence has accumulated during the past decades, in support of

the association of P450 genes with diseases (Guengerich, 2003; Huber et al., 2002;

Ingelman-Sundberg, 2001). For examples, CYP1B1 has been identified as a major

genetic determinant of primary congenital glaucoma, besides the risk for developing

prostate, ovarian, lung, and breast cancer. This has been confirmed by analysis of

the CYP1B1-null mouse model (Libby et al., 2003). CYP19, also named aromatase,

which produces estrogen from androgen, is associated with the risk of breast cancer
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(Huber et al., 2002). Deficiency of CYP27, which encodes the mitochondrial sterol 27-

hydroxylase playing a key role in bile acid biosynthesis, causes cerebrotendinous

xanthomatosis, an autosomal recessive sterol storage disease characterized by the

accumulation of a bile alcohol in diverse tissues. Almost all these associations can be

bridged through a defect in biotransformation of endogenous compounds or activation

of exogenous chemicals.

Numerous studies have been reported with the intention to link specific disease to

polymorphic CYP2D6, for which exist large numbers of allelic variants with high

frequencies, significant interethnic differences, and multiple drugs and chemical

neurotoxin substrates. Those examined have included PD, Alzheimer’s disease, and

various types of cancer (Gonzalez and Idle, 1994). However, the results obtained from

these association studies have been inconsistent, even with the determination of specific

null alleles by genotyping. For the susceptibility to PD, CYP2D6 has been the most

extensively examined candidate gene, probably evoked by its metabolism of MPTP that

causes immediate dopaminergic neuronal damage and irreversible Parkinsonism. MPTP

is activated to neurotoxic MPP+ by monoamine oxidase B, whereas it is detoxicated by

N-demethylation, largely by CYP2D6. Thus, there have been many commentaries

predicting a protective role for polymorphic CYP2D6 in MPTP-induced PD. The

variable results of these studies on the association between CYP2D6 genotype and PD

may be attributed to many of the studies employing only small numbers of patients.

Thus, a metaanalysis of 11 studies was carried out and showed a small, yet significant

(P = 0.01) odds ratio (1.47) for the association between the poor metabolizer genotypes

and PD (McCann et al., 1997). However, a study (Payami et al., 2001) containing 566

PD patients and 247 control subjects, using standard diagnostic and genotyping

techniques, revealed that the CYP2D6*4 allele, which is the most common variant

among CYP2D6 PMs, is not associated with earlier PD onset. On the contrary,

apolipoprotein E has been consistently identified to be associated with onset age of PD

(Kruger et al., 1999; Maraganore et al., 2000; Zareparsi et al., 1997) and is so far the

only recognized susceptibility gene. Although the causes of the common forms of PD

are still unknown, it would be helpful to examine the major risk factors together,

including candidate genes, age, family history, and environmental exposure markers.

Chemicals such as b-carboline alkaloids contained in the diet or formed from its

components are known for their neurotoxicity and induction of PD similarly to

MPTP. CYP2D6 has been shown to be involved in their metabolism as well as

CYP1A2 (Yu et al., 2003d).

HUMANIZED MOUSE MODEL FOR CYP2D6 POLYMORPHISM

Clinical studies are fundamental to the identification of human pharmacogenetic

polymorphisms, and for the establishment of pharmacokinetic profiles and drug–drug

interaction effects. However, to determine how a drug is metabolized, what toxic

effects it might produce, or how pathophysiological conditions affect drug metabolism

at early stages of drug development, animal models or in vitro systems must be

developed. Due to marked differences between humans and experimental animals, the

results from animal studies can be misleading and need to be interpreted cautiously.

The CYP2D family in humans has a single active member CYP2D6 that is highly
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polymorphic, whereas rats and mice have at least five genes (Gonzalez and Nebert,

1990; Nelson et al., 1996). Debrisoquine is hydroxylated to 4-hydroxydebrisoquine by

humans and by Sprague–Dawley rats. However, female Dark Agouti (DA) rats have

been found to possess a low capacity to metabolize debrisoquine (Al-Dabbagh et al.,

1981). Similarly, no significant formation of 4-hydroxydebrisoquine was detected by

liver microsomes from three strains of mice and by purified CYP2D9-11 (Masubuchi

et al., 1997). Although the female DA rat was proposed early on as a model for the

human PM phenotype, in which to evaluate the role of the debrisoquine 4-

hydroxylation polymorphism in drug and chemical toxicity (Al-Dabbagh et al.,

1981). Employing two inbred strains of rat as models for two human phenotypes was

soon recognized as having practical limitations. For example, using DA (PM) and

Lewis (EM) female rats, it was proposed that the reduced hepatotoxicity of aflatoxin B1

(AFB1) in the DA rat was due to its relative inability to activate metabolically AFB1

(Hietanen et al., 1986; Ritchie and Idle, 1982). Subsequently, it emerged that DA rats

Figure 2. A, Generation and characterization of the CYP2D6 transgenic (Tg-CYP2D6) mouse.

Schematic diagram of the wild-type CYP2D6 gene used for microinjection (Genbank accession

number: M33388). Restriction sites for EcoRI (E) and BamHI (B) are depicted. Black boxes

represent CYP2D6 exons. The bar represents 1 kb. B, Southern bolt genotyping of wild-type and

Tg-CYP2D6 mice. Tail DNA (15 mg) was digested with BamHI and probed with CYP2D6 cDNA.

Hybridization signals were present only in Tg-CYP2D6 mice, and their sizes were as expected from

the CYP2D6 sequence. C, PCR genotyping of wild-type and Tg-CYP2D6 mice. Tail DNA was

amplified with mEH [internal polymerase chain reaction (PCR) control] and CYP2D6 gene-specific

primers. The PCR products (341 bp for mEH, 241 bp for CYP2D6) were separated on a 1.5%

agarose gel. D, Western blot analysis of CYP2D6 protein expression in wild-type and Tg-CYP2D6

mice. Liver (L), intestine (I), and kidney (K) microsomal proteins (40 mg) were separated by

sodium dodecyl sulfate polyacrylamide gel electophoresis (SDSPAGE) and transferred to a

nitrocellulose membrane. A CYP2D6-specific monoclonal antibody (Krausz et al., 1997) was used

to assess CYP2D6 protein expression. The antibody only reacted against CYP2D6-expressed

protein, but did not recognize any of the mouse CYP2D proteins. Human liver microsomes (HLM)

was used as a control.
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ORDER                        REPRINTS

had the highest microsomal epoxide hydrolase activity of 22 rat strains tested (Oesch

et al., 1983), and this would appear to be the best explanation of the observed

interstrain difference in AFB1 activation and hepatotoxicity, rapid metabolic clearance

of the procarcinogenic AFB1 exo-8,9-epoxide. Thus, inbred strains, with their manifold

genetic and biochemical differences, are imperfect models for the investigation of the

biological consequences of human single polymorphisms.

To circumvent all these problems, a transgenic mouse line expressing CYP2D6

would offer a unique approach to answering fundamental questions about the specific

role of CYP2D6 in drug metabolism and drug interactions. Such experiments would be

performed in the context of the entire animal, and overcome many limitations inherent

in in vitro experiments. To this end, the complete wild-type allele of the human

CYP2D6 gene (Fig. 2), including its regulatory sequence, was microinjected into a

fertilized FVB/N mouse egg, and a CYP2D6 transgenic (Tg-CYP2D6) mouse line has

been produced (Corchero et al., 2001). Tg-CYP2D6 mouse carries 5 ± 1 copies of

CYP2D6 transgene per haploid genome. Active CYP2D6 enzyme is expressed in liver,

intestine, and kidney of Tg-CYP2D6 mice (Fig. 2), which was confirmed with a

specific monoclonal antibody (Krausz et al., 1997).

Figure 3. Time course of serum concentrations of debrisoquine (DEB) (A) and 4-hydroxyde-

brisoquine (4-OH-DEB) (B) from wild-type, CYP2D6 transgenic heterozygous and homozygous

mice after single oral administration of DEB (2.5 mg/kg). Venous blood was obtained 0, 0.5, 1, 2, 4,

6, 8, 12, and 24 hr after DEB administration. Values represent the mean and the standard deviation

(vertical lines) of DEB and 4-OH-DEB from 3 to 4 mice.
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Metabolism and disposition of debrisoquine in Tg-CYP2D6 mice is enhanced

compared with control wild-type mice. After a single oral dose of debrisoquine

(2.5 mg/kg), both Tg-CYP2D6 heterozygous and homozygous mice had debrisoquine

serum levels significantly lower than in wild-type (Fig. 3A). Consistently, 4-

hydroxydebrisoquine levels are highest in Tg-CYP2D6 homozygous, intermediate in

Tg-CYP2D6 heterozygous, and lowest in the wild-type (Fig. 3B). Pharmacokinetic

analysis showed that the debrisoquine AUC is about three-fold and six-fold higher in

wild-type mice than in heterozygous, and homozygous Tg-CYP2D6 mice, respectively

(Table 1). This is illustrated by differences in the elimination half-life of debrisoquine,

which is 2.1 and 1.4 times shorter in the heterozygous and homozygous Tg-CYP2D6

mice than in wild-type mice. Accordingly, Tg-CYP2D6 mice showed a clearance about

six- and three-fold higher than wild-type mice (Corchero et al., 2001).

CYP2D6 integration in the mouse genome does not affect any other physiological

parameters such as renal function. Twenty-four hours after a single oral dose of

debrisoquine, Tg-CYP2D6 mice excreted significantly higher amounts of 4-hydroxyde-

brisoquine (28.9 ± 12.5% of dose) and lower amounts of debrisoquine (14.6 ± 6.4%)

than the wild-type mice (6.2 ± 3.1% and 61.0 ± 9.0%, respectively). Urinary MR of

debrisoquine for the wild-type mice was 12.1 ± 7.3%, which was decreased to

0.5 ± 0% with expression of the human transgene. Total recoveries of debrisoquine

plus 4-hydroxydebrisoquine were 67.2 ± 10.7% and 43.5 ± 18.9% for the wild-type and

Tg-CYP2D6 mice, respectively (Corchero et al., 2001). This latter finding perhaps

indicates that the human CYP2D6 gene may provoke the metabolism of debrisoquine to

other metabolites (Table 2).

Mutations of hepatocyte nuclear factor 4alpha (HNF4a) (Akiyama and Gonzalez,

2003; Hattersley, 1998; Ryffel, 2001), a hepatic transcription factor is known to

regulate in vitro expression of the CYP2D6 gene (Jover et al., 2001), could affect the

disposition of CYP2D6 drug substrates. After deletion of HNF4a in Tg-CYP2D6 mice,

Table 2. Pharmacokinetic parameters for debrisoquine and its metabolite, 4-hydroxydebrisoquine,

after oral administration of 2.5 mg/kg of debrisoquine to wild-type, CYP2D6 transgenic

heterozygous and homozygous mice.a

Wild-type Heterozygote Homozygote

Debrisoquine

Tmax (hr) 2.5 ± 1.8 6.7 ± 0.7 4.6 ± 1.8

Cmax (nmol/L) 2940 ± 795 879 ± 128b 467 ± 61b,c

AUC0 – 24hr (nmol.hr/L) 28400 ± 1840 8760 ± 1220b 4630 ± 1350b,c

CL (L/hr/kg) 15.2 ± 0.9 48.9 ± 6.4b 94.1 ± 22.3b,c

T1/2 (hr) 16.5 ± 4.5 8.9 ± 2.1b 6.9 ± 1.6b

4-Hydroxydebrisoquine

Tmax (hr) 1.7 ± 0.3 3.3 ± 2.3 0.8 ± 1.2

Cmax (nmol/L) 110 ± 12 535 ± 79b 1080 ± 97b,c

AUC0 – 24hr (nmol.hr/L) 1090 ± 28 4630 ± 377b 9290 ± 931b,c

aValues represent the mean and the standard deviation from three to four mice.
bP < 0.05, values are significantly different from wild-type mice.
cP < 0.05, values are significantly different from heterozygous mice.
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debrisoquine 4-hydroxylation activity is significantly decreased more than 50%. With

the Tg-CYP2D6 mouse model, it is the first time that CYP2D6 gene has been

demonstrated to be regulated by HNF4a in vivo (Corchero et al., 2001).

The Tg-CYP2D6 mouse model solves the problems of species differences, and

offers a unique in vivo system to study drug metabolism and disposition, phar-

macokinetics, and drug–drug interactions for the prediction of the effects of drugs,

drug candidates, and environmental chemicals in humans. Moreover, this mouse line

can serve as a whole intact animal model for exploring endogenous substrates for

CYP2D6, investigating their biotransformations, and elucidating physiological signif-

icance and its polymorphism.

ENDOGENOUS SUBSTRATES FOR CYP2D6

Since the discovery of the CYP2D6 polymorphism, there has been speculation

about potential physiologically important substrates for CYP2D6 in humans (Kroemer

and Eichelbaum, 1995; Llerena et al., 1989, 1993; Nadir et al., 1982). Could the PM

have an advantage in development, reproduction, or behavior? The difference in

personality between EM and PM individuals reported by Llerena and colleagues

(Llerena et al., 1989, 1993) suggests that CYP2D6 may be involved in the metabolism

of one or more endogenous neuroactive substances. This hypothesis is strongly

supported by the expression of CYP2D6 in neurons of the human CNS, which has been

demonstrated using a variety of techniques, including immunoblotting (Fonne-Pfister

et al., 1987; Miksys et al., 2002; Siegle et al., 2001), in situ hybridization (Gilham et al.,

1997; Siegle et al., 2001), reverse transcription-polymerase chain reaction (RT-PCR)

(McFayden et al., 1998), and metabolism of the CYP2D6 probe drug dextromethorphan

(Voirol et al., 2000) by microsomes prepared from brain tissues. One report localized

the expression of CYP2D6 to the pigmented cells of the substantia nigra (Gilham et al.,

1997), whereas another detected CYP2D6 mRNA in the neocortex, caudate nucleus,

putamen, globus pallidus, hippocampus, thalamus, substantia nigra, and cerebellum

(Siegle et al., 2001). CYP2D6 protein, however, was only detected in the large prin-

cipal neurons in the cortex, hippocampus, and cerebellum (Siegle et al., 2001). If

CYP2D6 was associated with the endothelial cells lining the 650 km of blood capillary

found in the human brain, then a case could be made that it functioned as part of the

blood–brain barrier and its role was as a ‘‘last line of defense,’’ preventing toxins from

entering the brain, but this does not appear to be the case. Many toxic alkaloids,

including MPTP-like b-carbolines, are CYP2D6 substrates (Yu et al., 2003d). However,

all studies would appear to show that CYP2D6 within the CNS is neuronal in origin

(Gilham et al., 1997; McFayden et al., 1998; Siegle et al., 2001), and this brings into

question the function of this enzyme in the CNS. The possibility that CYP2D6 may

have endogenous psychoactive substrates in the human brain would link all these

evidence together and provide reasonable explanation for these phenomena.

Tryptamine, one of the trace amines found at very low concentrations in the

mammalian CNS, but localized in neurons with a very high turnover and short half-life

(Jones, 1982), exhibits high affinity to a new family of 15 G protein-coupled receptors

recently identified (Borowsky et al., 2001). These receptors, called trace amine (TA)

receptors, are distinct from the classical biogenic amine receptors, those for 5-HT,
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dopamine, and norepinephrine. Therefore, tryptamine may now be considered a true

candidate neurotransmitter or neuromodulator, although its physiological function is

still the subject of speculation. It has been reported that CYP2D6 mediated the

deamination of tryptamine (Martinez et al., 1997), which, prior to that, was understood

to be an monoamine oxidase (MAO)-dependent pathway (Sullivan et al., 1986).

However, a study (Yu et al., 2003a), using recombinant cDNA expressed P450 and

MAO isozymes, together with a highly specific anti-CYP2D6 monoclonal antibody,

demonstrated that CYP2D6 and other human P450s are not involved in the deamination

of tryptamine. This reaction is essentially performed by MAO-A followed by aldehyde

reductase. These results exclude the possibility that tryptamine is an endogenous

substrate of CYP2D6.

Other in vitro studies have shown that CYP2D6 mediates the production of

tyramine from 4-methoxyphenylethylamine (Miller et al., 2001), which is further

hydroxylated by CYP2D6 to yield dopamine (Hiroi et al., 1998; Miller et al., 2001).

These findings were additionally confirmed by other investigations (Haining and Yu,

2003). However, CYP2D6-mediated hydroxylation and O-demethylation of these

catecholamines showed relatively high Michaelis–Menten constant (Km) values, all

of them are more than 55 mM (Table 3), and they are unlikely important en-

dogenous substrates for CYP2D6. After screening various of phenylethylamines and

indolethylamines, 5-methoxytryptamine (5-MT), 5-methoxy-N,N-dimethyltryptamine

(5-MDMT), and pinoline (6-methoxy-1,2,3,4-tetrahydro-b-carboline) were found to

bind with CYP2D6 and produce type I binding spectra (Fig. 4). Estimated dissociation

constant (Ks) values were 20, 28, and 0.5 mM for 5-MT, 5-MDMT, and pinoline,

respectively, indicating that they are high-affinity substrates for CYP2D6 (Yu et al.,

2003b,c). Recombinant CYP2D6 catalyzes the O-demethylation of 5-MT, 5-MDMT,

and pinoline with high turnover (Table 3), whereas other human P450 enzymes did not

significantly carry out these reactions (Fig. 5). 5-Methoxytryptamine, 5-MDMT, and

pinoline O-demethylation activities were about 20-, 11-, and 35-fold greater in liver

microsomes from Tg-CYP2D6 mice, respectively, than those in liver microsomes

from control mice. Moreover, the increased activities were completely inhibited by an

anti-CYP2D6 monoclonal antibody (Fig. 6). Therefore, polymorphic CYP2D6 was

suggested as a highly specific, high-affinity, high-capacity 5-methoxyindolethylamine

O-demethylase (Yu et al., 2003c).

5-Methoxytryptamine is an endogenous trace amine that belongs to the group of

pineal methoxyindoles that includes melatonin (MEL) (Galzin et al., 1988; Raynaud

and Pevet, 1991b). 5-MT is believed to be formed by the deacetylation of MEL by

arylacylamidase (Beck and Jonsson, 1981; Rogawski et al., 1979), but may also be

formed by the methylation of serotonin (5-HT) by hydroxyindole O-methyltransferase

(Balemans et al., 1980). 5-Methoxytryptamine has been found in rat raphe nuclei, rat,

golden hamster, sheep and human pineal, and hamster plasma (Beck and Bosin, 1979;

Beck et al., 1981, 1982; Raynaud and Pevet, 1991a; van Benthem et al., 1985).

5-Methoxytryptamine has very poor affinity for MEL receptors (Sugden et al., 1997;

Zawilska and Nowak, 1996). Its MEL-like actions, such as its inhibition of sexual

maturation in male rats, may be due to its metabolism to MEL by arylalkylamine N-

acetyltransferase (Lang et al., 1985). Conversely, 5-MT has a high affinity for

most 5-HT receptor types, including 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, 5-HT1F,

5-HT2, 5-HT2B, 5-HT4, 5-HT6, and 5-HT7 (Baxter et al., 1994; Bertrand et al., 2000;
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ORDER                        REPRINTS

Figure 4. Binding spectra obtained with recombinant CYP2D6 and the sequentially added

substrates (final concentration), 5-methoxytryptamine (1, 2, 5, 10, 20, 50, 100, 200, and 500 mM;

A), 5-methoxy-N,N-dimethyltryptamine (5, 10, 20, 50, 100, 150, 200, and 300 mM; B), and pinoline

(0.2, 0.5, 1, 2, 5, 10, 20, and 50 mM; C). The estimated Ks values were 20, 28, and 0.5 mM for

5-methoxytryptamine, 5-methoxy-N,N-dimethyltryptamine and pinoline, respectively.
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ORDER                        REPRINTS

Figure 5. Specificity of CYP2D6 in the O-demethylations of 5-methoxytryptamine (5-MT) (a), 5-

methoxy-N,N-dimethyltryptamine (5-MDMT) (b), and pinoline (c) using 15 recombinant common

human P450 isozymes.
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Figure 6. O-Demethylation of 5-methoxytryptamine (5-MT) (a), 5-methoxy-N,N-dimethyltryp-

tamine (5-MDMT) (b), and pinoline (c) by mouse liver microsomes (MLM) from wild-type (WT)

and CYP2D6 transgenic (TG) mice, showing O-demethylase activity without (white bars, Control)

and with (black bars, 2D6 MAb) the addition of anti-CYP2D6 monoclonal antibody.
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Boess et al., 1997; Britt et al., 1988; Craig et al., 1990; Heuring and Peroutka, 1987;

Hoyer et al., 1988; Peroutka, 1986; Schoeffter et al., 1988; Tsou et al., 1994; Wainscott

et al., 1993). 5-Methoxytryptamine has been shown to possess little affinity for 5-HT3

receptors (Craig et al., 1990). In almost all cases where the receptor is coupled to a

physiologic response, 5-MT is at least as potent an agonist at these 5-HT receptors as

5-HT. The regeneration of 5-HT from 5-MT catalyzed by CYP2D6 provides the

missing link in the serotonin–melatonin cycle (Fig. 7).

5-Methoxy-N,N-dimethyltryptamine and 6-methoxy-1,2,3,4-tetrahydro-9H-pyr-

ido[3,4-b]indole, both of which are 5-HT derivatives like 5-methoxytryptamine

(Fig. 7). These compounds share certain prominent chemical and biological similarities.

Pinoline presents as normal constituents at remarkable high level (several mg/g) in

pineal gland (Airaksinen and Kari, 1981a,b). 5-Methoxy-N,N-dimethyltryptamine,

known as a potential endogenous ‘‘psychotoxin,’’ is biosynthesized in human pineal

and detected in urine and pineal (Guchhait, 1976; Narasimhachari et al., 1971; van der

Horst and Ebels, 1980). Meanwhile, these methoxyindolethylamines are present in

retina at relatively high level (Leino and Airaksinen, 1985). Its CYP2D6-mediated

metabolite bufotenine is also psychotropic with a pharmacology that resembles that of

lysergic acid diethylamide, psilocin, and its parent molecule 5-MDMT, which is

believed to involve 5-HT2A and 5-HT2C receptors (McBride, 2000; Ott, 2001). Their

existence in the CNS is certain, but their biological roles are poorly understood.

Whether the CYP2D6 polymorphism influences mood or behavior, or even neuro-

logical or psychiatric disease diathesis, via an interaction with one or more of this triad

of endogenous CNS substrates, is merely speculation (Yu et al., 2003c).

Figure 7. Interconversions of endogenous indolethylamines involving arylalkylamine N-acetyl

transferase (AANAT, Reaction A), hydroxyindole O-methyltransferase (HIOMT, Reaction B),

arylacylamidase (AAA, Reaction C), cytochrome P450 2D6 (CYP2D6, Reaction D), aromatic

alkylamine N-methyltransferase (S-adenosylmethionine-dependent, Reaction E), and b-carboline

formation, either spontaneously (Pictet–Spengler reaction) or from a N5-methyltetrahydrofolate-

dependent reaction (Reaction F).
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The discovery of these physiological indolethylamine substrates of CYP2D6 may

open the third way for the assignment of CYP2D6 phenotype. This ‘‘endogenous

phenotyping’’ is different from the traditional phenotyping approach using a probe drug

or forecasting from genotype determination, which is now common practice in both

academic and industrial clinical pharmacology. It is also carried out in countless

molecular epidemiological studies. There are limitations of precision, time, cost, and

convenience that are associated with the various assay methodologies (Yu et al.,

2003c). Thus, endogenous phenotyping may be of great value in a low-cost method for

determining CYP2D6 and possibly other P450 polymorphism.

CONCLUSION

Since the discovery of debrisoquine/sparteine polymorphism in the late 1970s,

significant interethnic difference in phenotype frequencies have been reported.

Comprehensive studies on CYP2D6 genotypes provided satisfactory molecular

explanation for the distribution of phenotypes. Due to the lack of a robust animal

model for the study of the CYP2D6 polymorphism, CYP2D6 humanized mice have

been generated and validated by molecular methods and debrisoquine phenotyping.

This mouse model has been applied to the search for endogenous substrates for

CYP2D6, which catalyzes the O-demethylation of a number of psychotropic

methoxyindolethylamines. This mouse model could have broad applications for pre-

dicting the variation of metabolism and disposition of drugs or drug candidates, in vivo

drug–drug interactions, and pharmacokinetics and pharmacodynamics for individual-

ized drug therapy in the human population. This humanized mouse will also permit

investigation into the physiological significance of these endogenous substrates of

CYP2D6 and its polymorphism.
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