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Interception of Comets and Asteroids on Collision Course
with Earth

Johndale C. Solem*
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

I delineate the utility, performance, and range of applicability of rocket interceptors designed to disrupt
(deflect or pulverize) comets or asteroids on collision course with Earth. I discuss the relationship among several
quantities of practical interest in the interception problem, the most important of which are 1) the mass in orbit
or initial mass of the interceptor, which will usually dominate the cost of the system, and 2) the blowoff fraction,
the fraction of the assailant object's mass expelled to impart transverse momentum, which also provides a
measure of the probability that the object will fracture. I calculate optimum interception strategies for both
kinetic-energy deflection and nuclear-explosive deflection, assuming a fairly general relationship between the
energy deposited and the blowoff mass. In the nuclear-explosive case, I calculate the interceptor mass and
cratering effect for detonations above and below the surface as well as directly on the surface of the assailant.
Because different assailants could possess a wide range of densities and material properties, the principal value
of this work is to show the relationships among the salient parameters.

g =
ISp =
Ma -
Me =

Nomenclature
diameter of assailant (comet or asteroid)
Earth gravitational constant
specific impulse
mass of assailant
mass of crater ejecta
final mass of interceptor
initial mass of interceptor in orbit

Q =
RI = range when assailant is intercepted
RI = range when interceptor is launched
V = interceptor velocity
v = closing speed of assailant
v ± = assailant transverse velocity component
a = crater constant
jS = crater exponent
At = time elapsed from launch to intercept
6 = energy fraction, _____________________

V2 x ejecta kinetic energy /intercept or kinetic energy
e = assailant deflection distance
p = assailant density

Introduction

S INCE Alvarez et al.1 announced evidence for asteroid
impact as the putative cause of the cretaceous-tertiary

extinction, there has been a heightened awareness that our fair
planet is and always has been in a state of merciless cosmic
bombardment. Not all of this cannonade has been deleterious;
for example, the event Alvarez suggests may have cleared the
way for the rise of Homo sapiens. But being a selfish subspe-
cies, we would rather hold on to our domination of the Earth
and deny a chance to any more well-adapted creature for as
long as we can. Less facetious is the possibility of a strike from
an interplanetary body with radius on the order of 100 m. If it
were an asteroid, such an assailant would likely have a relative
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velocity of about 25 km • _s~1 , which would give it a kinetic
energy of about 1000 Mton. In a populated area, the damage
would be catastrophic. If it were a comet, the relative velocity
would be more like 50 km • s~ *, and the energy would quadru-
ple. The Tunguska event2'3 (1908) offers sobering evidence
that such potentially catastrophic collisions are not so infre-
quent that they can be ignored. That impact was about 10
Mton and could be expected every few hundred years. Recent
estimates4 indicate that a 20-kton (Hiroshima-size) event
should occur every year. This ought to be conspicuous, but
apparently objects of this size tend to break up while penetrat-
ing the atmosphere,5 dissipating much of their energy as
smaller fragments. That larger cataclysms are not generally
recorded in the archives of natural disasters seems somewhat
of a mystery. Perhaps it can be attributed to the fact that, until
the 20th century, very little of the Earth's surface was popu-
lated.6 Nevertheless, it has been asserted that the risk of being
killed as a result of asteroid impact is somewhat greater than
the risk of being killed in an airplane crash.7

The first serious study of a defense against asteroid colli-
sion8 was conducted as an interdepartmental student project in
systems engineering at the Massachusetts Institute of Technol-
ogy. Remarkably, the study was conducted in the spring of
1967, a dozen years before the Alvarez discovery. The hypoth-
esis was a predicted 1968 collision with Icarus, a kilometer-
scale Apollo asteroid. The prognosis was deployment of six
Saturn V rockets carrying 100-Mton warheads to deflect or
pulverize the asteroid.

In 1981, NASA and the Jet Propulsion Laboratory (JPL)
sponsored a workshop9 to evaluate the rate and consequences
of collisions with both asteroids and comets, which I collec-
tively call astral assailants at the risk of creating a pathetic
fallacy. The workshop also considered requirements for a
mission capable of deflecting an asteroid from Earth collision
and concluded that it was probably within technological
means. It seems unlikely, however, that an object requiring
deflection would be detected over a period of time for which
the technology was relevant.

In 1984, Hyde10 further explored using nuclear explosives to
counter astral assailants. In 1990, Wood et al.11 showed that
defense against small assailants could be accomplished with
nonnuclear interceptors, largely using the kinetic energy of the
assailant itself.

The problem of preventing a collision with a comet or
asteroid can be considered two domains: 1) actions to be taken
if the collision can be predicted several orbital periods in
advance and can be averted by imparting a small change in
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SOLEM: INTERCEPTION OF COMETS AND ASTEROIDS 223

velocity (most effectively at perihelion); and 2) actions to be
taken when the object is less than an astronomical unit .(AU)
away, collision is imminent, and deflection or disruption must
be accomplished as the object closes on Earth. I call the first
domain of actions remote interdiction and the second domain
of actions terminal interception.

If all of the Earth-threatening asteroids were known, the
orbits could be calculated and the process of deflection could
be carried out in a leisurely manner. Remote interdiction
would be the option of choice. But 99% have not yet been
discovered.12 Furthermore, there are an enormous number of
unknown long-period comets for which a thorough search is
completely impractical.

Asteroids in the 100-m size range are exceedingly difficult to
detect unless they are very close. Comets in this size range are
more conspicuous owing to their coma, but they move a lot
faster and can be in retrograde orbits or out of the plane of the
ecliptic. In either case, it seems likely we will have little time to
respond to a potential collision. It therefore appears that
terminal interception—disruption or deflection at relatively
close range—is the most important issue.

In this paper, I consider the dynamics of the terminal inter-
cept problem. I explore the possibility of using kinetic-energy
deflection as well as nuclear explosives. Nuclear explosives can
be employed in three different modes depending on their
location at detonation: 1) buried below the assailant's surface
by penetrating vehicle, 2) detonated at the assailant's surface,
or 3) detonated some distance above the surface.

Interception and Deflection Scenario
Figure 1 shows the interception scenario. In Fig. la, the

asteroid or comet is headed toward Earth at a velocity v. The
interceptor traveling at a diametric velocity V is about to
engage the assailant object. The assailant has a mass Mff, and
the interceptor, because it has long since exhausted its fuel,
has its final mass Mf. We cannot hope to deflect the assailant
like a billiard ball because Ma > Mf. So the interceptor must
supply energy to blow off a portion of the assailant's surface,
as shown in Fig. Ib. The blowoff material is very massive
compared with the interceptor, Ma > Me > Mf. One might
think that a conventional high explosive would suffice, but the
energy it would supply would be relatively insignificant. Stan-
dard high explosive releases 103 calories = 4.184 x 1010 erg per
gram. An asteroid moving at 25 km • s'1 has a specific energy
of 3.125 x 1012 erg per gram—about 75 times the specific
energy of high explosive. If the interceptor is moving at the
same speed in the opposite direction (V - v =25 km • s"1),
the interceptor would impact with a specific energy 300 times
that of high explosive. There is a whole lot of kinetic energy
available; a chemical energy release would be in the noise.
However, even this tremendous kinetic energy would be com-
pletely swamped by a nuclear explosive. The yield-to-weight
ratio of nuclear explosives is generally measured in kilotons
per kilogram, that is, tons per gram. A typical specific energy
is a million times that of chemical high explosive or about four

T !•

a) b)

Fig. 1 Interception scenario: a) interceptor about to engage the as-
sailant, and b) interceptor supplies energy to blow off a portion of the
assailant's surface and imparts a transverse velocity.

orders of magnitude higher than the kinetic energy of the
interceptor collision.

Kinetic-Energy Deflection
The final velocity of an interceptor missile relative to the

Earth, or the orbit in which it is stationed, is given by the
rocket equation,

0)

In general, the time required to reach this relative velocity will
be short compared with the total flight time. The time elapsed
from launch to intercept is

(2)v + V

So the range at which the assailant is intercepted will be given
by

(3)v + V,

If the impact gives the assailant a transverse velocity compo-
nent v ± , then the threatening assailant will miss its target
point by a distance

(4)

where I have neglected the effect of the Earth's gravitational
focusing and used a linear approximation to Keplerian mo-
tion. To obtain the transverse velocity component, we would
use the kinetic energy of the interceptor to blast a crater on the
side of the assailant. The momentum of the ejecta would be
balanced by the transverse momentum imparted to the as-
sailant. From Glasstone's empirical fits,13 the mass of material
in the crater produced by a large explosion is

Me = (5)

where a. and /3 depend on the location of the explosion, the soil
composition and density, gravity, and a myriad of other
parameters. Clearly the crater constant a. and the crater expo-
nent j8 will vary depending on whether we are considering an
assailant composed of nickel iron, stony nickel iron, stone,
chondrite, ice, or dirty snow. For almost every situation,
however, we find 0 =* 0.9.

The kinetic energy available when the interceptor collides
with the astral assailant is

(6)

Only a fraction of the interceptor's kinetic energy is converted
to kinetic energy of the ejected or blowoff material. Let this
fraction be equal to ViS2, or

6 =
ejecta kinetic energy

'interceptor kinetic energy (7)

The reason for this strange definition is that it greatly simpli-
fies the algebra. I will call the parameter d the energy fraction.
Then the transverse velocity imparted to the assailant is

(8)

Mc

Ma
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224 SOLEM: INTERCEPTION OF COMETS AND ASTEROIDS

10

Fig. 2 Dimensionless plot of kinetic-energy deflection.

We can combine Eqs. (4), (5), and (8) to obtain

e = adRi Mav
(9)

Equation (9) reveals the importance of the intercept velocity
V9 which is proportional to specific impulse Isp. If V < v, the
deflection is proportional to V, and if V > v, the deflection is
proportional to V^+1 - V2.

Optimum Mass Ratio for Kinetic-Energy Deflection
The energy on impact is proportional to the final mass of

the interceptor, and the square of its relative velocity as given
in Eq. (6). The smaller its final mass, the higher its relative
velocity, so there is some optimum mass ratio that produces
the greatest deflection for a given initial mass. This would be
the optimal interceptor design, the most bang for the buck.

Substituting Eq. (1) into Eq. (9), setting

de
d(Mi/Mf)

= 0 (10)

and solving, we find the mass ratio that produces the largest
value of e,

M (11)

where

- 0' v

We note that this optimal mass ratio depends only on the
velocity of the assailant relative to Earth v and the intercep-
tor's specific impulse Isp. The value of ft is a constant of the
assailant's composition and is very close to 0.9, and g - 980
cm • s~2 is a constant of planet Earth. In the limit of very high
specific impulse, the optimum mass ratio is

Mi
Mf

= e (13)

This limit can be approached but is not realistic owing to
v/gfsp limitations. The maximum displacement of the impact
location on Earth is then given by

(14)

Remarkably, when Eq. (12) is put into Eq. (14), the resulting
exceedingly complex expression can be put in dimensionless
form. Figure 2 plots the dimensionless parameter eMa/

1) vs the dimensionless parameter glsp/v for

0 = 0.8, 0.9, and 1.0. It shows the increasing advantage to
higher specific impulse derived from Eq. (14).

A great deal of physical insight can be obtained just by
studying the axis labels of the dimensionless plot. From the
ordinate, we see that for the same value of g/sp/v, which is
more or less fixed by interceptor design, the asteroid deflec-
tion e is proportional to the range of the assailant at launch R{,
inversely proportional to the mass of the assailant Mfl, nearly
proportional to the velocity of the assailant relative to Earth
V0 ~ vo.99 neariy proportional to the initial mass of the inter-
ceptor M//2(/3 + 1} — Mf'95 , proportional to the crater constant
a, and proportional to the square root of the fraction of
interceptor kinetic energy converted to blowoff kinetic energy

Equation (14) can be rearranged to give the required initial
mass or mass in orbit of the interceptor,

Mave 1
(15)

The mass given by Eq. (15) will generally be the largest single
factor in the cost of a defensive system of this sort. To appre-
ciate the magnitude of the problem, it is now necessary to put
in a few numbers. The best chemical fuels might have a
specific impulse as high as 500 s, which I will use to make the
point. The density of potential astral assailants varies greatly,
from less than 1 gm • cm ~3 for a snowball comet to a little over
1 gm • cm~3 for a dirty ice comet to about 3 gm • cm~3 for a
chondrite to about 8 gm • cm~3 for a nickel-iron asteroid. An
agreeable average is 3.4 gm-cm~3 . The velocity of the as-
sailant relative to Earth could range from 5 km • s"1 for an
asteroid in nearly coincident orbit with Earth to 70 km • s"1

for a long-period comet in retrograde orbit near the plane of
the ecliptic. I will take 25 km • s"1 for this example.

Because the material properties of asteroids and comets
vary so widely, an estimate of the crater constant and crater
exponent is somewhat arbitrary. Here I will make an estimate
for impact cratering of medium hard rock. Glasstone uses
/3:« 0.9 and ex « 8.4 x 10~4 gm^1 -'» - cm-*3 • s*3 for an explo-
sive buried at the optimal depth for maximum ejection of dry
soil. For a surface burst, Glasstone takes a-1.6x 10~4

gm'/2(i-/3). cm-0. S0. The correct value of a for the impact
crater is somewhere between a surface burst and an optimally
buried explosion. For the purpose of estimating the crater size
for kinetic-energy deflection, I will take a ^ 2 x 10 ~4

gm1/2^ ~0> • cm"'3 • s@. Kreyenhagen and Schuster14 have noted
that impacts in the 20 km • s~ l range couple 50-80% of their
energy to the ground, whereas surface bursts couple only
1-10%. I will assume about 60% coupling and about half that
goes to the blowoff. Thus about 30% of the interceptor's
kinetic energy is converted to kinetic energy of the blowoff,
corresponding to d ̂  0.775.

10-

10-

10-
id1 io2 IO3

Fig. 3 Initial masses of optimally designed interceptors using kinetic-
energy deflection for ocean diversion (1 Mm).
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SOLEM: INTERCEPTION OF COMETS AND ASTEROIDS 225

Figure 3 shows the initial mass of the interceptor required to
deflect the astral assailant by 1 Mm, as a function.of the
assailant's diameter d and its range when the assailant is
launched Rh I have assumed an assailant density of p = 3.4
gm • cm~3, an assailant velocity of v = 25 km • s"1, a crater
exponent of ft = 0.9, a crater constant of a = 2 x 10~4

gm1/2(1 ~0> • cm-*3 • s*3, and an energy fraction of d - 0.775. A
1-Mm deflection is typical of the course change required to
divert the assailant from impact in a populated area to a
nearby ocean. To interpret the figure for a 10-Mm deflection,
which would be conservative for missing the planet entirely
(Re = 6.378 Mm), multiply the masses by a factor of 10
(M/oce2/(?+1}, so a factor of 10 in e corresponds to a factor of
11.3 in MI).

An ocean impact is not without damage,15'16 but, in general,
the damage will be far less than if the impact were in a
populated area. Roughly speaking, the height of the wave and
the distance from impact are jointly proportional to the square
root of the energy deposited in the water.17 A 100-m diameter
chondrite might typically impact with 100 Mton of energy.
Taking about 5% of that energy18 as coupled to the water, a
water wave of about 3 m in height would be encountered 100
km from the impact point.

To interpret Fig. 3 for a 10-Mm deflection, which would be
conservative for missing the planet entirely (/?© = 6.378 Mm),
we need to multiply the masses by about a factor of 10. [From
Eq. (15), M/oce2/(/3+1\ so a factor of 10 in e corresponds to a
factor of 11.3 in M/.] Figure 3 makes a clear statement about
the applicability of kinetic-energy deflection. Kinetic-energy
deflection is practical only for assailants considerably less than
100 m in diameter. To handle a 100-m assailant would require
a 1000-ton interceptor even if launched when the assailant was
still 1/10 AU away. The mass would go to 10,000 ton if the
assailant were deflected to miss the planet entirely rather than
diverted to an ocean. Thus, dealing with assailants larger than
100 m requires another technology.

Kinetic-Energy Fragmentation and Pulverization
Equation (15) gives the initial mass of an optimally designed

interceptor for deflecting an astral assailant by blowing off its
surface. It was derived under the assumption that the amount
of mass bjown off is small compared with the assailant's mass.
If the ejected mass is too large, the crater will have dimensions
a significant fraction of the assailant's dimension, and it is
more likely that the assailant will break up. If the fragments
are too large and are scattered at random, they may still be
able to penetrate the Earth's atmosphere and do damage. A
2-m fragment of a nickel-iron asteroid has about the same
average pr as the atmosphere measured vertically from sea
level and thus will penetrate the atmosphere losing only about
half its energy. A 50-m chondrite, however, will probably
break up owing to the dynamic stress of traversing the atmo-
sphere. Shock from the energy of its explosion may still do

0.3-

0.2-

0.1

10 20 30 40 50

d(m)

Fig. 4 Blowoff fraction for ocean diversion (1 Mm) using kinetic-en-
ergy deflection.

0.14-

0.10

0.06

UOOO 3000 5000

IIP (sec)

Fig. 5 Asymptotic decrease of blowoff fraction with specific im-
pulse.

damage as appears to have been the case with Tunguska. It
should be noted that the blast from a bomb does more damage
to a city when the detonation is some altitude above the target
than when the detonation is on the surface. To insure that no
damage is done, it will be necessary to pulverize the assailant,
that is, break it into very small pieces that are sure to dissipate
all of their energy in the atmosphere.

To get a handle on the problem of whether the assailant will
be deflected, fragmented, or pulverized, we need an estimate
of what fraction of the assailant will be blown off in the
collision. By combining Eqs. (1), (5), (11), and (15), we find
that the fraction of the assailant blown off is given by

Ma

2
1 + 0 (16)

where Q is again given by Eq. (12). Some qualitative features
of the blowoff fraction are immediately apparent.

1) The blowoff fraction is nearly independent of assailant

2) The blowoff fraction is nearly proportional to the crater
constant, a2/(1 + ® - a1-05.

3) The blowoff fraction is nearly inversely proportional to
the energy coupling, d2^1 + ®~ 6°-947.

4) The blowoff fraction decreases asymptotically with spe-
cific impulse.

Using the aforementioned parameters, Fig. 4 shows the
blowoff fraction for ocean diversion as a function of assailant
diameter for three different ranges to the assailant at intercep-
tor launch (p = 3.4 gin-cm'3, /3 = 0.9, a = 2 x 10~4

gm'/2(i - 0) . cm-*3 • s*, v = 25 km • s~ *, d « 0.775). If more than
10% is blown off, the assailant will probably break up. What
we learn from Fig. 4 is that, if we cannot launch the intercep-
tor at about 1/30 AU or better, we cannot deflect the assailant
without fracturing it. Under those circumstances, it is better to
try to pulverize it with an array of masses, probably resem-
bling spears for maximum penetration.

Equation (16) suggests a way to beat the fracture problem.
The blowoff fraction can be reduced by increasing the specific
impulse. Figure 5 shows the blowoff fraction as a function of
specific impulse for a 100-m assailant with the mission
launched at a range of 1/100 AU. With a specific impulse of
500, over 14% of the assailant mass is blown off, whereas at
a specific impulse of 5000, less than 4% is blown off.

Nuclear-Explosive Deflection
Much more deflection can be obtained if a nuclear explosive

is used to provide the cratering energy. In this scenario, most
of the weight after the rocket fuel is expended would be the
nuclear explosive, which produces a yield of

E = <pMf (17)
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226 SOLEM: INTERCEPTION OF COMETS AND ASTEROIDS

where y is the yield-to-weight ratio. Again, d2/2 of this energy
goes into the dirt ejected from the crater, so the transverse
velocity imparted to the assailant is

V J- = -

We can combine Eqs. (4), (5), and (18) to obtain

Mav V + v

(18)

(19)

Optimum Mass Ratio for Nuclear-Explosive Deflection
Substituting Eq. (1) into Eq. (19) and solving Eq. (10), we

find the logarithm of the mass ratio that produces the largest
value of e,

Q = - 2glsf
+ T (20)

In the limit of very high specific impulse, the optimum mass
ratio is

M
(21)

In the limit of very low specific impulse, the optimum mass
ratio is

= exp
l + i

(22)

The maximum displacement of the impact location on Earth is
then given by

(23)
Mav g!spQ + v

For a surface burst, Glasstone uses 0 = 0.9 but takes
a — 1.6 x 10~4 gm1/2(1 -/3) • cm"13 • s*3. He describes the medium
as dry soil. Medium strength rock would be more consistent
with a = 10~4 gm1/2(1 -/3) • cm''3 • s*3 and, in the 20-kton range,
would roughly agree with Cooper.19 If about 5% of the nu-
clear-explosive energy goes into the kinetic energy of the blow-
off, then d = 1/VIO = 0.316.

Equation (23) can be rearranged to give the required initial
mass of the interceptor,

eQ\Mave(
- (24)

where now Q is given by Eq. (20).
It is generally known that the yield of nuclear warheads can

be a few kilotons per kilogram if they weigh more than about
a hundred kilograms. For the purpose of these estimates, I will
take the conservative of y? = 1 kton-kg"1. Figure 6 is
analogous to Fig. 3, using the values of a and d given earlier.
Ocean deflection of 1 Mm is sought, and the following values
are used: p = 3.4 gin-cm"3, v = 25 km-s'1 , 0 = 0.9,
a = 10-4 gm1^1 -« • cm-*3 • s*3 and d = 0.316.

A good way to compare kinetic-energy deflection with nu-
clear-explosive deflection is to look at the ratio of the initial
masses of the interceptors. If we divide Eq. (24) by Eq. (15),
we see that all variables drop out except specific impulse Isp9
the assailant's velocity v, the energy fraction 6, and the crater-
ing constant a. For a comparison of the techniques, we would
keep the same values of Isp and v. We define the ratio

Rm ==
MJ given by Eq. (24)
M, given by Eq. (15) (25)

10-i.

10-

io-2

101 102 103

Fig. 6 Initial masses of optimally designed interceptors
clear-explosive deflection for ocean diversion (1 Mm).

ising nii-

The appropriate dimensionless ratio for the comparison is

Rm^ (26)

where the subscripts n refer to the parameters for nuclear-ex-
plosive deflection and the subscripts k refer to the parameters
for kinetic-energy deflection. This is the actual ratio of initial
interceptor weights for kinetic-energy vs nuclear-explosive de-
flection. Figure 7a shows this ratio as a function of assailant
velocity v for specific impulse Isp = 500 s. Figure 7b shows the
same ratio as a function of specific impulse Isp for assailant
velocity v = 25 km • s"1. Figure 7c shows the same ratio as a
function of both specific impulse and assailant velocity. For
the numerical examples we have chosen, we have

andn 1Q-4X 0.316
2 x ID'4 x 0.775

= 0.204 (27)

So for my particular selection of parameters, we can read the
mass ratios in Figs. 7a, 7b, and 7c by multiplying the number
on the vertical axis by 0.204.

From Figs. 7a, 7b, and 7c, we learn the following qualitative
features.

1) The interceptor weight is about three orders of magni-
tude less for nuclear-explosive deflection than for kinetic-en-
ergy deflection.

2) The advantage of nuclear-explosive deflection decreases
significantly with assailant velocity.

3) The advantage of nuclear-explosive deflection decreases
slightly with specific impulse.

Nuclear-Explosive Fragmentation and Pulverization
By combining Eqs. (1), (5), (11), and (24), we find that the

blowoff fraction is given by

.
MA

ev 1 +-
2

1 + f (28)

where Q is given by Eq. (20). Somewhat remarkably, Eq. (28)
is independent of <p and has the same form as Eq. (16). The
only differences are 1) the different form of Q, and 2) the
value of the energy fraction 6, and 3) the value of the cratering
constant a.

Figure 8 shows the blowoff fraction for planetary miss (10
Mm) as a function of assailant diameter for two different
ranges to the assailant at interceptor launch. If the interceptor
is launched at a range much closer than KsAU, the assailant
will be fragmented rather than deflected.
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SOLEM: INTERCEPTION OF COMETS AND ASTEROIDS 227

1.2 x 104-

s«?
8 x 103-

4 x 103-

a)
30 50

v (km- sec"1)
70

1.2 x 104

1.1 x 104

of
1.0 x 104

500

b)
200 300

I.P (sec)
400

Fig. 7 Ratio of kinetic-energy interceptor mass to nuclear-explosive
interceptor mass: a) ratio vs v for Isp == 500 s, b) ratio vs Isp for v =25
km • s"1, and c) ratio vs Isp and v.

0.3

0.2--

0.1

100 200 300 400 500

d(m)

Fig. 8 Blowoff fraction for collision avoidance (10 Mm) using nu-
clear-explosive deflection.

Penetrators
The biggest crater is not produced by a surface blast but by

an explosive buried some distance below the surface. Clearly if
it is buried too deeply, it will produce no crater at all. The
optimum depth for cratering is a function of all of the usual
parameters describing material properties but, quite impor-
tantly, gravity, which to a large extent, can be ignored for
comets and asteroids. For dry soil on the surface of the Earth,
Glasstone gives the optimum depth as 150 EQ-3 ft, and he
would obtain the crater constant and exponent as /3 — 0.9 and
OL - 8.4 x 10-4 gm'72'1 -» • cm-*3 • ̂  for use in Eq. (5). For the
moment, let us say that the value of a is increased an order of
magnitude.

Looking at Eq. (24), we might expect the initial mass to
decrease an order of magnitude, but to penetrate to the opti-
mal depth the explosive has to be fitted with a weighty billet:
a cylinder of metal (probably tungsten) that will erode during
penetration of the assailant's surface material. In general, this
will increase the weight by about an order of magnitude or
decrease the yield-to-weight <p by about an order of magni-
tude. Thus, in Eq. (24), the decrease in initial interceptor mass
Mi owing to the increase in the cratering constant a is just
about compensated by the decrease in yield-to-weight <p.

However, the blowoff fraction given in Eq. (28) becomes an
order of magnitude larger because it does not depend on
yield-to- weight <f>. The conclusion is that a penetrator has no
value-enhancing deflection but may be of great value if we
chSse to pulverize the astral assailant.

Standoff Deflection
The fracture problem can be much mitigated by detonating

the nuclear explosive some distance from the astral assailant.
Rather than forming a crater, the neutrons, x rays, gamma
rays, and some highly ionized debris from the nuclear explo-
sion will blow off a thin layer of the assailant's surface. This
will spread the impulse over a larger area and lessen the shear
stress to which the assailant is subjected. Of these four energy
transfer mechanisms, by far the most effective (at reasonable
heights of burst) is neutron energy deposition, suggesting that
primarily fusion explosives would be most effective.

The problem of calculating the momentum transferred from
a standoff detonation is sufficiently complicated that it is
difficult to address analytically. Computer simulations seem
the most effective approach. However, some general state-
ments can be made. At an optimal height of burst, about
2-8% of the explosive's energy is coupled to the assailant's
surface, again depending on the assailant's actual composition
and the neutron spectrum and total neutron energy output of
the explosive. This corresponds to an energy fraction d of
0.2-0.4. Most of the energy is deposited in the first 10 cm of
the soil. The cratering constants can still be used as in Eq. (5),
but for this surface blowoff, /3 — 1 and a ranges from 10" 6 to
2 x 10~6 cm"1 • s. If we select an assailant for which d = 0.3
and a = 1.5 x 10~6 cm"1 • s, we find from Eq. (24) that the
blowoff fraction will be about a factor of 35 times smaller
than for the surface burst. The blowoff fraction given in Fig.
8 would be in the range of 1% for RI = 1/10 AU and in the
range of Vi% for RI = V* AU. Similarly, from Eq. (28) we
find that the initial mass of the interceptor would have to be
about 40 times as large. So in Fig. 6 the mass would be
multiplied by 40, i.e., ranging from about 28 ton to about 28
kiloton. The latter would not be very practical.

Comments, Summary, and Tentative Conclusions
The problem of terminal interception of comets and as-

teroids on collision course with Earth has two components: 1)
detection of these relatively small assailants and 2) smashing
or deflecting them should they be on an endangering path. In
this paper, I have addressed the latter issue. The relationships
I have derived should guide thinking on how to counter such
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assailants. The main value is to show the functional relation-
ship among the parameters. This paper is not intended to be
an exhaustive study, and much research will be required to
evaluate the constants in the equations I have derived. But the
following observations are compelling and refractory.

1) Kinetic-energy deflection is effective for ocean diversion
for assailants smaller than about 70 m, if the interceptor is
launched when the assailant is further than 1/30 AU. At
shorter range, interceptors become impractically massive and
the probability of fracture increases rapidly. Ocean impact is
probably unacceptable for larger assailants, and an order-of-
magnitude larger interceptor is required for missing the planet
with concomitant increase in fracture probability. Higher spe-
cific impulse interceptors are more effective at increasing de-
flection and reducing fracture probability, mainly because
they divert the assailant at a greater distance. Objects less than
10 m are better pulverized at short range.

2) Nuclear-explosive deflection is imperative for assailants
greater than about 100 m detected closer than 1/30 AU be-
cause of the enormous mass of the interceptor required for
kinetic-energy diversion.

3) Nuclear-surface-burst deflection offers a three to four
order of magnitude reduction in interceptor mass. The advan-
tage decreases slightly with specific impulse and decreases
dramatically with assailant velocity. Fragmentation is a prob-
lem for intercepts closer than about 1/30 AU.

4) Nuclear penetrators offer no advantage for deflection
but are better for pulverization.

5) Nuclear standoff deflection greatly reduces fragmenta-
tion probability but involves a substantial increase in intercep-
tor mass.

The assailant object depicted in Fig. 1 is roughly spherical in
shape. In fact, comets or asteroids are generally quite spheri-
cal, a "potato" or "peanut" being the most popular descrip-
tions. All of the deflection techniques except the standoff
nuclear burst make a crater that is small compared with the
characteristic dimension of the assailant. The linear momen-
tum impulse will be imparted along a line connecting that
crater and the center of mass, with corrections for local geol-
ogy and topography. An aspheric object will also receive some
angular momentum, depending on the location of the crater
and the object's inertial tensor. The size of the impulse will
depend on material properties, geology, and topography.

Thus, it will be necessary to characterize the geology and
mechanical properties of the assailant when using the cratering
deflection techniques. Such characterization could be accom-
plished by a vanguard spacecraft. Standoff deflection is much
less sensitive to these details. In general, linear momentum will
be imparted along the line connecting the detonation point
with the center of mass. Little angular momentum will be
imparted, and this will depend on relative projected areas of
various assailant topographic features compared with compo-
nents of the inertial tensor. Thus, beside its inherent fracture-
mitigation virtues, the standoff deflector demands substan-
tially less information about the object it is deflecting.
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